
R i v . M a t . U n i v . P a r m a ( 7 ) 3 * ( 2 0 0 4 ) , 2 6 1 - 2 7 3

GI U S E P P E MO L T E N I (*)

Two trigonometric matrices (**)

The present work is essentially a shortened version of a wider paper [9]; we
refer to that paper for the proofs not included here.

1 - Notations

The symbol d something assumes the value 1 when something holds, 0 otherwise.
For m , n , s�N , (m , n) is the greatest common divisor of m , n; mNn means that
m divides n; mfn(s) and m4n mod (s) mean that sN(m2n); n is said square-

free when p 2 = n for every prime p; gm
n
h is the Jacobi symbol, i.e., the completely

multiplicative extension of the quadratic character for odd m , n; c»4m * f is the
Dirichlet convolution of the Möbius and the Euler functions, i.e., c(n)
4 !

dNn
m(n/d)f(d). At last, we denote by Im x the imaginary part of x .

2 - Introduction and motivations

Schur introduced the matrix

F»4 kexp g 2pimn

s
hl

0 Gm , nEs

where s is a positive integer. Since F 4 4s 2 I , the eigenvalues are the numbers
i n ks for 0 GnG3. Schur has determined the multiplicity of every eigenvalue and
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used such result to evaluate the Gaussian sum !
n41

s

e 2pin 2 /s which is the trace of F

(see [12]). Such matrix represents also the discrete Fourier transform on s points,
therefore it is extensively studied in Approximation Theory and Numerical Analy-
sis. In particular, there exists a broad literature about its eigenvalues and eigen-
vectors (see [2], [4], [5], [8], [10]). In this paper we study the four matrices

Mr , s »4k2 ksin g rmnp

s
hl

0 Em , nEs

, M2r , s »4 ksin g 2rmnp

s
hl

0 Em , nEs

,

M 8r , s »4k2 ksin g rmnp

s
hl

0 Em , nEs
(mn , s) 41

, M 82r , s »4 ksin g 2rmnp

s
hl

0 Em , nEs
(mn , s) 41

,

where r , s are odd integers with (r , s) 41 and sD1. In particular we found their
eigenvalues, multiplicity included. In this way also their characteristic polynomials
are determined since these matrices are symmetric. The normalizating factor k2
appearing in the definition of Mr , s and M 8r , s is introduced by convenience. More-
over, we note that M2(r1s), s 4M2r , s and M 82(r1s), s 4M 82r , s , hence the fact that r is
odd is not a true restriction but only a convenient assumption simplifying the
proof of the results.

Matrices MQ , s and M 8Q , s are evidently related to F , but only Mr , s , satisfying
the identity Mr , s

2 4sI , has a behavior like that one of F . The following examples
show that the structure of the characteristic polynomial of the other matrices is
strongly influenced by the arithmetical properties of the parameters r and s: in all
cases the eigenvalues are 0 and 6kd where d is a divisor of s but for non-square-
free s not every divisor appears and the rule selecting the eigenvalues and their
multiplicity is not evident.

det (xI2M2, 7 ) 4x 3 (x 2 27)(x2k7)

det (xI2M6, 7 ) 4x 3 (x 2 27)(x1k7)

det (xI2M2, 15 ) 4x 7 (x 2 215)3 (x2k15)

det (xI2M14, 15 ) 4x 7 (x 2 215)3 (x1k15)

det (xI2M 82, 7 ) 4x 3 (x 2 27)(x2k7)

det (xI2M 86, 7 ) 4x 3 (x 2 27)(x1k7)

det (xI2M 82, 15 ) 4x 4 (x2k3)(x 2 25)(x2k15)

det (xI2M 814, 15 ) 4x 4 (x2k3)(x 2 25)(x1k15),



263TWO TRIGONOMETRIC MATRICES[3]

s det (xI2M 81, s )

