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Exponential Diophantine equations and inequalities (**)

Let S Q be the ring of power sums, i.e. of the functions of N of the
form

a(n) 4b1 c1
n 1b2 c2

n 1R1bh ch
n ,

with hF1, where the elements c1 Dc2 DRDch , called the roots of a , and bi ,
called the coefficients, are nonzero rationals.

More generally, if K’C is a field and A’C a ring, we will denote by KS A the
ring of power sums with coefficients in K and roots in A . The subring of power
sums with only positive roots will be denoted by KS A

1 .
Note that Q%S Z

1 , since the rationals can be considered constant power sums
with just one root c1 41.

A power sum is called nondegenerate if ci /cj is not a root of unity for all
ic j .

Since long ago, Diophantine equations and inequalities involving power sums
have been studied using the estimates for linear forms in logarithms due to A. Ba-
ker (see [1]). Here we state some results obtained with this method; they can be
found in [8] and [12] respectively.

Pethö, 1982: Let a�S Q be nondegenerate with h42. Under suitable condi-
tions on the coefficients, if a(n) 4sx q for integers s , xc0, qF2 and nD0, then
max ]NxN , q , n( is bounded by an effectively computable constant which depends
on a and on the greatest prime factor of s .
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Shorey and Stewart, 1987: Let eD0 be fixed and suppose that a�S Q is a
nondegenerate power sum with just one root c1 with largest absolute value. Then
the inequality

NEx q 2a(n)NDNc1N
n(12e)

holds for all the nonzero integers E , x , for nD0, and for every integer
qDq0 (a , P), where P is the greatest prime factor of E , assuming that
Ex q

cb1 c1
n .

Recently P. Corvaja and U. Zannier have found new results (see [2], [3] and
[4]) on these problems by a new method, applying in this context the Subspace
Theorem by W. M. Schmidt (see [9] and [10]) and its generalizations. The follow-
ing result was obtained with this method and can be found in [2].

Corvaja and Zannier, 1998: For every eD0 fixed, a�S Z and for every inte-
ger dF2 there exist a finite set of power sums b 1 , R , b s � QS Q such that all the
solutions (n , y) �N3Z of the inequality

Ny d 2a(n)NbNa(n)N
12

1

d
2e

,

satisfy y4b i (n) for a certain i� ]1, R , s(.
As a corollary it follows that the equation a(n) 4y d has just finitely many

solutions, if we suppose that in a the roots c1 and c2 are coprime.
Using the same method, the author has obtained the following results, which

generalize some of the results by Corvaja and Zannier. They can be found in [11].

T h e o r e m 1 (Scremin). Let F(x , y) � Q[x , y] be absolutely irreducible, mo-
nic and of degree dF2 in y ; let a� QS Z , and let eD0 be fixed.

Then there exists a finite set of power sums ]b 1 , R , b s ( %S Z
1 such that

every solution (n , y) �N3Z of the inequality

NF(a(n), y)NE N ¯F

¯y
(a(n), y) N QNa(n)N2e(4)

satisfies y4b i (n), for a certain i41, R , s .
The number of non constant power sums in the set ]b 1 , R , b s ( is at most

d 2 .
Moreover, the set of natural numbers n such that (n , y) is a solution of (4) is

the union of a finite set and a finite number of arithmetic progressions.

From the theorem above it follows
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C o r o l l a r y 1. Let F(x , y) � Q[x , y] be monic in y , absolutely irreducible
and of degree dF2 in y ; let f (x) �Z[x] be a non constant polynomial; let a be a
non constant power sum with integral roots and algebraic coefficients.

Then the equation

F(a(n), y) 4 f (n)(5)

has only finitely many solutions (n , y) �N3Z .

The results above involve just one power sum in the equations that are consi-
dered; this gives rise to the following

P r o b l e m 1. Generalize the above results to polynomial-exponential equa-
tions where several power sums are involved, i.e. equations of the form

F(a 0 (n), R , a d (n), y) 40,

where without losing generality F can be supposed a polynomial in y with coef-
ficients in the ring of power sums.

Let dF2, F(x0 , R , xd , y) � Q[x0 , R , xd , y] and a 0 , R , a d � QS Z
1 . We

want to consider the Diophantine equation

F(a 0 (n), R , a d (n), y) 40.

