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Prodromes for a theory

of heights on non-commutative separable K-algebras (**)

Introduction

Let X be a finite dimensional vector space over a number field K. If we want
to define an height function on X we need to endow X with some additional struc-
ture, a common choice is that of a basis for X. If b is a basis for X then we get a
height function Hb by composing the isomorphism of X to K n associated to b with
the standard Weil height on K n. Since the Weil height is invariant under permu-
tations of the coordinates, any permutation of the elements of the basis does not
change Hb. In fact Hb only depends on the algebra structure induced by the choi-
ce of the basis b on X. Our original motivation for this research is a sort of conver-
se to the above fact: is there a way to single out one height function on X having
special properties with respect to the given K-algebra structure? To make our
question and result precise we have to specify which class of height functions we
are considering. We will work with heights defined by adelic norms. The precise
definition of an adelic norm is given in section 1; for the moment we can briefly
describe it as a family of local norms satisfying some compatibility condition.
What is important is that we can recover all the heights frequently used in the li-
terature as heights defined by an adelic norm, see the examples in section 1. Some
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results regarding the above question for the case of separable commutative K-al-
gebras were proven in [Ta1] and [Ta3]. One of the goals of this paper is to simpli-
fy and refine some of our previous arguments; the final result that we prove here,
building upon our previous results, can be stated as follows:

T h e o r e m A. Let A be a commutative finite-dimensional separable K-alge-
bra. Let H(A) denote the set of height functions on A that are defined by adelic
norms. There exists a unique HA/K � H(A) such that:

HA/K (a k ) 4HA/K (a)k(M1)

for all a�A and all kF1. Moreover HA/K enjoys the following properties:

(M2) Given H� H(A) we have

lim
nKQ

H(a n )
1

n 4HA/K (a) for all a�A .

(M3) HA/K is invariant under AutK2alg (A)

(M4) If T : AKA is a height preserving K-linear map such that H(T(1A )) 41A .
Then T�AutK2alg (A).

We call HA/K the canonical height on A. The construction of a height function
satisfying (M1) and (M3) was carried out in [Ta1]. Properties (M2) and (M4) we-
re established in [Ta3], but (M2) was proven only for those heights having an ad-
ditional compatibility property with respect to the algebra structure of A (see sec-
tion 2). In this paper we prove that (M2) holds for every H� H(A) (see Theorem
2.1). Clearly (M2) implies the uniqueness of HA/K .

Let us now turn to the case of non-commutative separable K-algebras which,
after all, is our main concern in this work. Unfortunately the situation is not as
good. In fact we show that an adelic norm whose associated height satisfies (M1)
does not exists, see the remark after Proposition 3.1. But not all is lost, in fact we
can still define a function HA/K for which (M1), (M2) and (M3) holds. The defini-
tion of HA/K relies upon a spectral interpretation of the canonical height in the
commutative case. The precise definition of HA/K and the proof of the desired pro-
perties are in section 3.

We would like to point out that a theory of heights in a non-commutative set-
ting has also been recently developed by C. Liebendöerfer in [Li1] and [Li2]. The
two theories are rather different in spirit and purpose. In this work we are con-
cern on height theory on non-commutative algebras over a number field, while C.
Liebendöerfer constructs and studies heights on vector space over positive defini-
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te rational quaternion algebras, her interest lying in the study of «small» solution
of homogenous linear equation over such non-commutative division algebras.

Acknowledgements. It is the author’s pleasure to thank Carlo Gasbarri and
the referee for many helpful comments.

1 - Adelic norms and heights on vector spaces

This section contains definitions and results about heights defined by adelic
norms on a finite dimensional K-vector space that are needed in the sequel. Let K
be a number field of degree d over Q.

Let MK be the set of places of K. We denote by M0
K (respectively MQ

K ) the
subset of MK consisting of non-archimedean (respectively archimedean) places. If
v� M0

K , vNp , we normalize N QNv by NpNv 4p 21 ; while if v� MQ
K we normalize N QNv

by requiring that restricted to Q it coincides with the standard archimedean abso-
lute value. Let Kv be the completion of K with respect to N QNv . We denote by nv

the local degree, and set dv 4nv /d , where d is the degree of K over Q. With this
normalization the product formula reads »

v� MK

NlNv
nv 41. Finally OK denotes the

ring of integers of K and Ov the completion of OK in Kv .
Let v be in M0

K and let Y be a finite dimensional Kv-vector space. A subset
V%Y is called an Ov 2 lattice if V is a compact open Ov-module. If V%Y is an Ov-
lattice then the norm on Y associated to V is defined as

NV (x) 4 inf
g�Kv

3 , gx�V
NgNv

21 .

