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Explicit constructions in splitting fields of polynomials (**)

1 - Introduction

Let K be a field and f4Z n 1a1 Z n21 1R1an a monic univariate polynomial
over K . We assume f to be irreducible and separable. Let x4 (x1 , R , xn ) be the
n-tuple of the zeros of f in some field extension of K , and let T4 (T1 , R , Tn ) be
indeterminates over K . The relation ideal of f is the set

I4 ]P�K[T]; P(x) 40( L K[T] .

Let L4K(x1 , R , xn ) be the splitting field of f . Consider the following easy con-
sequence of the Homomorphism Theorem:

P r o p o s i t i o n 1.1. The mapping f : K[T] /IKL : P O P(x) is a K-algebra
isomorphism.

Proposition 1.1 allows us to perform computations in the field L-but only if we
know generators of the ideal I . In this case we can perform computations in
K[T] /I by using a Gröbner basis of I . However, the definition of I does not auto-
matically lead us to a generating set of I . The situation is even worse – so far no
efficient way to compute a system of generators of the relation ideal of a polyno-
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mial was known. The papers [2] and [1] contain parts of the solution of this pro-
blem. The latter paper is based on the following idea: Define K1 to be the field ge-
nerated over K by one zero of f . Then factor f over K1 . Take a factor and define
an extension K2 NK1 generated over K1 by a root of it. Now factor f over K2 . Re-
peat this procedure until f factors completely. Unfortunately this method is not
very practical.

We will present a method to construct a Gröbner basis of the relation ideal
that is based on the usage of the Galois group of f . Knowing the Galois group in-
cluding the explicit action on the roots allows one to omit the factorisation. Our
crucial result is an interpolation formula for the elements of the Gröbner basis
which involves the zeros of f and the Galois group of f , acting on the zeros. After-
wards we will apply our results to a classical theorem of Galois. This theorem sta-
tes the existence of specific polynomials but gives no hint how to construct the po-
lynomials in practice. We will construct the polynomials in question. Furthermore,
we will make use of some p-adic techniques (similar to those of [4]) in order to
compute a number of examples over the ground field Q . Finally, we point at a
property of the generators that cannot be explained within the theory that was
used here.

2 - Generators of the relation ideal

For i41, R , n , define the field Ki 4K(x1 , R , xi ), and set K0 4K . Then
clearly Ki 4Ki21 (xi ) for i41, R , n , and xi is a primitive element of the field
Ki over the field Ki21 . Let fi be the minimal polynomial of xi over Ki21 . Then
di 4 deg ( fi ) is the degree of the field extension Ki NKi21 . Therefore the polyno-
mial fi has the shape

fi 4Ti
di 1 !

ki41

di

bi , ki
Ti

di2ki ,

where all coefficients bi , ki
lie in Ki21 . The degree of the field extension Ki NK

equals d1 R di . It is easy to see that the family x1
d12k1

R xi21
di212ki21 , where 1 Gkj

Gdj for j41, R , i21, is a K-basis of Ki21 . Thus the coefficients of the polyno-
mial fi can uniquely be written as

bi , ki
4 !

k141

d1

R !
ki2141

di21

bi , k1 , R , ki
x1

d12k1
R xi21

di212ki21 ,
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all bi , k1 , R , ki
belonging to K . (For i41, no summation has to be done and we sim-

ply have b1, k1
�K .) We obtain:

fi 4Ti
ni 1 !

k141

d1

R !
ki41

di

bi , k1 , R , ki
x1

d12k1
R xi21

di212ki21 Ti
di2ki .(2.1)

Now we define

f×i 4Ti
di 1 !

k141

d1

R !
ki41

di

bi , k1 , R , ki
T1

d12k1
R Ti21

di212ki21 Ti
di2ki ,(2.2)

thus f×i �K[T1 , R , Ti ]. We will use the identity fi 4 f×i (x1 , R , xi21 , Ti ). In what
follows all polynomials f×1 , R , f×i are considered to lie in K[T1 , R , Ti ].

