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Algebraic structure of Zp
3 and related integer functions (**)

For a real number x , denote by DxF and CxE , respectively, the greatest inte-
ger Gx and the smallest integer Fx . In the analysis of algorithms (see [5],
Chapter 3 for example), it happens often to evaluate the following combinatorial
sums on integer functions:
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The primary purpose of this paper is to investigate the closed forms of these inte-
ger function sums. These evaluations have surprising relations with the algebraic
structure of the group Zp

3 , consisting of nonzero residue classes modulo p under
modular multiplication.

The paper will be organized as follows. As preparation, the first section will
deal with the algebraic structure of Zp

3 . Then the closed formulas for the integer
function sums displayed above will be established in the second section. The paper
will end up with the third section, where the evaluation of another integer func-

tion sums !
k41

m

D
n
kkpF will be presented as byproduct.

1 - Algebraic structure of Zp
3

Let P and N be the sets of primes and natural numbers respectively. For p
�P , the residue classes modulo p under addition and multiplication constitute a
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finite field Zp . Its nonzero elements Zp
3 with multiplication is a cyclic group of or-

der p21. For n�N , the nth powers of the elements of Zp
3 form a subgroup

Zp
3n , the group of the residues of nth power modulo p .

On the algebraic structure of Zp
3 , the following lemma reveals some basic

properties.

L e m m a 1. For p�P , there hold the following properties:
(a) For m , n�N , if mfn ( mod p21), then Zp

3m 4Zp
3n ;

(b) For n�N , if (n , p21) 4d , then NZp
3nN4 (p21) /d ;

(c) For m , n�N , if (m , p21) 4 (n , p21), then Zp
3m 4Zp

3n .

P r o o f . The congruence notation xfp y will be used instead of xfy ( mod p)
for simplicity.

For m , n�N with mfp21 n , there exists an integer q such that m4q(p21)
1n . For each x�Zp

3n , there exists 1 GkEp such that xfp k n . Recalling Fer-
mat’s little theorem ([3], p. 109) we have the following congruences

k m 4k (p21) q1n
fp k n

fp x

which implies x�Zp
3m . Therefore Zp

3n ’Zp
3m . Vice versa, we can check similarly

Zp
3m ’Zp

3n . This proves property (a).
Since Zp

3 is a cyclic group of order p21, there is a generator g�Zp
3 such

that Zp
34 agb with order o(g) 4p21. Then for every n�N , it is not hard to

check that

o(g n ) 4
p21

(n , p21)
4

p21

d
.

Noting that Zp
3n 4 ag n b, we have

NZp
3nN4o(g n ) 4 (p21) /d

which proves property (b).
Property (c) is in fact an extension of (a). It follows immediately from property

(b) because for the cyclic group Zp
3 , its subgroup of the fixed order (p21) /d with

d»4 (m , p21) 4 (n , p21) is unique. Therefore all the subgroups of Zp
3 are

characterized exclusively by the divisors of p21. r
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R e m a r k . Furthermore, considering the endomorphism

c : Zp
3

x

O

O

Zp
3

x n

we get the image c(Zp
3 ) 4Zp

3n and the kernel ker (c) 4 ag (p21) /d b induced by
c(g) 4g n . From the homomorphism theorem we get the isomorphism

Zp
3 /ker (c) `Zp

3n .(1.1)

Since all the cosets of ker (c) in Zp
3 have the same order d4 (n , p21), there are

exactly d elements in Zp
3 whose n-th powers result in the same element in the

multiplicative group Zp
3n . This leads us to the following multiset relation:

]x nNx�Zp
3( 4 ]mod [k n , p]N1 GkEp( 4 (n , p21)3Zp

3n .(1.2)

L e m m a 2. Let n�N and p�P . If
p21

(n , p21)
is even, then for each

x�Zp
3n , there exists a y�Zp

3n such that x1y4p . This is equivalent to say that
the elements in Zp

3n can be paired off so that every pair has the same sum p .

P r o o f . Recall that Zp
3 is a cyclic group (cf. [3], Thm 5.3). Suppose g is a pri-

mitive root modulo p . Then for d4 (n , p21), we have

o(g d ) 4o(g n ) 4
p21

d
.

Both g d and g n are generators of the same subgroup

Zp
3n 4 mg dk Nk41, 2 , R ,

p21

d
n

for the cyclic group Zp
3 has the unique subgroup of the fixed order

(p21) /d .
The Lagrange theorem asserts that the congruence equation

x
p21

d
f1 (mod p)(1.3)

has at most (p21) /d solutions in the field Zp , which are effectively furnished by
all the elements of Zp

3d .
For each x�Zp

3n 4Zp
3d , it is obvious that x satisfies (1.3). By means of the bi-
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nomial theorem, we have

(p2x)
p21

d 4 !
k40

(p21) /du p21

d
k

v (2x)k p
p21

d
2k

fp (2x)
p21

d
fp x

p21

d
fp 1

for (p21) /d is even. Therefore y»4p2x is a solution of (1.3) either, which im-
plies that y4p2x�Zp

3n 4Zp
3d . This completes the proof of the lemma. r

L e m m a 3. Let n�N and p�P with pf8 7 . If (2n , p21) 42, then 2
�Zp

32n ; that is to say that 2 is a residue of 2n-th power modulo p .

P r o o f . For n�N with 2 4 (2 , p21) 4 (2n , p21), The property (c) of
Lemma 1 affirms that Zp

32 4Zp
32n . When p�P with pf8 7 , we know that 2 is a

quadratic residue modulo p thanks to Gauss’ law of quadratic reciprocity (cf. [6],
p. 53]), which is equivalent to the following

2 �Zp
32 4Zp

32n .