Let X be a finite dimensional K-vector space and L%X , an OK-module. We set
Xv 4X7K Kv and L v 4L7OK

Ov . Finally L is called an OK-lattice if it is a finitely
generated OK-module which contains a basis of X over K.

A family of norms F 4 ]Nv : Xv KR , v� MK ( is called an adelic norm if it sa-
tisfies the following properties:

(a) Nv is a N QNv-norm, i.e., Nv(lx)4NlNv Nv(x) for all l�Kv and all x�Xv .
(b) If v� M0

K , then Nv is ultrametric, i.e., Nv (x1y) G max ]Nv (x), Nv (y)(.
(c) There exists an OK-lattice L%X , such that Nv 4NL v

for all but finitely
many v� M0

K .
The height function HF defined by F is:

HF (x) 4 »
v� MK

Nv (x)dv

for all xc0 while we set HF (0) 41. The compatibility condition (c) ensure us that
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the infinite product appearing in the definition of HF is in fact finite. It is evident
from the product formula that HF descend to a function on P(X) the projective
space associated to X.

We will denote by H(X) 4 ]HF : F is an adelic norm on X(, the set of height
functions defined by adelic norms.

E x a m p l e s . (a) Let X4K n and fix 1 GqGQ. For each v� MK we define
Nv

Q (x) 4 max
1 G iGn

NxiNv . Thus if v� M0
K then Nv

Q is the norm associated to the Ov-

lattice Ov
n of Kv

n . Moreover for v� MQ
K let N q

v be the l q-norm on Xv , i.e. N q
v (x)

4 g!
i41

n

NxiNv
qh

1

q

. Set Fq 4 ]Nv
Q ; v� M0

K (N ]Nv
q ; v� MQ

K (, then Fq is an adelic

norm. Let Hq denote the associated height, i.e.:

Hq (x) 4 »
v� M

0
K

max
1 G iGn

NxiNv Q »
v� M

0
K

g!
i41

n

NxiNv
qh

1

q

.

For q41, 2 or Q we recover the classical heights as defined by Northcott (q41)
(see [No]), Weil (q4Q) (see [We1]) and Schmidt (q42) (see [Sc]).

(b) Let E be an Hemitian vector bundle over Spec (OK ), the precise definition
of which can be found below. As a by-product of Arakelov theory (1) one gets a
(logarithmic) height h E

ar on the K-vector space EK 4E7OK
K. The goal of this

example is to show that there exists H� H(EK ) such that h E
ar 42[K : Q] log H ,

the appearance of the factor [K : Q] is due to different normalizations.
First of all recall that OK 7Z R`»

s
Ks where s ranges over the embeddings

of K into C , and Ks denotes the completion with respect to the absolute value N QNs

associated to s. In particular OK 7Z R is endowed with a canonical involution a
Ka * which in terms of the isomorphism OK 7Z R`»

s
Ks is simply described by

(as )*4 (as), here as is the complex conjugate of as . Next a Hermitian vector bun-
dle E 4 (E , aQ , QbER

) over Spec (OK ) is the datum of a locally free projective OK-mo-
dule of finite rank E , and of an Hermitian inner product aQ , QbR on ER4E7Z R.
Recall that a R-bilinear, symmetric, positive definite pairing aQ , Qb on a (OK 7Z R)-
module M is called Hermitian if aam1 , m2 b 4 am1 , a * m2 b for all m1 , m2 �M
and all a� OK 7Z R. The decomposition of OK 7Z R induces a decomposition
ER`»

s
Es where Es4E7OK

Ks . Moreover we also get a decomposition of the in-

(1) For a comprehensive treatment of Arakelov theory see [GS]; for one of the relations
between Arakelov theory and heights (of cycles) on projective varieties see [BGS].



