Mathias Lederer (*)

Explicit constructions in splitting fields of polynomials (**)

1-Introduction

Let K be a field and $f=Z^{n}+a_{1} Z^{n-1}+\ldots+a_{n}$ a monic univariate polynomial over K. We assume f to be irreducible and separable. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be the n-tuple of the zeros of f in some field extension of K, and let $T=\left(T_{1}, \ldots, T_{n}\right)$ be indeterminates over K. The relation ideal of f is the set

$$
I=\{P \in K[T] ; P(x)=0\} \unlhd K[T] .
$$

Let $L=K\left(x_{1}, \ldots, x_{n}\right)$ be the splitting field of f. Consider the following easy consequence of the Homomorphism Theorem:

Proposition 1.1. The mapping $\phi: K[T] / I \rightarrow L: \bar{P} \mapsto P(x)$ is a K-algebra isomorphism.

Proposition 1.1 allows us to perform computations in the field L-but only if we know generators of the ideal I. In this case we can perform computations in $K[T] / I$ by using a Gröbner basis of I. However, the definition of I does not automatically lead us to a generating set of I. The situation is even worse - so far no efficient way to compute a system of generators of the relation ideal of a polyno-
(*) Institut für Mathematik, Universität Innsbruck, Innsbruck, Austria; e-mail: mathias.lederer@uibk.ac.at
${ }^{(* *)}$ Received March $15^{\text {th }} 2004$, and in revised form August $4^{\text {th }} 2004$. AMS classification $12 \mathrm{E} 30,12 \mathrm{~F} 10,11 \mathrm{Y} 40$.
mial was known. The papers [2] and [1] contain parts of the solution of this problem. The latter paper is based on the following idea: Define K_{1} to be the field generated over K by one zero of f. Then factor f over K_{1}. Take a factor and define an extension $K_{2} \mid K_{1}$ generated over K_{1} by a root of it. Now factor f over K_{2}. Repeat this procedure until f factors completely. Unfortunately this method is not very practical.

We will present a method to construct a Gröbner basis of the relation ideal that is based on the usage of the Galois group of f. Knowing the Galois group including the explicit action on the roots allows one to omit the factorisation. Our crucial result is an interpolation formula for the elements of the Gröbner basis which involves the zeros of f and the Galois group of f, acting on the zeros. Afterwards we will apply our results to a classical theorem of Galois. This theorem states the existence of specific polynomials but gives no hint how to construct the polynomials in practice. We will construct the polynomials in question. Furthermore, we will make use of some p-adic techniques (similar to those of [4]) in order to compute a number of examples over the ground field Q. Finally, we point at a property of the generators that cannot be explained within the theory that was used here.

2-Generators of the relation ideal

For $i=1, \ldots, n$, define the field $K_{i}=K\left(x_{1}, \ldots, x_{i}\right)$, and set $K_{0}=K$. Then clearly $K_{i}=K_{i-1}\left(x_{i}\right)$ for $i=1, \ldots, n$, and x_{i} is a primitive element of the field K_{i} over the field K_{i-1}. Let f_{i} be the minimal polynomial of x_{i} over K_{i-1}. Then $d_{i}=\operatorname{deg}\left(f_{i}\right)$ is the degree of the field extension $K_{i} \mid K_{i-1}$. Therefore the polynomial f_{i} has the shape

$$
f_{i}=T_{i}^{d_{i}}+\sum_{k_{i}=1}^{d_{i}} b_{i, k_{i}} T_{i}^{d_{i}-k_{i}},
$$

where all coefficients $b_{i, k_{i}}$ lie in K_{i-1}. The degree of the field extension $K_{i} \mid K$ equals $d_{1} \ldots d_{i}$. It is easy to see that the family $x_{1}^{d_{1}-k_{1}} \ldots x_{i-1}^{d_{i-1}-k_{i-1}}$, where $1 \leqslant k_{j}$ $\leqslant d_{j}$ for $j=1, \ldots, i-1$, is a K-basis of K_{i-1}. Thus the coefficients of the polynomial f_{i} can uniquely be written as

$$
b_{i, k_{i}}=\sum_{k_{1}=1}^{d_{1}} \ldots \sum_{k_{i-1}=1}^{d_{i-1}} b_{i, k_{1}, \ldots, k_{i}} x_{1}^{d_{1}-k_{1}} \ldots x_{i-1}^{d_{i-1}-k_{i-1}}
$$

all $b_{i, k_{1}, \ldots, k_{i}}$ belonging to K. (For $i=1$, no summation has to be done and we simply have $b_{1, k_{1}} \in K$.) We obtain:

$$
\begin{equation*}
f_{i}=T_{i}^{n_{i}}+\sum_{k_{1}=1}^{d_{1}} \ldots \sum_{k_{i}=1}^{d_{i}} b_{i, k_{1}, \ldots, k_{i}} x_{1}^{d_{1}-k_{1}} \ldots x_{i-1}^{d_{i-1}-k_{i-1}} T_{i}^{d_{i}-k_{i}} . \tag{2.1}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
\widehat{f}_{i}=T_{i}^{d_{i}}+\sum_{k_{1}=1}^{d_{1}} \ldots \sum_{k_{i}=1}^{d_{i}} b_{i, k_{1}, \ldots, k_{i}} T_{1}^{d_{1}-k_{1}} \ldots T_{i-1}^{d_{i-1}-k_{i-1}} T_{i}^{d_{i}-k_{i}}, \tag{2.2}
\end{equation*}
$$

thus $\widehat{f}_{i} \in K\left[T_{1}, \ldots, T_{i}\right]$. We will use the identity $f_{i}=\widehat{f}_{i}\left(x_{1}, \ldots, x_{i-1}, T_{i}\right)$. In what follows all polynomials $\widehat{f}_{1}, \ldots, \widehat{f}_{i}$ are considered to lie in $K\left[T_{1}, \ldots, T_{i}\right]$.

Theorem 2.1. The evaluation homomorphism

$$
\phi_{i}: K\left[T_{1}, \ldots, T_{i}\right] /\left(\widehat{f}_{1}, \ldots, \widehat{f}_{i}\right) \rightarrow K_{i}: \bar{P} \mapsto P\left(x_{1}, \ldots, x_{i}\right)
$$

is a K-algebra isomorphism for $i=1, \ldots, n$. In particular, $I=\left(\widehat{f}_{1}, \ldots, \widehat{f}_{n}\right)$.

Proof. Consider the homomorphism $\psi_{i}: K\left[T_{1}, \ldots, T_{i}\right] \rightarrow K\left(x_{1}, \ldots, x_{i}\right)$ defined by $\psi_{i}(P)=P\left(x_{1}, \ldots, x_{i}\right)$. We have to show that $\operatorname{ker}\left(\psi_{i}\right)=\left(\widehat{f}_{1}, \ldots, \widehat{f}_{i}\right)$. Obviously, $\operatorname{ker}\left(\psi_{i}\right) \supseteq\left(\widehat{f}_{1}, \ldots, \widehat{f}_{i}\right)$. We show the converse inclusion by induction over i.

For $i=1$, the assertion is well known. For $i>1$, we will make use of two isomorphisms. The first is $\alpha: K_{i-1}\left[T_{i}\right] /\left(f_{i}\right) \rightarrow K_{i}: \bar{P} \mapsto P\left(x_{i}\right)$. For the second, the induction hypothesis says that

$$
\phi_{i-1}: K\left[T_{1}, \ldots, T_{i-1}\right] /\left(\widehat{f}_{1}, \ldots, \widehat{f_{i-1}}\right) \rightarrow K_{i-1}: \bar{P} \mapsto P\left(x_{1}, \ldots, x_{i-1}\right)
$$

is an isomorphism. We adjoin to the domain of definition of ϕ_{i-1} and to the range of ϕ_{i-1} the variable T_{i} and obtain the second isomorphism,

$$
\beta: K\left[T_{1}, \ldots, T_{i}\right] /\left(\widehat{f}_{1}, \ldots, \overline{f_{i-1}}\right) \rightarrow K_{i-1}: \bar{P} \mapsto P\left(x_{1}, \ldots, x_{i-1}, T_{i}\right)
$$

Let $P=P\left(T_{1}, \ldots, T_{i}\right)$ lie in the kernel of ψ_{i}. In view of α, we conclude that $P\left(x_{1}, \ldots, x_{i-1}, T_{i}\right)$ is a multiple of f_{i} by a polynomial in $K_{i-1}\left[T_{i}\right]$, so

$$
P\left(x_{1}, \ldots, x_{i-1}, T_{i}\right)=Q\left(x_{1}, \ldots, x_{i-1}, T_{i}\right) f_{i}\left(T_{i}\right)
$$

for a suitable $Q \in K\left[T_{1}, \ldots, T_{i}\right]$. In view of β, the equation

$$
P\left(x_{1}, \ldots, x_{i-1}, T_{i}\right)-Q\left(x_{1}, \ldots, x_{i-1}, T_{i}\right) f_{i}\left(T_{i}\right)=0
$$

shows that $P-Q \widehat{f}_{i}$ lies in the ideal spanned by $\widehat{f}_{1}, \ldots, \widehat{f_{i-1}}$. This shows that P lies in the ideal spanned by $\widehat{f}_{1}, \ldots, \widehat{f}_{i}$.