3 Q5 (x 2 23)(x 2 25)2 (x 2 23 Q5)
5 Q11 (x 2 25)2 (x 2 211)5 (x 2 25 Q11)13

52 x 4 (x 2 252 )8

53 x 20 (x 2 253 )40

72 x 6 (x 2 272 )18

73 x 42 (x 2 273 )126

112 x 20 (x 2 2112 )50

113 x 110 (x 2 2113 )550

32 Q5 x 8 (x 2 232 )2 (x 2 232 Q5)6

33 Q5 x 24 (x 2 233 )6 (x 2 233 Q5)18

3 Q52 x 8 (x 2 252 )8 (x 2 23 Q52 )8

32 Q52 x 56 (x 2 232 Q52 )32

33 Q52 x 168 (x 2 233 Q52 )96

32 Q7 x 12 (x 2 232 )2 (x 2 232 Q7)10

33 Q7 x 36 (x 2 233 )6 (x 2 233 Q7)30

3 Q72 x 12 (x 2 272 )18 (x 2 23 Q72 )18

32 Q72 x 108 (x 2 232 Q72 )72

32 Q5 Q7 x 48 (x 2 232 )2 (x 2 232 Q5)6 (x 2 232 Q7)10 (x 2 232 Q5 Q7)30 .

In Section 3 we will provide some non-trivial preparatory results belonging to
the Number Theory, in Section 4 we will prove Theorem 1 giving the characteri-
stic polynomials of the matrices MQ , s , in Section 5 we will prove Theorems 2-3
giving the characteristic polynomials of the matrices M 8Q , s . Some interesting corol-
laries are there proved, too.

At last, a word about the origin of our interest for these matrices. Let m , s be
integers, sD1, s odd and 0 EmEs . For every a�N let

Hm , s
a »4 !

n41

Q rm , s (n)

n 2a11
, where rm , s (n) »4

.
/
´

1

21

0

if n4m mod (2s)

if n42m mod (2s)

otherwise .

(The series converges conditionally also when a40.) We are looking for a formu-
la giving the value of Hm , s

a . Let

Fa (x) »4 !
n41

Q (21)n

(np)2a11
sin (npx) ,

uniformly convergent on every compact subset of (21, 1 ), for every a�N . A
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comparison with the known Fourier expansion of the Bernoulli polynomials Bk (x)
(see [13], Ch. 1.0) shows that for x� (21, 1 )

Fa (x) 4
(24)a

(2a11) !
B2a11g 12x

2
h .(1)

Since the Bernoulli polynomials can be easily recovered by the identity

!
k40

Q Bk (x)

k!
y k 4

ye xy

e y 21
,

the values of Fa can be easily calculated. The relevance of Fa in this context comes
from the fact that from the definition of Hm , s

a we have

!
m41

s21

(21)m Hm , s
a sin g mnp

s
h4p 2a11 Fag n

s
h (n�Z ,(2)

so that by taking 0 EnEs , we recover a set of s21 linear equations for the s21
numbers Hm , s

a , with 0 EmEs .
A second identity can be deduced noting that Hdm , ds

a 4d 22a21 Hm , s
a for every

integer d , so that from (2) we have

!
dNs

!
m41

(m , s/d) 41

s/d (21)m

d 2a11
Hm ,

s

d

a sin g mnp

s/d
h4p 2a11 Fag n

s
h (n�Z ,

that by the Möbius inversion formula (see [13], Ch. I.2, Th. 8) gives

!
m41

(m , s) 41

s

(21)m Hm , s
a sin g mnp

s
h4p 2a11!

dNs
m g s

d
h g d

s
h2a11

Fag n

d
h (n�Z .(3)

Considering this identity for 0 EnEs , n coprime with s , we get a set of f(s) li-
near equations where only the f(s) numbers Hm , s

a with (m , s) 41 appear.
At last, we can generalize the previous equations by substituting n by rn in (2)

and (3), where r is a fixed integer coprime with s and n runs in 0 EnEs (n copri-
me with s for (3).)