337PRODROMES FOR A THEORY OF HEIGHTS...[5]

ner product aQ , QbER
as a sum of the induced inner product of the various compo-

nents, i.e. the components are perpendicular with respect to aQ , QbER
. For more in-

formation about this approach see [Gr]. The Arakelov degree of Hermitian line
bundle L 4 (L , aQ , QbLR

) is defined as follows: let s�L be non-zero, then we
set:

deg×(L) 4J(L/sL)2 log gkas , sbLR
h .

Given a point s�EK the Arakelov height (2) h E
ar (s) of s can be computed as follows

(see [Ga], section 2): let Ls be the Hermitian line bundle (Ks)OE (we are regar-
ding E as contained in EK , via x O x71) with the induced metric, then h E

ar (s) 4

2deg×(Ls ). On the other hand we can associate to E an adelic norm on EK , as fol-
lows: since E is a a projective OK-module of finite rank, for all v� M0

K the Ov-latti-
ce Ev 4E7OK

Ov defines a v-adic norm on (EK )v 4E7OK
Kv that we denote by

N E
v . If v� MQ

K and v corresponds to one real embedding s we set

Nv
E (x) 4kax , xbs for all x� (EK )v

where aQ , Qbs denotes the restriction of aQ , Qb to the component Es` (EK )v ; if v is
complex then it corresponds to a pair of complex conjugate embendings and we
proceed as above the only difference being that we have to choose one of the two
embeddings. For our purpose the choice is irrelevant because both give rise to the
same inner product on (EK )v by Lemma 3 of [Gr]. We then set FE 4 ]N E

v ,
v� MK (. The computation of Appendix A of [Vi], yields:

har (s) 42[K : Q] Q log (HFE
(s)) .

(c) Let R4 (Tv ) be an element of GLn (AK ), the adele group of GLn (K). Let L R

be the OK-lattice defined by requiring that (L R )v 4Tv (Ov
n ). Set N R

v 4N(L R )v
for all

v� M0
K , and consider the adelic norm FR4 ]N R

v , v� M0
K (N ]N R

e, v , v� MQ
K (,

where N R
v (x) 4Ne, v

2 (Tv (x)). The height HR4HFR associated to this adelic norm
was introduced by D. Roy and J. Thunder in [RT] and referred to as the twisted
height associated to R.

P r o p o s i t i o n 1.1. L e t X b e a fi n i t e d i m e n s i o n a l K - v e c t o r s p a c e . L e t
H� H(X), then

(2) This is a small fragment of a much more general procedure which yields height fun-
ctions not only on points of EK but on cycles of arithmetic varieties, again the main referen-
ces are [BGS] and the literature cited therein.
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(H1) H(lx) 4H(x) for all l�K 3.
(H2) Given H 8� H(X) there exists a constant C4C(H , H 8 ) D1 such that for
all x�X we have:

C 21 H 8 (x) GHF (x) GCH 8 (x) .

(H3) For all CD0 the set ]l�P(X)NHF (l) GC( is finite.

P r o o f . (H1) follows directly from the product formula while (H3) follows
from (H2) and the classical Northcott’s theorem. Finally (H2) is a consequence of
the fact that all norms on a finite dimensional vector space over a complete field
are equivalent and that any two adelic norms differ only for finitely many norms;
for more details see [Ta2] Lemma 2.1.

Next we introduce the height functions on EndK (X), the K-algebra of K-endo-
morphisms of X , which are needed in the sequel. Let F be an adelic norm on X.
We define H op

F the operator height associated to HF (or to F ), by setting

H op
F (T) 4 sup

x�X0]0(

HF (T(x))

HF (x)
.

Last but not least we define the spectral height. Let us recall the definition of the
local spectral radii. Let F be a complete local field and Y a finite dimensional F-
vector space. The spectral radius of T�End (Y) is defined as:

r F (T) 4 sup
l�sp(T)

NlNF(l) ,

where sp (T) % F is the set of characteristic roots of T and N QNF(l) is the unique
extension of N QNF to F(l).

Let us go back to our settings: given a non-nilpotent T�EndK (X) we set

Hs (T) 4 »
v� MK

r Kv
(Tv )dv .