Without any restriction, instead of the equation above we can study the
equation

a 0 (n) y d 1R1a d21 (n) y1a d (n) 40,(6)

where a 0 , R , a d � QS Z
1 , i.e. without losing generality we can consider polyno-

mials in y with coefficients in the ring QS Z
1 .

Let us show how can be associated to this equation another equation in some
normal form.

Let a 0 , R , a d � QS Z
1 be defined by

a 0 (n) 4a1
(0) a 1

(0)n
1a2

(0) a 2
(0)n

1R1at (0)
(0 ) a t (0)

(0 )n
,

QQ
Q

a d (n) 4a1
(d) a 1

(d)n
1a2

(d) a 2
(d)n

1R1at (d)
(d) a t (d)

(d)n
,
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where ai
( j) are algebraic and a i

( j) are positive integers such that a 1
( j) Da 2

( j) DR

Da t ( j)
( j) for i41, Rt ( j) and j40, R , d .

Set (for a positive real determination of the roots)

a»4 max
i41, R , d

u a 1
(i)

a 1
(0)(d2 i) /d v

1/i

.

Moreover, let

y4
a n

a 1
(0)n/d

z .

Set f (x0 , R , xd , y) »4x0 y d 1R1xd21 y1xd , and consider the polynomial

1

a dn
f ua 0 (n), R , a d (n),

a n

a 1
(0)n/d

zv .

This is a polynomial in z with coefficients in QS Q , and all the roots of the power
sums appearing in its coefficients are G1.

Let g 1 , R , g r be the distinct roots strictly less than 1 of these power sums.
Identifying the expressions g i

n with new variables xi we get a polynomial

g(x1 , R , xr , z) � Q[x1 , R , xr , z]

such that

g(g 1
n , R , g r

n , z) 4
1

a dn
f ua 0 (n), R , a d (n),

a n

a 1
(0)n/d

zv .

This polynomial is some normal form for equation (6).
We denote by D(a 0 , R , a d ) the discriminant of g with respect to z evaluated

at (0 , R , 0 ), i.e.

D(a 0 , R , a d ) 4discz (g)(0 , R , 0 ).

We are now in the position to formulate the following result on Diophantine
equations involving several power sums. It can be found in [5].

T h e o r e m 2 (Fuchs and Scremin). Let dF2 and let a 0 , R , a d � Q EZ
1 . As-

sume that

D(a 0 , R , a d ) c0.
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Then there exist finitely many power sums b 1 , R , b s � QS Q , arithmetic pro-
gressions P1 , R , Ps , and a finite set 8 of integers, such that for the set S of solu-
tions (n , y) �N3Z of the equation

a 0 (n) y d 1R1a d21 (n) y1a d (n) 40(7)

we have

S4 0
i41

s

](n , b i (n) ) : n� Pi (N ](n , y) : n� 8, y�Z(NM ,

where M is a finite set.

From Theorem 2 we can see that the solutions of (7) are generally finite, apart
from two «trivial» infinite families of solutions which can appear in some particu-
lar cases easy to identify. In these cases the infinite families of solutions can be
easily parametrized. Let us show it with some examples.

First infinite family of solutions:

Consider the equation

y 2 1 (2n 13n )y16n 40.

It has infinitely many solutions, namely (n , 22n ) and (n , 23n ) for arbitrary
n�N , which are parametrized by power sums.

Second infinite family of solutions:

Consider the equation

(2n 22) y 2 13n 23 40.

It has infinitely many solutions, namely (1 , y) for arbitrary y�Z . In this case n
satisfies a 0 (n) 4a 1 (n) 4R4a d (n) 40. Let us notice that assuming a 0 to be a
nonzero constant, this family of solutions is excluded.

Main ideas of the proof:

From the construction of the polynomial g and from the definition of z , it can
be shown that the sequence of zn associated to the solutions (n , yn ) of (7) is
bounded, i.e. it lies in the union of arbitrarily small neighbourhoods of the solu-
tions of

g(0 , R , 0 , z) 40,

at least if n is large enough. Applying to the polynomial g a version of the Implicit
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Function Theorem that can be found in [7] (recall that we have D(a 0 , R , a d )
c0), we obtain

z4z0 1 !
Ni11R1 irND0

ci x1
i1

R xr
ir ,

where ci � Q and z0 satisfies g(0 , R , 0 , z0 ) 40. This means that for every sol-
ution (n , zn ) with n large enough we have

zn 4z0 1 !
Ni11R1 irND0

ci g 1
i1 n

R g r
ir n ,

for some suitable z0 and some coefficients ci . We approximate zn with the power
sum

Vn »4z0 1 !
0 ENi11R1 irNEH

ci g 1
i1 n

R g r
ir n ,

choosing H large enough. We are now able to apply the Subspace Theorem as
Corvaja and Zannier did in their works, concluding the proof. r

A problem similar to Problem 1 can rise if we consider exponential Diophanti-
ne inequalities where several power sums are involved.

