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Siegel’s theorem and the abc conjecture (**)

1 - Introduction

One of the fundamental theorems in diophantine geometry, proved by C.L.
Siegel, says that an algebraic affine curve of genus F1 or of genus zero with 3
points at infinity and defined over a number field K has only finitely many inte-
gral points. Thanks to the contribution of K. Mahler, Siegel’s theorem was exten-
ded to the S-integral points, that is, those having the prime factors of the denomi-
nators in the finite set of valuations S of K .

For curves of genus F2, Siegel’s theorem is superseded by Falting’s one
(Mordell’s conjecture), which asserts that there are finitely many rational points
on an algebraic projective curve of genus F2. However, there are no effective
versions of these theorems, in the sense that the proofs do not provide an algori-
thm to find such points. Some effective results concerning integral points are kno-
wn, thanks to Baker’s method based on linear forms in logarithms. In fact, this
method gives upper bounds for the height (i.e. the size) of the (S-)integral
points.

N. Elkies proposed in [El] an effective method to study rational points on al-
gebraic curves, but it remains conjectural, because it is based on the abc conjectu-
re of Masser-Oesterlé. This approach was the motivation for the work that we
explain here.
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C o n j e c t u r e 1 (abc). Let K be a number field. For every eD0, there exists
a real number ce , K D0 such that, for every a , b , c�K0]0( and verifying a1b
4c , we have

hK (a : b : c) E (11e) rad (a : b : c)1ce , K .

In this note we will explain some links between upper bounds on the height of
S-integral points on algebraic curves and the abc conjecture.

Acknowledgements. The results quoted in this note come from the PhD thesis
of the author, who wants to thank her advisors, Marc Hindry and Michel Wal-
dschmidt. She wants also to thank Machiel van Frankenhuysen for sending her
some of his off prints, and the anonimous referee for pointing out to her the refe-
rences [S-T1], [S-T2] and [Tu].

2 - Notations

Let us denote by U an algebraic affine curve of genus g defined over a number
field K , UA will denote its normalization and C a projective curve containing UA. Let
UQ4C0UA 4 ]P1 , R , Pt ( be the «points at infinity». The Euler-Poincaré charac-
teristic of U is the number x(U) 4222g2 t . The curve U verifies the hypothesis
of Siegel’s theorem if and only if x(U) E0.

Let S be a finite set of valuations of the number field K and denote OK and
OK , S respectively, the ring of integers and the ring of S-integers of K .

Denote also by U(OK , S ) the K-rational points on U which have S-integral
coordinates with respect to the embedding f D : U %KAn given by a very ample di-
visor D� Div (C), such that supp (D) 4UQ .

All along this paper, h will denote the absolute logarithmic Weil’s height on
Pn , hK 4 [K : Q] h , and hU a height on U relative to a degree 1 divisor (e.g. hU

4
1

deg ( f )
h i f , where f is a non constant regular function on U).

If x4 (x0 : x1 : x2 ) �P2 (K), we define the radical (or the support) of x (with lo-
garithmic notation) by

rad (x) 4! log NK/Q (]) ,

where the sum is taken over the prime ideals ] of K for which the cardinality of
]v] (x0 ), v] (x1 ), v] (x2 )( is greater than or equal to 2.

For example, if x0 , x1 , x2 are nonzero rational coprime numbers, h(x0 : x1 : x2 )
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4 logmax ]Nx0 N , Nx1 N , Nx2 N( and rad (x0 : x1 : x2 ) 4 log»p , where the product is
taken over the prime numbers p dividing x0 , x1 or x2 .

3 - Statement of the results

Following the ideas proposed by Elkies in [El] (see also [MvF]) we show that
(an effective version of) the abc conjecture implies an effective version of Siegel’s
theorem i.e. an upper bound for the height of the S-integral points where the de-
pendence on S is explicit. (Cf. the last section for the proof.)

T h e o r e m 1. Let K be a number field, U an affine algebraic curve defined
over K such that x(U) E0, S a finite set of absolute values of K and hU , K a hei-
ght function on U(K) associated to a degree 1 divisor.