The polynomial \widehat{f}_{i} has degree d_{i} in T_{i} and is monic in T_{i}. None of the $T_{j}, j>i$ occur in \widehat{f}_{i}, and all of the $T_{j}, j<i$, occur to a power strictly smaller than d_{j}. From that follows that the \widehat{f}_{i} form a Gröbner basis with respect to the lexicographical ordering $T_{1}<\ldots<T_{n}$.

3-An interpolation formula for the generators

Now if we are given only the polynomial f, we do not have all the minimal polynomials f_{i}. Thus we do not have the polynomials \widehat{f}_{i} either. Now we develop a multivariate interpolation formula in the spirit of Lagrange interpolation which will yield the coefficients of \widehat{f}_{i}. The idea is the following: First think of \widehat{f}_{i} as a polynomial that lies in $L\left[T_{1}, \ldots, T_{i}\right]$ and prescribe the value of this polynomial at a sufficiently large number of points. Then the interpolation formula establishes the coefficients of \widehat{f}_{i}.

In this Section, we will use the Galois group $G=\operatorname{Gal}(L \mid K)=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$ and, for $i=1, \ldots, n$, its subgroups $G_{i}=\operatorname{Gal}\left(L \mid K_{i}\right)$. By definition of K_{i}, we have $G_{i}=\left\{\sigma \in G ; \sigma\left(x_{j}\right)=x_{j}, j \leqslant i\right\}$.

Lemma 3.1. Let $L \mid K$ and G be as above. For $y \in L$, set $G y$ $=\left(\sigma_{1}(y), \ldots, \sigma_{N}(y)\right) \in L^{N}$ Then for arbitrary $y_{1}, \ldots, y_{r} \in L$, the following statements are equivalent:
(i) $y_{1}, \ldots, y_{r} \in L$ are K-linearly independent.
(ii) $G y_{1}, \ldots, G y_{r} \in L^{N}$ are L-linearly independent.

Proof. We point out that this lemma is quite similar to Artin's Lemma and only give a proof of the nontrivial direction $(i) \Rightarrow(i i)$. Assume that y_{1}, \ldots, y_{r} are K-linearly independent but $G y_{1}, \ldots, G y_{k}$ (where $k<r$) form an L-basis of ${ }_{L}\left\langle G y_{1}, \ldots, G y_{r}\right\rangle$. Then there exist uniquely determined coefficients $\lambda_{1}, \ldots, \lambda_{r} \in L$ satisfying $G y_{k+1}=\sum_{i=1}^{k} \lambda_{i} G y_{i}$. For every $\sigma \in G$, there exists a matrix $P \in G L_{N}(K)$ satisfying $\sigma(G y)=P G y \quad$ for all $y \in L$. We obtain $P G y_{k+1}=\sigma\left(y_{k+1}\right)$ $=\sum_{i=1}^{k} \sigma\left(\lambda_{i}\right) \sigma\left(G y_{i}\right)=\sum_{i=1}^{k} \sigma\left(\lambda_{i}\right) P G y_{i}=P \sum_{i=1}^{k} \sigma\left(\lambda_{i}\right) G y_{i}$ and there from $G y_{k+1}$ $=\sum_{i=1}^{k} \sigma\left(\lambda_{i}\right) G y_{i}$. Since $G y_{1}, \ldots, G y_{k}$ is a basis of ${ }_{L}\left\langle G y_{1}, \ldots, G y_{r}\right\rangle, G y_{k+1}$ is uni-
quely written as an L-linear combination of these vectors, and therefore $\sigma\left(\lambda_{i}\right)$ $=\lambda_{i}$ for $i=1, \ldots, k$ and for all $\sigma \in G$. Since $K=\operatorname{Fix}(G)$, the coefficient λ_{i} must lie in K for all $i=1, \ldots, k$. Thus also y_{k+1} lies in ${ }_{K}\left\langle y_{1}, \ldots, y_{r}\right\rangle$, a contradiction to the K-linear independence of y_{1}, \ldots, y_{r}.

Proposition 3.1. $L\left[T_{1}, \ldots, T_{i}\right]$ contains exactly one polynomial of the shape (2.2) vanishing at $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{i}\right)\right)$ for all $\sigma \in G$. The coefficients of this polynomial lie in K.

Proof. First we note that \widehat{f}_{i} has the desired property: $f_{i}\left(x_{i}\right)=\widehat{f}_{i}\left(x_{1}, \ldots, x_{i}\right)$ $=0$, and also $\sigma\left(\widehat{f}_{i}\left(x_{1}, \ldots, x_{i}\right)\right)=\widehat{f}_{i}\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{i}\right)\right)=0$ for all $\sigma \in G$. This proves the existence as claimed in the proposition. Of course, the coefficients of \widehat{f}_{i} lie in K.