We also set Hs (T) 41 for all nilpotent T�EndK (X). The function thereby defined
is called the spectral height and enjoys the following properties:

(S1) Hs (lT) 4Hs (T) for all l�K 3

(S2) Hs (T) F1.
(S3) Hs (T k ) 4Hs (T)k for kF1.
(S4) Hs is invariant under conjugation.
(S5) If T , T 8�End (V) commute, Hs (TT 8 ) GHs (T) Hs (T 8 ).
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(S6) If W is another finite dimensional K-vector space and S�EndK (W) then
Hs (T7S) 4Hs (T) Hs (S).

(S7) Hs is invariant under field extension.

Properties (S3)-(S6) are direct consequences of the behavior of the spectrum
under the various operations considered. Property (S1) follows from the product
formula while (S7) is derived in a standard way from the formula for local de-
grees (see [La] chapter 3 section 1). Finally (S2) follows from (S1) and (S7).

The fundamental relation between these height functions is the following:

Gelfand-Beurling formula for heights. Let F be any adelic norm on the fi-
nite dimensional K-vector space X. Then for all T�EndK (X) we have:

lim
nKQ

H op
F (T n )

1

n 4Hs (T) .(GBF)

For a proof see [Ta2], Theorem A.

2 - The canonical height on a commutative separable K-algebra

In this section we recall the construction and the main properties on the cano-
nical height on a commutative separable K-algebra. Since char (K) 40 a K-alge-
bra A (commutative or not) is separable (3) if and only if it is semisimple (i.e. iso-
morphic to a product of field extensions of K) and finite dimensional. We employ
the following notations:

A a commutative separable finite dimensional K-algebra
(S , OS ) the affine K-scheme associated to A
(Sv , OSv

) the affine Kv-scheme associated to Av 4A7K Kv

AK
p

G(S , OS ), a O a× the canonical isomorphism
Kv (s) the residue field at s�S.
N QNs the unique extension of N QNv to Kv (s), for s�Sv .

Note that under the assumption of separability the residue field at s�S is iso-
morphic to the stalk of OS .

(3) A k-algebra A is separable if the as a A7k A7-module is projective, where A7 is the
opposite ring of A. This is equivalent to require that A is finite-dimensional and semisimple
and that the center of each simple component is a separable extension of k , see [Re], Theo-
rem 7.20.
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Let us start by defining the canonical adelic norm of A. Given v� MK we set

Nv
A : Av KR

a O sup
s�Sv

Na×(s)Ns .

The family of norms FA 4 ]Nv
A , v� MK ( is then an adelic norm, see [Ta3], Lem-

ma 3.1 for a proof. The height function HA/K defined by FA is the canonical height
on A of Theorem A of the introduction by property (C3) and Theorem 2.1
below.

Being the height attached to an adelic norm HA/K enjoys properties (H1)-(H3)
stated in the previous section, but due to its intrinsic nature it actually enjoys ma-
ny more properties, namely: Let A and B be separable K-algebras, a�A , b�B ,
then

(C1) HA/K (a) F1.
(C2) HA/K (aa 8 ) GHA/K (a) QHA/K (a 8 ).
(C3) HA/K (a k ) 4HA/K (a)k.
(C4) HA/K (a) 41 if and only if the set ][a n ] �P(A), n�N( is finite.
(C5) H(A7K B) /K (a7b) 4HA/K (a) QHB/K (b).
(C6) Let L be any extension of K. Then HA/K (a) 4H(A7K L) /L (a71).
(C7) If W : AKB is an injective homomorphism of separable K-algebras,

then HA/K (a) 4HB/K (W(a) ). In particular HA/K is invariant under
AutK-Alg (A).

For a proof of these statements see [Ta1] Propositions 2.2 and 2.6, Corollaries
2.4 and 2.5. In (C4) P(A) 4P( [A] ) denotes the projective space associated to [A]
the K-vector space underlying A.

E x a m p l e . Let A4L be a finite extension of K of degree n. If w� MK

extend v� MK we write wNv and we set rw 4 [Lw : Kv ] /[L : K]. Then

HL/K (a) 4 »
v� MK

max
wNv

NaNrv
w .