Identities (2) or (3) allow us to recover Hm , s
a as linear combination of values of

Fa but only if the matrices Mr , s and M 8r , s , respectively, are invertible. For compu-
tational purposes we are also interested to find an efficient algorithm for the in-
verse matrix so that not only the invertibility of those matrices but also the struc-
ture of their characteristic polynomials has to be studied.
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Actually, using the identity M1, s
2 4sI , from (2) we get the formula we are look-

ing for:

Hm , s
a 4 (21)m 2p 2a11

s
!

n41

s21

Fag n

s
h sin g mnp

s
h for 0 EmEs .(4)

Now that the constants Hm , s
a have been calculated, we can use them to provide a

new proof of the known formula for the values of the Dirichlet L-functions (for
the definition see [3]). In fact, let x be a Dirichlet odd character modulo 2s and let
L(Q , x) be the corresponding Dirichlet L-function, then

L(2a11, x) »4 !
n41

Q x(n)

n 2a11
4 !

m41

s

x(m) Hm , s
a ,(5)

so that substituting (4) in (5) we get (note that x(m) 40 if m is even)

L(2a11, x) 42
2p 2a11

s
!

n41

s21

Fag n

s
h !

m41

s

x(m) sin g mnp

s
h .

Let x* be the character mod s inducing x and suppose x* to be primitive, then a
long and a slightly tricky computation proves the identity

2 ix*(2) !
m41

s

x(m) sin g mnp

s
h4 (21)n x*(n) t(x*) ,

where t(x*) is the Gaussian sum, so that from the previous formula we
deduce

L(2a11, x) 4x*(2)
p 2a11 it(x*)

s
!

n41

s21

(21)n x*(n)Fag n

s
h .

Substituting (1) in this equation we obtain a formula giving L(2a11, x) in terms
of the generalized Bernoulli numbers. Such formula is not new (see for example
Theorem 4.2 of [14]), but we think that our non-standard deduction is of some
interest.

We conclude this section noting that by the orthogonality of the Dirichlet cha-
racters modulo 2s we can represent Hm , s

a as a finite sum of the values of Dirichlet
L-functions, i.e.,

Hm , s
a 4

2

f(s)
!

x mod 2s
x odd

x(m) L(2a11, x) ,
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therefore to determinate Hm , s
a and to determinate the values of L(Q , x) at odd in-

tegers are equivalent problems.

3 - Tools from Number Theory

P r o p o s i t i o n 1. Let sD1 be odd and DNs . Let

k(D , s) »4 !
d : dNs

DNd

m g s

d
h f(s)

f(d)
d ,

then

k(D , s) 4DNm g s

D
hNd (D , s/D) 41 .

P r o p o s i t i o n 2. Let k , n be coprime odd integers. Then

(6) G(k , n) »4 !
l41

n

e
2pi

kl 2

n 4 gk
n
h kn * ,

(7) R(k , n) »4 !
l41

(l , n) 41

n

e
2pi

kl 2

n 4

.
/
´

!
dNn

m g n

d
h gkn/d

d
h kd *

0

if n is squarefree

otherwise .

In this formula gk
n
h is the Jacobi symbol, n *4n if n41 mod (4) and n *42n

if n421 mod (4) and k2n4 ikn where i is the same square root of 21 occur-
ring in the definition of G(k , n). The result in (6) is due to Gauss and its original
proof is reproduced in Rademacher [11]. A different proof due to Dirichlet is re-
produced in Davenport [3], other proofs can be found in [1] and in [6]. The second
result can be deduced by (6) using the inclusion-exclusion principle.

For every integer D let VD be the C-vector space which is generated by the
primitive characters modulo D . Moreover, let ED ’VD and OD ’VD be the subspa-
ces which are generated by even and odd characters, respectively. The following
proposition gives the dimensions of OD and ED .