Since the family $x_{1}^{d_{1}-k_{1}} \ldots x_{i}^{d_{i}-k_{i}}$, where $1 \leqslant k_{j} \leqslant d_{j}$ for $j=1, \ldots, i$, is a K-basis of K_{i}, Lemma 3.1 implies that the family ($G x_{1}^{d_{1}-k_{1}} \ldots x_{i}^{d_{i}-k_{i}}$), where $1 \leqslant k_{j} \leqslant d_{j}$ for $j=1, \ldots, i$, is L-linearly independent. Thus the coefficients $b_{i, k_{1}, \ldots, k_{i}} \in L$ in the sum

$$
-G x_{i}^{d_{i}}=\sum_{k_{1}=1}^{d_{1}} \ldots \sum_{k_{i}=1}^{d_{i}} b_{i, k_{1}, \ldots, k_{i}} G x_{1}^{d_{1}-k_{1}} \ldots x_{i}^{d_{i}-k_{i}}
$$

are uniquely determined. In other words, the coefficients of a polynomial having the shape (2.2) are uniquely determined under the assumption that the polynomial vanishes at $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{i}\right)\right)$ for all $\sigma \in G$. This proves the uniqueness as claimed in the proposition.

For the interpolation we will need the following sets: For $\varrho \in G$ and $i=1, \ldots, n$, define $B^{(\varrho, i)}=\left\{\sigma\left(x_{i}\right) ; \sigma \in G,\left.\sigma\right|_{K_{i-1}}=\left.\varrho\right|_{K_{i-1}}\right\} \backslash\left\{\varrho\left(x_{i}\right)\right\}$. Thus $B^{(\varrho, i)}$ consists of the translates $\sigma\left(x_{i}\right)$, where σ runs through all extensions of $\left.\varrho\right|_{K_{i-1}}$ to K_{i}, minus the element $\varrho\left(x_{i}\right)$.

Lemma 3.2. $\left|B^{(\varrho, i)}\right|=d_{i}-1$ for all $\varrho \in G$ and for all $i \in\{1, \ldots, n\}$.

Proof. The number of extensions σ of $\left.\varrho\right|_{K_{i-1}}$ to K_{i} equals the degree of the field extension $K_{i} \mid K_{i-1}$, i.e. d_{i}. Two extensions of this kind are different if and only if they take different values $\sigma\left(x_{i}\right)$, since x_{i} generates K_{i} over K_{i-1} 。

Theorem 3.3. The i-th generating polynomial \widehat{f}_{i} of the relation ideal I is given by

$$
\begin{equation*}
\widehat{f}_{i}=T_{i}^{d_{i}}-\sum_{\varrho \in G / G_{i}} \varrho\left(x_{i}\right)^{d_{i}} \prod_{y_{1} \in B^{(\varrho, 1)}} \frac{T_{1}-y_{1}}{\varrho\left(x_{1}\right)-y_{1}} \ldots \prod_{y_{i} \in B^{(\varrho, i)}} \frac{T_{i}-y_{i}}{\varrho\left(x_{i}\right)-y_{i}} \tag{3.1}
\end{equation*}
$$

where $G / / G_{i}$ is a system of representatives of the cosets $G / G_{i}, i=1 \ldots, n$.
Proof. We define g by the right hand side of (3.1) and prove $\widehat{f}_{i}=g$. Lemma 3.2 shows that $\operatorname{deg}_{j}(g) \leqslant d_{j}-1$, for $j=1, \ldots, i-1$. Clearly $\operatorname{deg}_{i}(g)=d_{i}$. Thus the multidegree of g has the properties that we demanded for \widehat{f}_{i}. If we can prove that $g\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{i}\right)\right)=0$ for all $\sigma \in G$, it will follow from Proposition 3.1 that \widehat{f}_{i} and g coincide.

So let $\sigma \in G$ be given. Take $\varrho^{\prime} \in G / / G_{i}$ such that $\sigma=\varrho^{\prime} \tau$, for a suitable $\tau \in G_{i}$. In particular, for $j=1, \ldots, i$ we have $\sigma\left(x_{j}\right)=\varrho^{\prime} \tau\left(x_{j}\right)=\varrho^{\prime}\left(x_{j}\right)$ since $\tau\left(x_{j}\right)=x_{j}$. In order to show that $g\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{i}\right)\right)=0$, we focus our attention on the sum $\sum_{\varrho \in G / G_{i}}$. The automorphisms ϱ occurring as summation index belong to the two categories $\varrho=\varrho^{\prime}$ and $\varrho \neq \varrho^{\prime}$. If $\varrho=\varrho^{\prime}$, the respective summand of becomes $\sigma\left(x_{i}\right)^{d_{i}}$ for in this case $\sigma\left(x_{j}\right)=\varrho^{\prime}\left(x_{j}\right)=\varrho\left(x_{j}\right)$, hence $\left(\sigma\left(x_{j}\right)-y_{j}\right) /\left(\varrho\left(x_{j}\right)-y_{j}\right)=1$ for all $j=1, \ldots, i$. In the case $\varrho \neq \varrho^{\prime}$ we can find a number $j \in\{1, \ldots, i\}$ satisfying $\varrho\left(x_{j}\right) \neq \varrho^{\prime}\left(x_{j}\right)$. Thus $\varrho^{\prime}\left(x_{j}\right)$ lies in $B^{(\varrho, j)}$, and therefore there is a $y_{j} \in B^{(\varrho, j)}$ such that $y_{j}=\varrho^{\prime}\left(x_{j}\right)=\sigma\left(x_{j}\right)$. The summand corresponding to this ϱ vanishes, since the product occurring in in the sum contains the factor $\sigma\left(x_{j}\right)-y_{j}$ where $y_{j}=\varrho^{\prime}\left(x_{j}\right)$ $=\sigma\left(x_{1}\right)$. Altogether, we obtain $g\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{i}\right)\right)=\sigma\left(x_{i}\right)^{d_{i}}-\sigma\left(x_{i}\right)^{d_{i}}=0$.