T h e o r e m 2.1. The evaluation homomorphism

f i : K[T1 , R , Ti ] /(f×1 , R , f×i ) KKi : POP(x1 , R , xi )

is a K-algebra isomorphism for i41, R , n . In particular, I4 (f×1 , R , f×n ).

P r o o f . Consider the homomorphism c i : K[T1 , R , Ti ] KK(x1 , R , xi ) defi-
ned by c i (P) 4P(x1 , R , xi ). We have to show that ker (c i ) 4 ( f×1 , R , f×i ). Ob-
viously, ker (c i)*( f×1 , R , f×i ). We show the converse inclusion by induction over i .

For i41, the assertion is well known. For iD1, we will make use of two iso-
morphisms. The first is a : Ki21 [Ti ] /( fi ) KKi : P O P(xi ). For the second, the in-
duction hypothesis says that

f i21 : K[T1 , R , Ti21 ] /( f×1 , R , fi21
×) KKi21 : P O P(x1 , R , xi21 )

is an isomorphism. We adjoin to the domain of definition of f i21 and to the range
of f i21 the variable Ti and obtain the second isomorphism,

b : K[T1 , R , Ti ] /( f×1 , R , fi21
×) KKi21 : P O P(x1 , R , xi21 , Ti ) .

Let P4P(T1 , R , Ti ) lie in the kernel of c i . In view of a , we conclude that
P(x1 , R , xi21 , Ti ) is a multiple of fi by a polynomial in Ki21 [Ti ], so

P(x1 , R , xi21 , Ti ) 4Q(x1 , R , xi21 , Ti ) fi (Ti ) ,
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for a suitable Q�K[T1 , R , Ti ]. In view of b , the equation

P(x1 , R , xi21 , Ti )2Q(x1 , R , xi21 , Ti ) fi (Ti ) 40 ,

shows that P2Qf×i lies in the ideal spanned by f×1 , R , fi21
×. This shows that P lies

in the ideal spanned by f×1 , R , f×i . r

The polynomial f×i has degree di in Ti and is monic in Ti . None of the Tj , jD i
occur in f×i , and all of the Tj , jE i , occur to a power strictly smaller than dj . From
that follows that the f×i form a Gröbner basis with respect to the lexicographical
ordering T1 ERETn .

3 - An interpolation formula for the generators

Now if we are given only the polynomial f , we do not have all the minimal po-
lynomials fi . Thus we do not have the polynomials f×i either. Now we develop a
multivariate interpolation formula in the spirit of Lagrange interpolation which
will yield the coefficients of f×i . The idea is the following: First think of f×i as a po-
lynomial that lies in L[T1 , R , Ti ] and prescribe the value of this polynomial at a
sufficiently large number of points. Then the interpolation formula establishes the
coefficients of f×i .

In this Section, we will use the Galois group G4Gal (LNK) 4 ]s 1 , R , s N (

and, for i41, R , n , its subgroups Gi 4Gal (LNKi ). By definition of Ki , we have
Gi 4 ]s�G ; s (xj ) 4xj , jG i(.

L e m m a 3.1. Let LNK and G be as above. For y�L , set Gy
4 (s 1 (y), R , s N (y) ) �L N Then for arbitrary y1 , R , yr �L , the following state-
ments are equivalent:

(i) y1 , R , yr �L are K-linearly independent.
(ii) Gy1 , R , Gyr �L N are L-linearly independent.

P r o o f . We point out that this lemma is quite similar to Artin’s Lemma and
only give a proof of the nontrivial direction (i) ¨ (ii). Assume that y1 , R , yr are
K-linearly independent but Gy1 , R , Gyk (where kEr) form an L-basis of

L aGy1 , R , Gyr b. Then there exist uniquely determined coefficients l 1 , R , l r �L

satisfying Gyk11 4 !
i41

k

l i Gyi . For every s�G , there exists a matrix P�GLN (K)

satisfying s (Gy) 4PGy for all y�L . We obtain PGyk11 4s (yk11 )