P r o p o s i t i o n 3. For every pair of coprime odd integers m , n we have the
isomorphisms

Omn C (Em 7On )5 (Om 7En ) , Emn C (Em 7En )5 (Om 7On ) .
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Therefore, when DD1 is odd, we have,

dim OD 4
1

2
(c(D)2m(D) ) , dim ED 4

1

2
(c(D)1m(D) ) .

4 - Eigenvalues of MQ , s

T h e o r e m 1. The characteristic polynomials of the matrices MQ , s are

det (xI2Mr , s ) 4 (x 2 2s)
s21

2 ,

and

det (xI2M2r , s ) 4x
s21

2 (x2ks)m1 (x1ks)m2 ,

where

.
/
´

m11m24
s21

2

m12m24 gr
s
h d sf3(4) .

P r o o f . The first claim. We already remarked that Mr , s
2 4sI , therefore

x 22s is the minimal polynomial of Mr , s and its characteristic polynomial must be

det (xI2Mr , s ) 4 (x2ks)m1 (x1ks)m2 ,(8)

for some m1 , m2F1 with m11m24s21. Let us consider the trace of Mr , s .
From (8) we get

(m12m2 ) ks4

4

Tr (Mr , s ) 4k2 !
n41

s21

sin g rn 2 p

s
h

k2 !
n41

(s21) /2gsin g rn 2 p

s
h1sin g r(s2n)2 p

s
hh40 ,

hence m14m2 and the claim follows.
The second claim. An explicit computation shows that (M2r , s

2 )n , m

4
s

2
(d n4m 2d n4s2m ) so that by induction on s it is possible to prove that the
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characteristic polynomial of M2r , s is

det (xI2M2r , s
2 ) 4x (s21) /2 (x2s)(s21) /2 .

As a consequence the characteristic polynomial of M2r , s must be

det (xI2M2r , s ) 4x (s21) /2 (x2ks)m1 (x1ks)m2 ,

for some m1 , m2 with m11m24 (s21) /2 . Let us consider the trace of M2r , s .
By Proposition 2 we get

(m12m2 ) ks4Tr (M2r , s ) 4 !
n41

s21

sin g 2rn 2 p

s
h4Im G(r , s) 4 gr

s
h ks d sf3(4)

and the claim is proved. r

5 - Eigenvalues of M 8Q , s

T h e o r e m 2. The characteristic polynomial of M 8r , s is

det (xI2M 8r , s ) 4x d0 »
dNs

(d , s/d) 41
m(s/d) c0

(x 2 2d)(c(d)2m(d) ) /2 ,

with d0 »4f(s)2 !
dNs

(d , s/d) 41
m(s/d) c0

(c(d)2m(d) ).

Analogously,

T h e o r e m 3. The characteristic polynomial of M 82r , s is

det (xI2M 82r , s ) 4x d0 »
dNs

(d , s/d) 41
m(s/d) c0

(x2kd)md , 1 (x1kd)md , 2 ,

where d0 »4f(s)2
1

2
!
dNs

(d , s/d) 41
m(s/d) c0

(c(d)2m(d) ) and md , 6 are the solutions of

.
/
´

md , 11md , 24
1

2
(c(d)2m(d) )

md , 12md , 24cr , s , d ,

(9)
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with

cr , s , d 4

.
/
´

m g s

d
h grs/d

d
h

0

if s is squarefree , df3(4)

otherwise .

R e m a r k . Since c(1)2m(1) 40, 1 is never eigenvalue of M 8Q , s .

R e m a r k . Using the multiplicativity of the function c it is easy to verify that
when n is odd

c(n)2m(n) 4m(n)(n21) mod (4) .

This fact shows that a corrective term cr , s , d which is not zero when d is square-
free and congruent to 3 modulo 4 is necessary in order to (9) has integer
solutions.

R e m a r k . When s is an odd prime MQ , s 4M 8Q , s , therefore the conclusions of
Theorems 2 and 3 have to accord to Theorem 1, as a simple check shows.