4-On a theorem of Galois

The following theorem is due to E. Galois (for the proof see e.g. [5]):
Theorem 4.1 (Galois). Let $f \in \mathbb{Q}[Z]$ be an irreducible polynomial of degree p, where p is a prime number. Let L be the splitting field of f and x_{1}, \ldots, x_{p} the zeros of f in L. Then the following statements are equivalent:
(i) f is solvable by radicals.
(ii) $L=Q\left(x_{i}, x_{j}\right)$ for all $i, j \in\{1, \ldots, p\}$ such that $i \neq j$.

We would like to apply the results of Sections 2 and 3 in order to give an explicit formula for the polynomial dependence of x_{k} from x_{i} and x_{j}. By the theorem, any other zero x_{k} lies in $\mathbb{Q}\left(x_{i}, x_{j}\right)$. We choose a numbering of the zeros such that $x_{i}=x_{1}, x_{j}=x_{2}, x_{k}=x_{3}$. We determine the minimal polynomial \widehat{f}_{3} of x_{3} over K_{2}. It
has degree 1 , thus can be written $\widehat{f}_{3}=T_{3}-P\left(x_{1}, x_{2}\right)$ for a suitable $P \in K\left[T_{1}, T_{2}\right]$. We evaluate \widehat{f}_{3} at x_{3} and obtain an equation $x_{3}=P\left(x_{1}, x_{2}\right)$. This is the rational polynomial in two zeros whose existence is claimed in the theorem. Recalling the precise form of \widehat{f}_{3} in 3.12 , we obtain

$$
x_{3}=\sum_{\varrho \in G / / G_{3}} \varrho\left(x_{3}\right) \prod_{y_{1} \in B^{(\varrho, 1)}} \frac{x_{1}-y_{1}}{\varrho\left(x_{1}\right)-y_{1}} \prod_{y_{2} \in B^{(\varrho, 2)}} \frac{x_{2}-y_{2}}{\varrho\left(x_{2}\right)-y_{2}} .
$$

Note that a priori it is not clear that the right hand side of this formula is a rational polynomial in x_{1} and x_{2} !

5 - Numerical computation of the generators

In this Section we assume $K=\mathbb{Q}$. We will work with complex and p-adic approximations of the zeros of f in order to construct the generators of the relation ideal. This task requires the knowledge of an integer Γ_{i} such that $\Gamma_{i} \widehat{f}_{i}$ has integer coefficients (Proposition 5.1). Further, we need an upper bound for the absolute values of these coefficients (Proposition 5.2). The final result is formulated in Proposition 5.3.

Let γ be a rational integer such that all the products $\gamma x_{j}, j=1, \ldots, n$, are algebraic integers. We denote the discriminant of f by

$$
d(f)=\prod_{1 \leqslant r<s \leqslant n}\left(x_{r}-x_{s}\right)^{2} .
$$

The ceiling function is always denoted by $\lceil 1$ and the floor function by \rfloor.
Proposition 5.1. For $i=1, \ldots, n$, the rational integer

$$
\Gamma_{i}=\gamma^{\left.n(n-1) \Gamma \frac{i}{2}\right\rceil+d_{i}} d(f)^{\left\lceil\frac{i}{2}\right\rceil}
$$

has the property that $\Gamma_{i} \widehat{f}_{i}$ lies in $\mathbb{Z}\left[T_{1}, \ldots, T_{i}\right]$.
Proof. Recall the interpolation formula (3.1) which we proved in Section 3. We multiply this equation by Γ_{i}. The factors of $d(f)^{\left\lceil\frac{i}{2}\right\rceil}$ cancel down with the denominators $\left(\varrho\left(x_{j}\right)-y_{j}\right)$, and $\gamma^{n(n-1)\left\lceil\frac{i}{2}\right\rceil+d_{i}}$ is needed to make the remaining factors lie in $\mathcal{O}_{L}[T]$. Thus the coefficients of $\Gamma_{i} \widehat{f}_{i}$ lie in \mathcal{O}_{L} and in Q , that is, in Z.