4 !
i41

k

s (l i ) s (Gyi ) 4 !
i41

k

s (l i ) PGyi 4P !
i41

k

s (l i ) Gyi and there from Gyk11

4 !
i41

k

s (l i ) Gyi . Since Gy1 , R , Gyk is a basis of L aGy1 , R , Gyr b, Gyk11 is uni-
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quely written as an L-linear combination of these vectors, and therefore s (l i )
4l i for i41, R , k and for all s�G . Since K4Fix (G), the coefficient l i must
lie in K for all i41, R , k . Thus also yk11 lies in K ay1 , R , yr b, a contradiction to
the K-linear independence of y1 , R , yr . r

P r o p o s i t i o n 3.1. L[T1 , R , Ti ] contains exactly one polynomial of the sha-
pe (2.2) vanishing at (s (x1 ), R , s (xi ) ) for all s�G . The coefficients of this po-
lynomial lie in K .

P r o o f . First we note that f×i has the desired property: fi (xi ) 4 f×i (x1 , R , xi )
40, and also s ( f×i (x1 , R , xi ) ) 4 f×i (s (x1 ), R , s (xi ) ) 40 for all s�G . This pro-
ves the existence as claimed in the proposition. Of course, the coefficients of f×i lie
in K .

Since the family x1
d12k1

R xi
di2ki , where 1 Gkj Gdj for j41, R , i , is a K-basis

of Ki , Lemma 3.1 implies that the family (Gx1
d12k1

R xi
di2ki ), where 1 Gkj Gdj for

j41, R , i , is L-linearly independent. Thus the coefficients bi , k1 , R , ki
�L in the

sum

2Gxi
di 4 !

k141

d1

R !
ki41

di

bi , k1 , R , ki
Gx1

d12k1
R xi

di2ki

are uniquely determined. In other words, the coefficients of a polynomial having
the shape (2.2) are uniquely determined under the assumption that the polynomial
vanishes at (s (x1 ), R , s (xi ) ) for all s�G . This proves the uniqueness as claimed
in the proposition. r

For the interpolation we will need the following sets: For r�G and
i41, R , n , define B (r , i) 4 ]s (xi ); s�G , sNKi21

4rNKi21
(0]r(xi )(. Thus B (r , i)

consists of the translates s (xi ), where s runs through all extensions of rNKi21
to

Ki , minus the element r(xi ).

L e m m a 3.2. NB (r , i)N4di 21 for all r�G and for all i� ]1, R , n(.

P r o o f . The number of extensions s of rNKi21
to Ki equals the degree of the

field extension Ki NKi21 , i.e. di . Two extensions of this kind are different if and
only if they take different values s (xi ), since xi generates Ki over
Ki21 . r
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T h e o r e m 3.3. The i-th generating polynomial f×i of the relation ideal I is
given by

f×i 4Ti
di 2 !

r�G//Gi

r(xi )
di »

y1�B (r , 1 )

T1 2y1

r(x1 )2y1

R »
yi�B (r , i)

Ti 2yi

r(xi )2yi

,(3.1)

where G//Gi is a system of representatives of the cosets G/Gi , i41 R , n .

P r o o f . We define g by the right hand side of (3.1) and prove f×i 4g . Lemma
3.2 shows that degj (g) Gdj 21, for j41, R , i21. Clearly degi (g) 4di . Thus
the multidegree of g has the properties that we demanded for f×i . If we can prove
that g(s (x1 ), R , s (xi ) ) 40 for all s�G , it will follow from Proposition 3.1 that f×i

and g coincide.
So let s�G be given. Take r 8�G//Gi such that s4r 8 t , for a suitable t�Gi .