At last, we come back to the original problem of the invertibility of matrices
MQ , s and M 8Q , s . Theorem 1 and the following corollary of Theorems 2-3 show that
only Mr , s is invertible for every s and that (3) can be used to recover Hm , s

a only
when s is squarefree.

C o r o l l a r y . det (M 82r , s ) 40 and

det (M 8r , s ) 4

.
`
/
`
´

0

(2s)
1

2
(s21)

»
pNs

p
1

2
(p22)f(s/p)

if s is not squarefree

if s is prime

if s is squarefree and not prime ,

where p runs on primes dividing s .

We come now to the proof of Theorems 2-3. As first step we compute the ma-
trix MQ , s82 .

P r o p o s i t i o n 4. Let r , s be coprime odd integers, sD1. For every pair
m , n coprime with s , 0 Em , nEs , let (MQ , s82 )m , n be the m-th, n-th entry of the



270 GIUSEPPE MOLTENI [10]

matrix MQ , s82 , then

(Mr , s82 )m , n 4!
dNs

m g s

d
h (d(d mfn(2d) 2d mf2n(2d) )1d mgn(2) (d mgn(2d) 2d mg2n(2d) ) ) ,

(M2r , s82 )m , n 4!
dNs

m g s

d
h d

2
(d mfn(d) 2d mf2n(d) ) ,

both independent of r .

By Proposition 4 the entry (M 82
r , s )m , n is zero when mgn(2). As a consequen-

ce, there exists a permutation J such that

JMr , s82 J 21 4 gNs

0
0

Ns
h ,(10)

where Ns is a matrix of order
1

2
f(s)3

1

2
f(s) whose entries are

(Ns )m , n »4!
dNs

m g s

d
h d(d mfn(d) 2d mf2n(d) ) with 1Gm , nGs , (mn , 2s) 41 .

The following two propositions provide a family of eigenvectors for Ns and
M2r , s82 .

P r o p o s i t i o n 5. Let sD1 be an odd integer, let DNs and let f�OD . Let v f be
the vector of Cf(s) /2 whose entries are v f

m with (m , 2s) 41, 1 GmGs and whose
value is v f

m 4 f (m). Then v f is an eigenvector of Ns with eigenvalue k(D , s).

P r o p o s i t i o n 6. Let sD1 be an odd integer let DNs and let f�VD . Let v f be
the vector of Cf(s) whose entries are v f

m with (m , s) 41, 1 GmGs and whose
value is v f

m 4 f (m). When f�ED , v f �ker M2r , s82 and when f�OD then v f belongs to
the eigenspace of M2r , s82 with eigenvalue k(D , s).

From Propositions 1, 3, 5 and 6 we get the following characterization of the
eigenspaces.
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P r o p o s i t i o n 7. Let Td be the d-eigenspace of Ns . Then dim Td is

.
`
`
/
`
`
´

1

2
(c(d)2m(d) )

1

2
!
dNs

m(s/d)40
(d, s/d)41

(c(d)2m(d) )1
1

2
!
dNs

(d, s/d)D1

(c(d)2m(d) )

0

for d�N , dNs , Nm(s/d)N41

and (d, s/d) 41,

for d40,

otherwise .

In particular, ker Ns 4 ]0( if and only if s is squarefree.
Let Sd be the d-eigenspace of M2r , s82 . Then dim Sd is

.
`
`
/
`
`
´

1

2
(c(d)2m(d) )

f(s)

2
1

1

2
!
dNs

m(s/d)40
(d, s/d)41

(c(d)2m(d))1
1

2
!
dNs

(d, s/d)D1

(c(d)2m(d))

0

for d�N, dNs, Nm(s/d)N41

and (d , s/d) 41,

for d40,

otherwise .

In particular, dimker M2r , s82 Ff(s) /2 , with dimker M2r , s82 4f(s) /2 if and only if s
is squarefree.