Suppose the abc conjecture is true.
For every e�]0 , 2x(U)[ and every S-integral point x on U , there exists a

number g depending on the number field K , on the curve U , on the choice of the
height hU , K and on e , but neither on the point x nor on the set S , such
that

hU , K (x) G2
1

e1x(U)
!
]�S

log NK/Q (])1g .(1)

Moreover, if the constant ce , K of the Conjecture 1 were effective, the same would
be true for g .

If we consider a version of the abc conjecture where the dependence of ce , K on
the number field is explicit, e. g. ce , K 42 log dK 1k (cf. [Ma]), we would obtain
the same upper bound, but with

g42
2

e1x(U)
log dK 1k ,(2)

where dK is the absolute value of the discriminant of K and k only depends on the
degree [K : Q] of the number field K .

Inequality (1) modified with (2) suggests the following hypothesis.
Fix an algebraic affine curve U defined over K and verifying x(U) E0, as well as
a height function hU on U , associated to a divisor of degree 1.

H y p o t h e s i s 1 Siegel (U , K). For every dF [K : Q], there exists constants
k1 (U , hU , d) D1, k2 (U , hU , d) D1 and k3 (U , hU , d) D0 such that, for every fini-
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te extension L/K of degree [L : Q] Gd , for every finite set S of valuations of L
and for every S-integral point x on U , we have

hU , L (x) Gk1 !
(�S

log NL/Q (()1k2 log dL 1k3 ,(3)

where dL is the absolute value of the discriminant of the field L and hU , L

4 [L : Q] hU .

A similar hypothetical upper bound for rational points was considered by L.
Moret-Bailly [M-B] to show that an effective version of Mordell’s conjecture
would imply the abc conjecture. Moreover, the analogue of the hypothesis 1 in the
function field case has already been proved (see the appendix of [Sur] and the re-
ferences therein).

We prove the following theorem.

T h e o r e m 2. Let K be a number field, U an algebraic affine curve defined
over K and such that x(U) E0. Let hU be a height function on U associated to a
degree 1 divisor.

Assume the hypothesis 1.
Then, there exists real positive numbers h 1 and h 3 depending on U and on

the degree [K : Q], and h 2 depending only on U such that, for every a , b , c
�K0]0( and verifying a1b4c , we have

hK (a : b : c) Eh 1 rad (a : b : c)1h 2 log dK 1h 3 .

The proofs of Theorem 1 and Theorem 2 make use of a Belyı̆ function.

T h e o r e m 3 (Belyı̆). An algebraic projective curve C is defined over Q if
and only if there exists a finite and surjective morphism f : CKP1 , unramified
outside ]0, 1 , Q(.

Moreover, if S%C(Q), we can choose f such that f (S) % ]0, 1 , Q(.

The construction of such a function is completely explicit and if the curve C is
defined over a number field K the same will be true for the function f .

For the proof of Theorem 2 the main idea is to put y4 (a : c) �P1 (K) and pro-
ve that a point x in U such that f (x) 4y , where f is a Belyı̆ function, is in fact S 8-
integral for some finite extension L/K and some finite set S 8 of valuations of L .
To conclude we apply the hypothesis 1 to x . (Cf. [Sur] for a detailed proof.)

Yu. Bilu obtained in [Bi] an upper bound weaker than (3), but unconditional,
for Galois coverings. His result allows us to prove the following theorem.
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T h e o r e m 4. For every number field K , there exists real and effectively
computable numbers g 1 , g 2 D1, depending on K such that, for every (a , b , c) in
K0]0( and verifying a1b4c ,

hK (a : b : c) Gexp ]g 1 rad (a : b : c)1g 2 ( .

Theorem 4 generalizes to any number field a result of Stewart-Yu [S-Y] (valid
over Q) which is the best known result in the direction of the abc conjecture.

4 - Proof of Theorem 1

Let U be an algebraic affine curve of genus g defined over a number field K ,
UA its normalization and C a projective curve containing UA. Suppose that
x(U) E0.

L e m m a 1. There exists a rational function f�K(C) such that

card (]x�U(Q) /f (x) � ]0, 1 , Q(() 4x(U)1d ,

where d is the degree of f .

P r o o f o f t h e L e m m a 1. Apply Theorem 3 to the projective curve C , and
to the set S4 ]P1 , R , Pt (. Fix such a Belyı̆ function f and set d4 deg ( f ).