For the time being, let $x_{1}, \ldots, x_{n} \in \mathrm{C}$ denote the complex zeros of f and $\|$ denote the usual absolute value in C .

Proposition 5.2. Let $D, M \in \mathbb{R}_{>0}$ be such that $M>\max \left\{\left|x_{r}\right|\right\}$ and $D>\max \left\{\left|x_{r}-x_{s}\right| ; x_{r} \neq x_{s}\right\}$. Then the absolute value of $\Gamma_{i} b_{i, k_{1}, \ldots, k_{i}}$ is bounded by

$$
\begin{equation*}
\gamma^{\left.n(n-1) \Gamma \frac{i}{2}\right\rceil+d_{i}}\binom{d_{1}-1}{k_{1}-1} \cdots\binom{d_{i}-1}{k_{i}-1} M^{k_{1}+\ldots+k_{i}-i+d_{i}} D^{\left.n(n-1) \Gamma \frac{i}{2}\right\rceil-d_{i}-\ldots-d_{i}+i} \tag{5.1}
\end{equation*}
$$

Proof. We evaluate the formula (3.1) for \widehat{f}_{i} at the complex zeros and multiply the result by Γ_{i}. As in the proof of Proposition 5.1 we cancel the denominators $\left(\varrho\left(x_{j}\right)-y_{j}\right)$ by factors of $d(f)^{\left\lceil\frac{i}{2}\right\rceil}$. In the remaining product we have $n(n-1)\left\lceil\frac{i}{2}\right\rceil-d_{1}-\ldots-d_{i}+i$ factors of the type $\left(\xi_{r}-\xi_{s}\right)$ left. The absolute value of these is bounded by D. Further, M is an upper bound for $\varrho\left(\xi_{i}\right)$. Finally, it is easy to check that for $j=1, \ldots, i$, the absolute value of the coefficient of the polynomial $\prod_{y_{j} \in B^{(e, j)}}\left(T_{j}-y_{j}\right)$ at $T_{j}^{d_{j}-k_{j}}$ is bounded by $\binom{d_{j}-1}{k_{j}-1} M^{k_{j}-1}$. Collecting factors, we obtain the result.

We fix an integer c such that $c f$ lies in $\mathbb{Z}[Z]$. Let p be a prime number such that the polynomial $\overline{c f} \in(\mathbb{Z} / p \mathbb{Z})[Z]$ (the reduction of $c f$ modulo p) splits into n $=\operatorname{deg}(f)$ disjoint linear factors over $\mathbb{Z} / p \mathbb{Z}$. (The existence of such a prime follows from Chebotarev's density theorem, see e.g. [7].) By Hensel's Lemma, we can lift these zeros to zeros of $c f$ in Q_{p}. The polynomial $c f$ also splits into n disjoint linear factors over $\mathbb{Z} / p^{e} \mathbb{Z}$, for all integers $e \leqslant 1$. In this process, if $e<k$, the zeros in $\mathbb{Z} / p^{e} \mathbb{Z}$ are obtained from the zeros in $\mathbb{Z} / p^{k} \mathbb{Z}$ by reduction modulo p^{e}. We call the zeros in $\mathbb{Z} / p^{e} \mathbb{Z}$ the e th p-adic approximations of the zeros.

For the forthcoming discussion, we let G operate on the p-adic approximations of the zeros in the obvious way. We will need p-adic approximations of $d(f)$, $B^{(\varrho, i)}, \widehat{f}_{i}$ and Γ_{i}. The approximations are defined by the same formulas as the original objects, but with each zero replaced by the respective approximation. Now we can specify exponents e_{i} such that from the knowledge of e_{i} th p-adic approximations of the zeros of f we can compute \hat{f}_{i}.

Proposition 5.3. For $i=1, \ldots$, n the following holds: Let λ_{i} be the maximum of $\left|\Gamma_{i}\right|$ and the products (5.1), for all $k_{j}=1, \ldots, d_{j}$. Define e_{i} $=\left\lfloor\frac{\log \left(2 \lambda_{i}-1\right)}{\log (p)}\right\rfloor+1$. We view the e_{i} th p-adic approximation of $\Gamma_{i} \widehat{f}_{i}$ as a polynomial in $\mathbb{Z}\left[T_{1}, \ldots, T_{i}\right]$ by using the system of representatives
$\left\{-\frac{p^{e_{i}}-1}{2}, \ldots, \frac{p^{e_{i}}-1}{2}\right\}$ of $\mathbb{Z} / p^{e_{i}} \mathbb{Z}$. Then this polynomial coincides with $\Gamma_{i} \widehat{f}_{i}$.