A simple argument concludes the proof of Theorem 2. In fact, by (10) and the
previous proposition we get that the eigenvalues of Mr , s82 are 0 and the integers d
dividing s such that s/d is squarefree and coprime with d , with multiplicities d0

(whose value is defined in the statement of Theorem 2) and c(d)2m(d), respec-
tively. It is important to recall that d41 is not an eigenvalue: its multiplicity is
c(1)2m(1) 40. As a consequence, the eigenvalues of M 8r , s are 0 and 6kd ,
where d is chosen as before. Let m0 be the multiplicity of 0 and let md , 1 and
md , 2 be those ones of kd and 2kd , respectively. From Proposition 7 (and (10))
we have m1 , d 1md , 24c(d)2m(d), so that

m0 4f(s)2 !
dNs

(d , s/d) 41
Nm(s/d)N41

dD1

(m1 , d 1md , 2 ) 4f(s)2 !
dNs

(d , s/d) 41
Nm(s/d) 41

dD1

(c(d)2m(d) ) 4d0 .

Moreover, the same argument we use to prove that Tr Mr , s 40 can be repeated
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here to prove that also Tr Mr , s8 40, therefore we get

0 4Tr (M 8r , s ) 4 !
dNs

(d , s/d) 41
Nm(s/d)N41

dD1

(md , 12md , 2 ) kd .(11)

Let us consider the integers d appearing in this equation. There is only one d
which is a square, at most, and this fact happens if and only if s is not squarefree.
For every other d appearing in (11) it is possible to find a prime pd such that pd Nd
with odd order and pd = d 8 if d 8cd . As a consequence the numbers kd are Q-li-
nearly independent so that (11) implies md , 14md , 2 . Since we know that md , 1

1md , 24c(d)2m(d), we conclude that md , 14md , 24
1

2
(c(d)2m(d) ) and the

proof of Theorem 2 is completed.
The proof of Theorem 3 can be completed in similar way if we note that by (7)

Tr (M 82r , s ) 4Im R(r , s) 4 !
dNs

(d , s/d) 41
Nm(s/d)N41

dD1

cr , s , d kd .

R e m a r k . The anonymous referee pointed at our attention a formula due to
Dedekind whose existence we were not aware (see Theorem 6.1 in [7]). An imme-
diate consequence of such result is the identity

det (xI2M 8r , s ) 4 »
x mod s

gx2 !
a41

s

x(a) sin g arp

s
hh

giving an interesting representation of the eigenvalues in terms of sums involving
the characters modulo s . By this way it is possible to recover the exact value of
every eigenvalue, multiplicity included, but a lot of tedious computations is requi-
red. We think that the approach we give here keeps its interest.

A c k n o w l e d g m e n t s . I wish to thank the anonymous referee for its intere-
sting suggestion. At last, I wish to thank the organizing committee for the excel-
lent hospitality.

References

[1] B. C. BERNDT and R. J. EVANS, The determination of Gauss sums, Bull. Amer.
Math. Soc. (N.S.) 5 (1981), 107-129.

[2] S. CLARY and D. H. MUGLER, Shifted Fourier matrices and their tridiagonal
commutors, SIAM J. Matrix Anal. Appl. 24 (2003), 809-821.



273TWO TRIGONOMETRIC MATRICES[13]

[3] H. DAVENPORT, Multiplicative number theory, third ed., Springer-Verlag, New
York 2000, Revised and with a preface by Hugh L. Montgomery.

[4] B. W. DICKINSON and K. STEIGLITZ, Eigenvectors and functions of the discrete
Fourier transform, IEEE Trans. Acoust. Speech Signal Process. 30 (1982), 25-31.
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A b s t r a c t

Let r , s be coprime integers, sD1 and odd. The characteristic polynomials of the
matrices

ksin g rmnp

s
hl

0 Em , nEs

and ksin g rmnp

s
hl

0 Em , nEs
(mn , s) 41

are determined.

* * *