Set also m4 card (]x�C(Q) /f (x) � ]0, 1 , Q(().
The function f is ramified only above 0 , 1 and Q , so the Riemann-Hurwitz for-

mula gives

!
P�C , f (P) � ]0, 1 , Q(

(eP ( f )21) 42d12g22,

and then

m43d2 !
P�C , f (P) � ]0, 1 , Q(

(eP ( f )21) 4d22g12.

Moreover, f (]P1 , R , Pt () % ]0, 1 , Q(, then

card (]x�U(Q) /f (x) � ]0, 1 , Q(()4m2card (UQ (Q) )4m2 t4d1x(U). r

Let S be a finite set of absolute values of K . Let x be in U(OK , S ) such that f (x)
4 (r : 1 ) �P1 0]0, 1 , Q(. (If f (x) � ]0, 1 , Q(, then hK ( f (x) ) 40 and the inequa-
lity (1) is verified.) We can then apply Conjecture 1 to Px 4 (r : 12r : 1 ). For
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every eD0, there exists a constant ce , K , such that

hK (Px ) G (11e) rad (Px )1ce , K .

Choose hU , K 4
1

d
(hK i f ). We then have

d hU , K (x) 4hK ( f (x) ) 4hK (r : 1 ) GhK (r : 12r : 1 ) 4hK (Px ).

We conclude with the following proposition which gives an upper bound of the ra-
dical in terms of the height.

P r o p o s i t i o n 1. There exists constants c1 and c2 depending only on the de-
gree [K : Q] of the number field K and of the curve U , such that

rad (Px ) G g x(U)

d
11h hK ( f (x) )1c1 khK ( f (x) )1c2 1 !

]�S
log N(]).

To prove Proposition 1, let us introduce, like in [MvF], the divisors of zero, of
1 and of the point at infinity, with respect to the Belyı̆’s function f . Let D0 4 f *(0)
4 !

x�C(Q), f (x) 40
ex ( f )(x) � Div (C), where ex ( f ) is the ramification index of f at the

point x , be the divisor of zero. Denote by D0 NU 4 !
x�U(Q), f (x) 40

ex ( f )(x) the restric-

tion of the divisor to the affine curve U . In the same way, define the divisor D1 of
1, and DQ of the infinity. The curve U is defined over K , so Belyı̆’s theorem allows
us to take f defined over K . The divisors D0 NU , D1 NU and DQ NU are defined over
K and have a decomposition into irreducible divisors:

D0 NU 4e1 M1 1R1ei Mi ,

D1 NU 4ei11 Mi11 1R1ej Mj ,

DQ NU 4ej11 Mj11 1R1ek Mk .

By the Riemann-Roch theorem we can prove that for every n� ]1, R , k(,
there is a function mn : CKP1 such that

(2g11) Mn4mn*(0).

We can show that there exists a finite set T of valuations of K (depending only
on the curve U) such that, there exists a model C of the curve C over B, where B

4 Spec (OK , T ) 4 Spec (OK )0T , such that:
i) all the special fibers of this model are smooth projective curves,
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ii) the functions f and mn extend to morphisms fA and mn
A from C to P1

OK , T
4P1

B

over B.
In other words, we can say that the curve C has good reduction at primes out-

side T , and that the functions f and mn are not reduced to the identically zero
function.

L e m m a 2. Let ] be a prime ideal in B, which contributes to the radical of
Px . If ]�S , then

log N(]) G
d]

2g11
!
n41

k

max ]0, v] (mn (x) )(.

P r o o f o f t h e L e m m a 2. Fix ]� B and put U 4 C 0supp (D)Zar . Then U is
an affine model of U over B for which all the fibers are smooth affine
curves.

Every rational point x�C(K)0 f 21 (]0, 1 , Q() corresponds to a morphism
Spec (K) KC and extends to a section s x : B K C. The point f (x) �P1

K extends to
a section s f (x) : B KP1

OK , T
. Moreover fA(s x (]) ) 4s f (x) (]).