P r o b l e m 2. Find lower bounds for the quantity

Ny d 1a 1 (n) y d21 1R1a d21 (n) y1a d (n)N

with respect to a power of a n .

An answer to Problem 2 is given by the following Theorem 3, which can be
found in [6].

Here we define as above the quantity D(a 1 , R , a d ) for the polynomial g asso-
ciated to the polynomial y d 1a 1 (n) y d21 1R1a d21 (n) y1a d (n), monic in y .

T h e o r e m 3 (Fuchs and Scremin). Let dF2, eD0, and let a 1 , R , a d

� QS Z
1 . Assume that

D(a 1 , R , a d ) c0.

Then there exist finitely many power sums b 1 , R , b s � QS Q such that all the
solutions (n , y) �N3Z of the Diophantine inequality

Ny d 1a 1 (n) y d21 1R1a d (n)NEa n(d212e) ,(8)

except finitely many, have y4b i (n) for some i41, R , s .
Moreover, the set of natural numbers n such that (n , y) is a solution of the
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inequality is the union of a finite set and a finite number of arithmetic
progressions.

Observe that for a 1 4R4a d21 40 and a d �S Z
1 we get the conclusion of

Theorem 3 for the inequality

Ny d 2a d (n)NEa n(d212e) 4a 1
(d)n(12 (1 /d)2e 8 )

,

where a 1
(d) is the dominant root of a d , i.e. the result of Corvaja and Zannier in [2].

This also shows (cf. Remark 2 in [2]) that the exponent d212e in Theorem 3 is
best possible.

From Theorem 3 can be derived the following Corollary, which states, under
suitable assumptions, the finiteness of the solutions of a polynomial-exponential
Diophantine equation involving several power sums, generalizing the result of Co-
rollary 1.

C o r o l l a r y 2. Let dF2, a 1 , R , a d � QS Z
1 not all constant. Moreover, let

h(x) �Z[x] be a non constant polynomial. Assume that

D(a 1 , R , a d ) c0.

Then the Diophantine equation

y d 1a 1 (n) y d21 1R1a d (n) 4h(n)

has only finitely many solutions (n , y) �N3Z .

Let us remark that the results of Theorems 1, 2 and 3 and of their corollaries
still hold by allowing the coefficients of the power sums to be polynomial functions
of n , with the restriction that the coefficients of the roots of maximum modulus
are constant.
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A b s t r a c t

Let us consider the ring of power sums with algebraic coefficients and positive inte-
gral roots, i.e. of functions of N of the form

a(n) 4b1 c1
n1b2 c2

n1R1bh ch
n ,(1)

with bi� Q and c1Dc2DRDch�Z1 .
Since long ago, Diophantine equations and inequalities involving power sums have

been studied using the estimates for linear forms in logarithms due to A. Baker, but
many problems remained unsolved. Recently P. Corvaja and U. Zannier have found new
results on these problems by a different method, applying in this context the Subspace
Theorem by W. M. Schmidt.

Here we will first have a review on some of such results, then we will show some recent
results obtained by the author, partially with C. Fuchs. We will first deal with the finite-
ness of the solutions (n , y) �N3Z of the equation

F(a(n), y) 4 f (n),

where F� Q[X , Y] is monic, absolutely irreducible of degree at least 2, and f�Z[X] and
the power sum a are not constant.

Then we will consider equations and inequalities where several power sums are in-
volved as, for example, the equation

a 0 (n) y d1a 1 (n) y d211R1a d21 (n) y1a d (n) 40(2)
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and the inequality

NF(n , y)NEan(d212e) ,(3)

where a 0 , R , a d are power sums, eD0, F is monic in y and a is a quantity depending
on the dominant roots of the power sums appearing as coefficients in F . We will show
that, under suitable assumptions, for all the solutions of (2), y can be parametrized by
some power sum in a finite set. We will reach a similar conclusion also for (3).

All these results generalize some results by P. Corvaja and U. Zannier on such
problems.

* * *