In the case K4Q it is actually possible to be a bit more explicit. Given a�L , let
a4ra 8 , where r�Q* and a 8� OL satisfies a 8 /n� OL for n�N , nD1. Then, if p
is unramified in the extension L/K , we have max

vNp
Na 8Nv 41. Therefore,

HL/Q (a) 4HL/Q (a 8 ) 4 g»
pND

max
vNp

Na 8Nvh max
vNQ

Na 8Nv ,

where D is the discriminant of the extension L/K.
To complete the proof of Theorem A of the introduction we only have to show

that (M2) holds for all H� H(A). As we mentioned in the introduction, (M2) has
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been show to hold in [Ta3], Theorem 2.4 but only for a class of adelic norms: the
compatible adelic norm. Recall that an adelic norm F 4 ]Nv , v� MK ( is compati-
ble (with the K-algebra structure of A) if (Av , Nv ) is a Banach algebra over Kv for
all v� MK . We now prove (M2) in full generality

T h e o r e m 2.1. Let A be a commutative separable K-algebra. Let H� H(A),
then:

lim
nKQ

H(a n )
1

n 4HA/K (a)

for all a�A.

P r o o f . Let H� H(A), by (H1) there exists CD1 such that

C 21 HA/K (a) GH(a) GCHA/K (a)

for all a�A. Therefore for a given a�A we have

(C 21 HA/K (a n ))
1

n GH(a n )
1

n G (CHA/K (a n ))
1

n

for all nF1. By (C3) we have

lim
nKQ

(C 21 HA/K (a n ))
1

n 4HA/K (a) 4 lim
nKQ

(CHA/K (a n ))
1

n ,

yielding the theorem.
We would like to dwell for a moment on our previous proof of Theorem 2.1: it

was based on the Gelfand-Beurling formula for operator heights and on the follo-
wing two results (4) Let F be a compatible adelic norm on A and for a�A let ma

denote the multiplication-by a map.

(K1) For all a�A we have: H op
F (ma ) GHF (a) GH op

F (ma ) HF (1A ).
(K2) For all a�A we have: HA/K (a) 4Hs (ma ).

The Gelfand-Beurling formula combined with (K1) and (K2) yields a quick
proof of Theorem 2.1 for a compatible adelic norm F :

lim
kKQ

HF (a k )
1

k 4 lim
kKQ

H op
F (ma

k )
1

k by (K1)

4Hs (ma ) by (GBF)

4HA/K (a) by (K2) .

(4) For a proof of (K1) and (K2), see [Ta3], Lemma 3.2 and Lemma 3.3 respect-
ively.



342 VALERIO TALAMANCA [10]

The advantage of this proof is that it puts the spotlight on the spectral height
and makes it possible to generalize both the definition of the canonical height and
Theorem 2.1 to the non-commutative setting as we shall see in the next
section.

3 - Heights on separable algebras over number fields

As we have seen in the previous section (precisely property (K2)) the canoni-
cal height of an element a of a commutative separable K-algebra can be interpre-
ted as the spectral height of the linear transformation ma . We will use this ap-
proach to define a height function on non-commutative separable K-algebras. Let
A be such a K-algebra. Given v� MK we regard A as contained in Av via
a O a71. To any element a�A we can associate two Kv-linear maps of Av to it-
self, the left and right regular representation of a , namely: (l a )v : Av KAv , O ab ,
and (ra )v : Av KAv , b O ba. Since A is separable so is Av , and on a separable alge-
bra over a field the characteristic polynomials of the the left and right regular re-
presentation af any element coincide, see e.g. [Re], section 9b. In particular r v (l )a

4r v (ra ) which leads us to put forward the following definition:

D e f i n i t i o n . Let A be a non-commutative separable finite deimensional K-al-
gebra. We define HA/K : AKR , the canonical height on A , by setting:

HA/K (a) 4Hs (l a ) 4Hs (ra )

for all 0 ca�A , and we set HA/K (a) 41.