In particular, for j41, R , i we have s (xj ) 4r 8 t(xj ) 4r 8 (xj ) since t(xj ) 4xj . In
order to show that g(s (x1 ), R , s (xi ) ) 40, we focus our attention on the sum
!

r�G//Gi

. The automorphisms r occurring as summation index belong to the two ca-

tegories r4r 8 and rcr 8 . If r4r 8 , the respective summand of becomes s (xi )di

for in this case s (xj ) 4r 8 (xj ) 4r(xj ), hence (s (xj )2yj ) /(r(xj )2yj ) 41 for all
j41, R , i . In the case rcr 8 we can find a number j� ]1, R , i( satisfying
r(xj ) cr 8 (xj ). Thus r 8 (xj ) lies in B (r , j) , and therefore there is a yj �B (r , j) such
that yj4r 8(xj)4s (xj). The summand corresponding to this r vanishes, since the
product occurring in in the sum contains the factor s (xj )2yj where yj 4r 8 (xj )
4s (x1 ). Altogether, we obtain g(s (x1 ), R , s (xi ) ) 4s (xi )di 2s (xi )

di 40. r

4 - On a theorem of Galois

The following theorem is due to E. Galois (for the proof see e.g. [5]):

T h e o r e m 4.1 (Galois). Let f�Q[Z] be an irreducible polynomial of degree
p , where p is a prime number. Let L be the splitting field of f and x1 , R , xp the
zeros of f in L . Then the following statements are equivalent:

(i) f is solvable by radicals.
(ii) L4Q(xi , xj ) for all i , j� ]1, R , p( such that ic j .

We would like to apply the results of Sections 2 and 3 in order to give an expli-
cit formula for the polynomial dependence of xk from xi and xj . By the theorem,
any other zero xk lies in Q(xi , xj ). We choose a numbering of the zeros such that
xi 4x1 , xj 4x2 , xk 4x3 . We determine the minimal polynomial f×3 of x3 over K2 . It
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has degree 1, thus can be written f×3 4T3 2P(x1 , x2 ) for a suitable P�K[T1 , T2 ].
We evaluate f×3 at x3 and obtain an equation x3 4P(x1 , x2 ). This is the rational po-
lynomial in two zeros whose existence is claimed in the theorem. Recalling the
precise form of f×3 in 3.12, we obtain

x3 4 !
r�G//G3

r(x3 ) »
y1�B (r , 1 )

x1 2y1

r(x1 )2y1

»
y2�B (r , 2 )

x2 2y2

r(x2 )2y2

.

Note that a priori it is not clear that the right hand side of this formula is a ratio-
nal polynomial in x1 and x2 !

5 - Numerical computation of the generators

In this Section we assume K4Q . We will work with complex and p-adic ap-
proximations of the zeros of f in order to construct the generators of the relation
ideal. This task requires the knowledge of an integer G i such that G i f×i has inte-
ger coefficients (Proposition 5.1). Further, we need an upper bound for the abso-
lute values of these coefficients (Proposition 5.2). The final result is formulated in
Proposition 5.3.

Let g be a rational integer such that all the products gxj , j41, R , n , are al-
gebraic integers. We denote the discriminant of f by

d( f ) 4 »
1 GrEsGn

(xr 2xs )2 .

The ceiling function is always denoted by C E and the floor function by D F.

P r o p o s i t i o n 5.1. For i41, R , n , the rational integer

G i 4g
n(n21)C

i

2
E1di d( f )

C
i

2
E

has the property that G i f×i lies in Z[T1 , R , Ti ].

P r o o f . Recall the interpolation formula (3.1) which we proved in Section 3.

We multiply this equation by G i . The factors of d( f )
C

i

2
E

cancel down with the de-

nominators (r(xj )2yj ), and g
n(n21)C

i

2
E1di is needed to make the remaining fac-

tors lie in OL [T]. Thus the coefficients of G i f×i lie in OL and in Q , that is, in
Z . r

For the time being, let x1 , R , xn �C denote the complex zeros of f and N N de-
note the usual absolute value in C .
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P r o p o s i t i o n 5.2. Let D , M�RD0 be such that MD max ]NxrN( and
DD max ]Nxr 2xsN ; xr cxs (. Then the absolute value of G i bi , k1 , R , ki

is bounded
by

g
n(n21)C

i

2
E1diud1 21

k1 21
v R udi 21

ki 21
v M k11R1ki2 i1di D

n(n21)C
i

2
E2di2R2di1 i

.(5.1)