 $+\mu_{i, k_{1}, \ldots, k_{i}} p^{e_{i}}$. Now if $\mu_{i, k_{1}, \ldots, k_{i}}$ were not zero, we would have $\left|b_{i, k_{1}, \ldots, k_{i}}\right|$ $\geqslant\left(p^{e_{i}}+1\right) / 2$. On the other, hand by definition of e_{i} we have $e_{i}>\log \left(2 \lambda_{i}\right.$ $-1) / \log (p)$ from which we deduce $\lambda_{i}<\left(p^{e_{i}}+1\right) / 2$. We assumed $\left|b_{i, k_{1}}, \ldots, k_{i}\right|$ $<\lambda_{i}$, hence $\left|b_{i, k_{1}, \ldots, k_{i}}\right|<\left(p^{e_{i}}+1\right) / 2$, a contradiction. Thus $\mu_{i, k_{1}, \ldots, k_{i}}=0$ and the proposition is proved.

6 - Examples

In this Section we present some examples treated with the methods developed in Section 5. We have used KANT for all computations. This computer algebra system can compute the Galois group of irreducible polynomials of degree $\leqslant 23$ over Q. Meanwhile, KANT also features a function that computes the action of the Galois group on the zeros of f - of course only approximations to the zeros, optionally complex or p-adic.

For various irreducible separable polynomials over Q , we give the following data: The Galois group (by the name it bears in KANT and by generators), the indices d_{1}, \ldots, d_{n}, the discriminant $d(f)$, a prime p as in Section 5 , the exponent e (for KANT reasons a power of 2) up to which the approximate zeros were lifted, the zeros x in $\mathbb{Z} / p \mathbb{Z}$, the generators $\widehat{f}_{i}, i=2, \ldots, n$ of the relation ideal (note that $\widehat{f}_{1}=f$, so we need not include \widehat{f}_{1} in the list) and the running time of the algorithm. The sample polynomials f were taken from [8]; the same polynomials can be found in [3] or in the database http://www.mathematik.uni-kassel.de/~klueners/minimum/minimum.html by Jürgen Klüners and Gunter Malle. All computations were done on a 333 MHz Ultra 10 Sun SPARC processor running under Solaris 7.

Example 1. ($D(5)$) Running time 0.88 s

$$
\begin{gathered}
f=Z^{5}-5 Z+12, G=D(5)=\langle(1,2,4,5,3),(2,3)(4,5)\rangle, \\
d(f)=64000000, p=127, x=(108,62,46,34,4), \\
\widehat{f}_{2}=T_{2}^{2}-1 / 4 T_{1}^{4} T_{2}-1 / 4 T_{1}^{3} T_{2}-1 / 4 T_{1}^{2} T_{2}+3 / 4 T_{1} T_{2}+T_{2} \\
-1 / 4 T_{1}^{4}-1 / 4 T_{1}^{3}-1 / 4 T_{1}^{2}-5 / 4 T_{1}+2,
\end{gathered}
$$

$$
\widehat{f}_{3}=T_{3}+T_{2}-1 / 4 T_{1}^{4}-1 / 4 T_{1}^{3}-1 / 4 T_{1}^{2}+3 / 4 T_{1}+1
$$

$$
\begin{aligned}
\widehat{f}_{4}=T_{4}-1 / 8 T_{1}^{4} T_{2}+1 / 8 T_{1}^{3} T_{2}-1 / 8 T_{1}^{2} T_{2} & +1 / 8 T_{1} T_{2}+1 / 2 T_{2} \\
& +1 / 8 T_{1}^{4}-1 / 8 T_{1}^{3}+1 / 8 T_{1}^{2}-1 / 8 T_{1}+1 / 2
\end{aligned}
$$

$\widehat{f}_{5}=T_{5}+1 / 8 T_{1}^{4} T_{2}-1 / 8 T_{1}^{3} T_{2}+1 / 8 T_{1}^{2} T_{2}-1 / 8 T_{1} T_{2}-1 / 2 T_{2}$

$$
1 / 8 T_{1}^{4}+3 / 8 T_{1}^{3}+1 / 8 T_{1}^{2}+3 / 8 T_{1}-3 / 2
$$

Example $2\left(F_{36}(6): 2\right)$. Running time 29 s
$f=Z^{6}+2 Z^{4}+2 Z^{3}+Z^{2}+2 Z+2, G=F_{36}(6): 2=\langle(1,2,5),(1,3)(2,4)(5,6)$, $(1,4,2,3)(5,6)\rangle, d(f)=-187648, p=509, x=(456,339,252,226,223,31)$,

$$
\widehat{f}_{2}=T_{2}^{2}+T_{1} T_{2}+T_{1}^{2}+1, \widehat{f}_{3}=T_{3}^{3}+T_{3}+T_{1}^{3}+T_{1}+2
$$

$$
\widehat{f}_{4}=T_{4}^{2}+T_{3} T_{4}+T_{3}^{2}+1, \widehat{f}_{5}=T_{5}+T_{2}+T_{1}, \widehat{f}_{6}=T_{6}+T_{4}+T_{3}
$$