If D4!nx (x) is a divisor of C defined over K (i.e. the sum is taken over some
points x�C(K)), let us denote DA 4!nx s x (]) the reduced divisor. (A priori, the
point s x (]) � C] and, s x (]) � U] if and only if, x is in U and is ]-integral). Moreo-
ver, supp (DA)O U]4 supp (DNU

A).
Set Hx 4 ](/v( ( f (x) ) D0 or v( ( f (x) ) E0 or v( (12 f (x) ) D0(. Note that

](/ card (]v( (r), v( (12r), v( (1)() F2( 4Hx . Then

rad (Px ) 4 !
(�Hx

log N(().

We then have

]�Hx `

`

`

s f (x) (]) 4 0
A

or s f (x) (]) 4 QA or s f (x) (]) 4 1
A
,

fA(s x (]) ) 4 0A or fA(s x (]) ) 4 QA or fA(s x (]) ) 4 1A

s x (]) � supp (DA0 )Nsupp (DAQ )Nsupp (DA1 ),

where D0
A, D1

A et DQ
A are divisors of the special fiber C] .
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If we suppose that x is an S-integral point of U and that ]�S , then the redu-
ced point is in the reduced affine curve, i.e. s x (]) � U] . In this case, we then
have

]�Hx ¨

`

`

s x (]) �supp (D0 NU
A

)Nsupp (DQ NU
A

)Nsupp (D1 NU
A

)

)m� ]1, R , k(, s x (]) �supp (Mm
A)

)m� ]1, R , k(, ords x (]) (Mm
A) F1.

By definition, v] (mm (x) ) 4
ord] (mm (x) )

d]

log N(]), where d] is the local de-

gree. Since ord] (mm (x) ) Fmults x (]) (mm
A) 4 (2g11) ords x (]) (Mm

A) F2g11, then

v] (mm (x) ) F
2g11

d]

log N(]) i.e. log N(]) G
d]

2g11
v] (mm (x) ).

Therefore, if x�U(OK , S ) et ]� (B OHx )0S , then

log N(]) G
d]

2g11
!

n41

k

max ]0, v] (mn (x) )( . r

P r o o f o f t h e P r o p o s i t i o n 1. Lemma 2 gives us an upper bound for
log N(]) for the prime ideals ] contributing to the radical of Px (i.e. for ]�Hx) for
which f (x) is ]-integral and the curve C and the functions f and mn have good re-
duction. Denote by S S (respectively by S T) the sum of log N(]) taken over ]�S
(respectively over ]�T). Applying Lemma 2 we then obtain

rad (Px ) G !
]� (HO B)0S

d[

2g11
!
n41

k

max ]0, v] (mn (x) )(1S S 1S T .

Since (HO B)0S is included in the set of all the valuations of K and
dv

2g11
!

n41

k

max ]0, v(mn (x) )( is always positive, we obtain

rad (Px ) G !
n41

k 1

2g11
!

v�MK

dv max ]0, v(mn (x) )(1S S 1S T .
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But !
v�MK

dv max ]0, v(mn (x) )( 4hK (mn (x) ). Since for every n� ]1, R , k(, hK , mn

and hK , f are two height functions on the curve C , by the height theory we have

hK (mn (x) ) 4
deg (mn )

deg ( f )
hK ( f (x) )1OgkhK ( f (x) )h ,

where the implicit constant in the O depends only on the degree of the number
field K and on the curve C . Since deg (mn ) 4 (2g11) deg (Mn ) 4 (2g11) dn and
deg ( f ) 4d , we have

rad (Px ) G
1

d
g!

n41

k

dnh hK ( f (x) )1c1 khK ( f (x) )1S S 1S T ,

where the constant c1 depends only on the degree of K and on the curve C .
Since for all n� ]1, R , k(, dn4 deg (Mn ) 4 card ( supp (Mn ) ), we conclude ap-

plying the lemma 1:

!
n41

k

dn4 card (]x�U(Q) /f (x) � ]0, 1 , Q(() 4x(U)1d . r
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A b s t r a c t

Following N. Elkies [El] we show that the abc conjecture of Masser-Oesterlé implies
an effective version of Siegel’s theorem about integral points on algebraic curves, i.e. an
upper bound for the height of the S-integral points where the dependence on S is explicit.
The converse statement is also announced in this note. For both results, the main geomet-
ric tool is a theorem of G.V. Belyı̆.

* * *