P r o o f . We evaluate the formula (3.1) for f×i at the complex zeros and mul-
tiply the result by G i . As in the proof of Proposition 5.1 we cancel the denomi-

nators (r(xj )2yj ) by factors of d( f )
C

i

2
E
. In the remaining product we have

n(n21) C
i

2
E2d1 2R2di 1 i factors of the type (j r 2j s ) left. The absolute

value of these is bounded by D . Further, M is an upper bound for r(j i ). Finally,
it is easy to check that for j41, R , i , the absolute value of the coefficient of the

polynomial »
yj�B (r , j)

(Tj 2yj ) at Tj
dj2kj is bounded by gdj 21

kj 21
h M kj21 . Collecting fac-

tors, we obtain the result. r

We fix an integer c such that cf lies in Z[Z]. Let p be a prime number such
that the polynomial cf � (Z/pZ)[Z] (the reduction of cf modulo p) splits into n
4 deg ( f ) disjoint linear factors over Z/pZ . (The existence of such a prime follo-
ws from Chebotarev’s density theorem, see e.g. [7].) By Hensel’s Lemma, we can
lift these zeros to zeros of cf in Qp . The polynomial cf also splits into n disjoint li-
near factors over Z/p e Z , for all integers eG1. In this process, if eEk , the zeros
in Z/p e Z are obtained from the zeros in Z/p k Z by reduction modulo p e . We call
the zeros in Z/p e Z the eth p-adic approximations of the zeros.

For the forthcoming discussion, we let G operate on the p-adic approximations
of the zeros in the obvious way. We will need p-adic approximations of d( f ),
B (r , i) , f×i and G i . The approximations are defined by the same formulas as the ori-
ginal objects, but with each zero replaced by the respective approximation. Now
we can specify exponents ei such that from the knowledge of eith p-adic approxi-
mations of the zeros of f we can compute f×i .

P r o p o s i t i o n 5.3. For i41, R , n the following holds: Let l i be the maxi-
mum of NG iN and the products (5.1), for all kj 41, R , dj . Define ei

4 D
log (2l i 21)

log (p)
F11. We view the eith p-adic approximation of G i f×i as a

polynomial in Z[T1 , R , Ti ] by using the system of representatives
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m2
p ei 21

2
, R ,

p ei 21

2
n of Z/p ei Z . Then this polynomial coincides with

G i f×i .

P r o o f . Let b i , k1 , R , ki
� m2

p ei 21

2
, R ,

p ei 21

2
n be the coefficients of the

approximate G i f×i . Then we can find m i , k1 , R , ki
�Z such that bi , k1 , R , ki

4b i , k1 , R , ki

1m i , k1 , R , ki
p ei . Now if m i , k1 , R , ki

were not zero, we would have Nbi , k1 , R , ki
N

F (p ei 11) /2 . On the other, hand by definition of ei we have ei D log (2l i

21) / log (p) from which we deduce l i E (p ei 11) /2 . We assumed Nbi , k1 , R , ki
N

El i , hence Nbi , k1 , R , ki
NE (p ei 11) /2 , a contradiction. Thus m i , k1 , R , ki

40 and the
proposition is proved. r

6 - Examples

In this Section we present some examples treated with the methods developed
in Section 5. We have used KANT for all computations. This computer algebra
system can compute the Galois group of irreducible polynomials of degree G23
over Q . Meanwhile, KANT also features a function that computes the action of
the Galois group on the zeros of f – of course only approximations to the zeros, op-
tionally complex or p-adic.

For various irreducible separable polynomials over Q , we give the following
data: The Galois group (by the name it bears in KANT and by generators), the in-
dices d1 , R , dn , the discriminant d( f ), a prime p as in Section 5, the exponent e
(for KANT reasons a power of 2) up to which the approximate zeros were lifted,
the zeros x in Z/pZ , the generators f×i , i42, R , n of the relation ideal (note that
f×1 4 f , so we need not include f×1 in the list) and the running time of the algorithm.
The sample polynomials f were taken from [8]; the same polynomials can be found
in [3] or in the database http://www.mathematik.uni-kassel.de/Aklueners/mini-
mum/minimum.html by Jürgen Klüners and Gunter Malle. All computations were
done on a 333 MHz Ultra 10 Sun SPARC processor running under Solaris 7.