P r o p o s i t i o n 3.1. Let A and B be non-commutative separable K-algebras.
Let a�A , b�B and l�K 3. Then

(1) HA/K (la) 4HA/K (a) for all lK 3.
(2) HA/K (a) F1.
(3) HA/K (a k ) 4HA/K (a)k for all kF1.
(4) If E is a finite extension of K , then HA/K (a) 4H(A7K E) /E (a71).
(5) H(A7K B) /K (a7b) 4HA/K (a) QHB/K (b).
(6) If W : AKB is an injective homomorphism K-algebras, then HA/K (a)

4HB/K (W(a) ). In particular HA/K is invariant under AutK-Alg (A).
(7) Assume now that A is a central simple K-algebra and that F is a finite

extension of K. If r : AKMm (F) is any representation of A , then
Hs (r(a)) 4HA/K (a)h , where hkdimK A4m.



343PRODROMES FOR A THEORY OF HEIGHTS...[11]

P r o o f . Properties (1)-(5) follow from the corresponding property of Hs . To
see (6) it suffices to note that the local spectral radii only depend on the minimal
polynomial which is clearly invariant under monomorphism. Finally (7) follows
from the theory of the reduced characteristic polynomial for central simple alge-
bras, see [Pi] chapter 16.

R e m a r k . The main disavantage of HA/K is that it does not belong to H(A).
To see this it suffices to note that HA/K is constant under conjugation and so Nor-
thcott’s theorem does not hold for HA/K . On the other hand by (H2) Northcott’s
theorem does hold for any height in H(A) thus preventing HA/K to be one of
them.

The following theorem shows that HA/K enjoys the other main feature of its
commutative counterpart:

T h e o r e m 3.2. Let A be a non-commutative separable K-algebra. Let
H� H(A), then

lim
nKQ

H(a n )
1

n 4HA/K (a) ,

for all a�A.

P r o o f . We proceed in two steps: first we establish the theorem for heights
defined by compatible adelic norms (5), then, using property (H1), we extend the
proof to the case of arbitrary adelic norms. Let G be a compatible adelic norm. As
it is immediate to check the proof of (K1) and (K2) do not rely in any way on the
commutativity of the algebra in question. Therefore the proof of Theorem 2.1, va-
lid only for compatible adelic norms, presented at the end of the previous section
carries over to the non-commutative case. Now let F be any adelic norm on A.
Then by property (H1) there exist CD0 such that

C 21 HG (a) GHF (a) GCHG (a)

for all a�A. Therefore for a given a�A we have

(C 21 HG (a n ))
1

n GHF (a n )
1

n G (CHG (a n ))
1

n

(5) As in the commutative case an adelic norm on A is compatible if (Av , Nv ) is a Banach
algebra over Kv for all v� MK .
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for all nF1. By the above we have

lim
nKQ

(C 21 HG (a n ))
1

n 4HA/K (a) 4 lim
nKQ

(CHG (a n ))
1

n ,

y i e l d i n g l i m
nKQ

HF (a n )
1

n 4HA/K (a) . F o r t h e p r o o f t o b e c o m p l e t e w e a l s o h a v e t o

s h o w t h a t t h e r e e x i s t o n e c o m p a t i b l e a d e l i c n o r m o n A. Si n c e A i s s e p a r a b l e
t h e r e e x i s t s a (m a x i m a l ) o r d e r L i n A. Fo r a l l v� M0

K l e t Nv b e t h e n o r m a s s o -
c i a t e d t o L v. Fo r v� MQ

K l e t Nv b e a n y n o r m t h a t m a k e s (Av , Nv ) a Ba n a c h a l -
g e b r a ( s i n c e Av i s f i n i t e d i m e n s i o n a l t h e r e a r e p l e n t y o f t h o s e ) . T h e a d e l i c
n o r m GL 4 ]Nv ; v� MK ( s o d e f i n e d i s a co m p a t i b l e a d e l i c n o r m ( c f . [ T a 3 ] , t h e
e x a m p l e o f s e c t i o n 3 ) .
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A b s t r a c t

Let K be a number field. Based on our previous result on the construction of canoni-
cal heights on separable commutative finite dimensional K-algebras we propose a defini-
tion for the canonical height on non-commutative, finite dimensional, separable K-alge-
bras. We prove that it satisfies an averaging property analogous to the one satisfied by
the Néron-Tate height on abelian varieties and that is invariant under the group of K-al-
gebra automorphisms of A.
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