Example $3(C(7))$. Running time 12 s

$$
\begin{gathered}
f=Z^{7}+Z^{6}-12 Z^{5}-7 Z^{4}+28 Z^{3}+14 Z^{2}-9 Z+1, G=C(7)=\langle(1,2,5,3,4,6,7)\rangle, \\
d(f)=171903939769, p=41, x=(122,120,107,15,11,6,2), \\
\widehat{f}_{2}=T_{2}-18 / 17 T_{1}^{6}-15 / 17 T_{1}^{5}+210 / 17 T_{1}^{4}+91 / 17 T_{1}^{3}-420 / 17 T_{1}^{2}-216 / 17 T_{1}+45 / 17, \\
\widehat{f}_{3}=T_{3}-30 / 17 T_{1}^{6}-42 / 17 T_{1}^{5}+350 / 17 T_{1}^{4}+350 / 17 T_{1}^{3}-785 / 17 T_{1}^{2}-700 / 17 T_{1}+160 / 17, \\
\widehat{f}_{4}=T_{4}+38 / 17 T_{1}^{6}+43 / 17 T_{1}^{5}-449 / 17 T_{1}^{4}-330 / 17 T_{1}^{3}+1000 / 17 T_{1}^{2}+711 / 17 T_{1}-197 / 17, \\
\widehat{f}_{5}=T_{5}+27 / 17 T_{1}^{6}+31 / 17 T_{1}^{5}-315 / 17 T_{1}^{4}-230 / 17 T_{1}^{3}+681 / 17 T_{1}^{2}+460 / 17 T_{1}-127 / 17, \\
\widehat{f}_{6}=T_{6}+15 / 17 T_{1}^{6}+21 / 17 T_{1}^{5}-175 / 17 T_{1}^{4}-175 / 17 T_{1}^{3}+384 / 17 T_{1}^{2}+350 / 17 T_{1}-46 / 17, \\
\widehat{f}_{7}=T_{7}-32 / 17 T_{1}^{6}-38 / 17 T_{1}^{5}+379 / 17 T_{1}^{4}+294 / 17 T_{1}^{3}-860 / 17 T_{1}^{2}-588 / 17 T_{1}+182 / 17 .
\end{gathered}
$$

7-A question

In Section 5 , at a certain point we multiplied \widehat{f}_{i} by the factor Γ_{i} (essentially a power of the discriminant) in order to obtain a polynomial with coefficients in \mathbb{Z}.

Therefore, as for the rational polynomial \widehat{f}_{i}, one would expect that the denominators that occur in its coefficients are in the magnitude of Γ_{i}. But in all examples computed so far, the denominators are significantly smaller than Γ_{i}. This phenomenon can be explained by a very elementary argument in the case when f has degree n and $G=S_{n}$, see [6]. For the general case this seems to be a more difficult question.

8 - Acknowledgements

I would like to thank Herwig Hauser for awakening my interest in the relation ideal and Kurt Girstmair for telling me what this ideal is good for and for his help during my work on this paper. I would like to thank Alexander Ostermann for his help on interpolation of all kinds and Jürgen Klüners for his help in KANT questions. Thanks to François Brunault for many very useful comments on the text!

References

[1] H. Anai, M. Noro and K. Yokoyama, Computation of the splitting fields and the Galois groups of polynomials, Algorithms in algebraic geometry and applications (Santander, 1994), Progr. Math., 143, 29-50. Birkhäuser, Basel 1996.
[2] Philippe Aubry and Annick Valibouze, Using Galois ideals for computing relative resolvents, J. Symbolic Comput. 30 (6) (2000), 635-651.
[3] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics 138, Springer-Verlag, Berlin 1993.
[4] Katharina Geissler and Jürgen Klüners, Galois group computation for rational polynomials J. Symbolic Comput. 30 (6) (2000), 653-674.
[5] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin 1967.
[6] Mathias Lederer, Explizite Konstruktionen in Zerfällungskörpern von Polynomen, Master's thesis, Universität Innsbruck 2002.
Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 322, Sprin-ger-Verlag, Berlin 1999.
[8] Leonard Soicher, The computation of Galois groups, Master's thesis, Concordia University, Montreal 1981.

Abstract

We construct a Gröbner Basis of the relation ideal of a polynomial and give an interpolation formula for the basis elements which is sufficiently explicit to be used in practical computations. We prove a constructive version of a theorem of Galois, concerning the solvability of rational polynomials of prime degree. For a number of example polynomials, the computations are carried out.