E x a m p l e 1. (D(5)) Running time 0.88 s

f4Z 5 25Z112, G4D(5) 4 a(1 , 2 , 4 , 5 , 3 ), (2 , 3 )(4 , 5 )b,

d( f ) 464000000, p4127, x4 (108 , 62 , 46 , 34 , 4 ),

f×2 4T2
2 21/4T1

4 T2 21/4T1
3 T2 21/4T1

2 T2 13/4T1 T2 1T2

21/4T1
4 21/4T1

3 21/4T1
2 25/4T1 12,
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f×3 4T3 1T2 21/4T1
4 21/4T1

3 21/4T1
2 13/4T1 11,

f×4 4T4 21/8T1
4 T2 11/8T1

3 T2 21/8T1
2 T2 11/8T1 T2 11/2T2

11/8T1
4 21/8T1

3 11/8T1
2 21/8T1 11/2 ,

f×5 4T5 11/8T1
4 T2 21/8T1

3 T2 11/8T1
2 T2 21/8T1 T2 21/2T2

1 /8T1
4 13/8T1

3 11/8T1
2 13/8T1 23/2 .

E x a m p l e 2 (F36 (6) : 2). Running time 29 s

f4Z 6 12Z 4 12Z 3 1Z 2 12Z12, G4F36 (6): 2 4 a(1 , 2 , 5 ), (1 , 3 )(2 , 4 )(5 , 6 ),

(1 , 4 , 2 , 3 )(5 , 6 )b, d( f ) 42187648, p4509, x4 (456 , 339 , 252 , 226 , 223 , 31),

f×2 4T2
2 1T1 T2 1T1

2 11, f×3 4T3
3 1T3 1T1

3 1T1 12,

f×4 4T4
2 1T3 T4 1T3

2 11, f×5 4T5 1T2 1T1 , f×6 4T6 1T4 1T3 .

E x a m p l e 3 (C(7)). Running time 12 s

f4Z 71Z 6212Z 527Z 4128Z 3114Z 229Z11, G4C(7)4a(1, 2, 5, 3, 4, 6, 7)b,

d( f ) 4171903939769, p441, x4 (122 , 120 , 107 , 15 , 11 , 6 , 2 ),

f×24T2218/17T1
6215/17T1

51210/17T1
4191/17T1

32420/17T1
22216/17T1145/17,

f×34T3230/17T1
6242/17T1

51350/17T1
41350/17T1

32785/17T1
22700/17T11160/17,

f×44T4138/17T1
6143/17T1

52449/17T1
42330/17T1

311000/17T1
21711/17T12197/17,

f×54T5127/17T1
6131/17T1

52315/17T1
42230/17T1

31681/17T1
21460/17T12127/17,

f×64T6115/17T1
6121/17T1

52175/17T1
42175/17T1

31384/17T1
21350/17T1246/17,

f×74T7232/17T1
6238/17T1

51379/17T1
41294/17T1

32860/17T1
22588/17T11182/17 .

7 - A question

In Section 5, at a certain point we multiplied f×i by the factor G i (essentially a
power of the discriminant) in order to obtain a polynomial with coefficients in Z .
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Therefore, as for the rational polynomial f×i , one would expect that the denomina-
tors that occur in its coefficients are in the magnitude of G i . But in all examples
computed so far, the denominators are significantly smaller than G i . This pheno-
menon can be explained by a very elementary argument in the case when f has
degree n and G4Sn , see [6]. For the general case this seems to be a more diffi-
cult question.
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A b s t r a c t

We construct a Gröbner Basis of the relation ideal of a polynomial and give an inter-
polation formula for the basis elements which is sufficiently explicit to be used in practi-
cal computations. We prove a constructive version of a theorem of Galois, concerning the
solvability of rational polynomials of prime degree. For a number of example polynomi-
als, the computations are carried out.

* * *