Therefore 2 is a residue of 2n-th power modulo p . This proves the lem-
ma. r

2 - Summation formulas on integer functions

Let Z and R be the sets of integers and real numbers respectively. For x�R ,
denote by DxF , CxE and ]x( the maximum integer Gx , the minimum integer Fx
and the fractional part ]x( 4x2DxF . Then we have the following obvious
relations:

DxF4CxE ,

DxF4CxE21,

DxF4x2 ]x(,

x�Z

x�Z

x�R .

For an odd prime p�P and n , k�N with 1 GkEp , it is easy to check the follo-
wing concrete facts:

m k n

p
n 4

mod [k n , p]

p
(2.1a)
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D
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p F
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C k n

p N
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k n

p
�Z(2.1b)
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N k n
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2 F

N 4 N
C k n
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E

21 for
2k n

p
�Z .(2.1c)

Then the sums of integer functions are transformed by the relation

D

N k n

p F

N 4
k n

p
2 m k n

p
n4

k n

p
2

mod [k n , p]

p
(2.2)

into the sums on Zp
3n , whose structure depends on only (n , p21) as affirmed in

Lemma 1. Therefore, when there exists a summation formula on integer functions
of power dN(p21), then there would be other formulas on those of the powers n
with (n , p21) 4d .

Based on these relations and the lemmas demonstrated in the last section, we
can establish some closed formulas concerning integer functions of Zp

3 , which are
closely related to the partial sums of powers of natural numbers defined by

Wn (m) »4 !
k41

m

k n for m , n�N .(2.3)

We display the first closed formulas which will be used in the sequel of the
paper.

W1 (m) 4 g11m

2
h(2.4a)

W2 (m) 4 g212m

3
h 1

4
(2.4b)

W3 (m) 4 g11m

2
h2

(2.4c)

W4 (m) 4 g212m

3
h 3m 2 13m21

435
(2.4d)

W5 (m) 4 g11m

2
h2 2m 2 12m21

3
(2.4e)
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W6 (m) 4 g212m

3
h 3m 4 16m 3 23m11

437
(2.4f)

W7 (m) 4 g11m

2
h2 3m 4 16m 3 2m 2 24m12

6
(2.4g)

W8 (m) 4 g212m

3
h 5m 6 115m 5 15m 4 215m 3 2m 2 19m23

4315
(2.4h)

W9 (m) 4 g11m

2
h2 m 2 1m21

5
(2m 4 14m 3 2m 2 23m13).(2.4i )

2.1 - The case 2 N p21

(n , p21)

As a preliminary result, we first prove the following summation formulas on

fraction parts.

L e m m a 4. For p�P and n�N with
p21

(n , p21)
being even, the following

sums have the save value:

!
k41

p21 m k n

p
n4 !

k41

p21 m k n

p
6

1

2
n4

p21

2
.(2.5)

P r o o f . Separating the fractional parts by means of

m k n

p
6

1

2
n4

.
`
/
`
´

m k n

p
n1

1

2

m k n

p
n2

1

2

if m k n

p
nE

1

2

if m k n

p
nD

1

2

(2.6)

we can evaluate the fractional sums as follows

!
k41

p21 m k n

p
6

1

2
n4!Em k n

p
6

1

2
n1!Dm k n

p
6

1

2
n(2.7a)

4 !
k41

p21 m k n

p
n1 m!E

1

2
2!D

1

2
n(2.7b)
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where the summation index k for !E and !D runs over 1 GkEp subject to

m k n

p
nE

1

2
and m k n

p
nD

1

2
respectively.

When
p21

(n , p21)
is even, Lemma 2 tells us that the elements in Zp

3n are pai-

red off so that for each x�Zp
3n , there exists y�Zp

3n subject to

x1y4p ¨
x

p
1

y

p
41.

Hence there holds the following implication

x

p
E

1

2
¨

y

p
412

x

p
D

1

2

and vice versa, which makes two sums displayed in the parenthesis of (2.7b) can-
celed each other on account of Lemma 2. This proves the first equality of the
lemma.

In view of Lemma 1 and its Remark, we can compute the sum

!
k41

p21 m k n

p
n4

(n , p21)

p
!

x�Zp
3n

x4
(n , p21)

p
3

p

2
3NZp

3nN

4
(n , p21)

p
3

p

2
3

p21

(n , p21)
4

p21

2

where Lemma 3 has been applied to the simplification of the sum. This completes
the proof of the lemma. r

Now we are ready to show several closed formulas concerning the integer
part of n-th power. The results are grouped in pairs of floor and ceiling, whose
proofs are primarily based on (2.1) and Lemma 4.

T h e o r e m 5 (Two summation formulas). For p�P and n�N with
p21

(n , p21)
being even, there hold the following summation formulas:

!
k41

p21

D

N k n

p F

N 4
1

p
Wn (p21)2

p21

2
(2.8a)
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!
k41

p21

N
C k n

p N
E

4
1

p
Wn (p21)1

p21

2
.(2.8b)

P r o o f . By means of Lemma 4, we have

!
k41

p21

D

N k n

p F

N 4 !
k41

p21
k n

p
2 !

k41

p21 m k n

p
n

4
1

p
Wn (p21)2

p21

2

which yields also the second formula in view of (2.1b). r

P r o p o s i t i o n 6 (Two summation formulas). For p�P and n�N with
p21

(2n , p21)
being even, there hold the following summation formulas:

!
k41

p21

2

D

N k 2n

p F

N 4
1

p
W2ng p21

2
h2

p21

4
(2.9a)

!
k41

p21

2

N
C k 2n

p N
E

4
1

p
W2ng p21

2
h1

p21

4
.(2.9b)

P r o o f . For k from 1 to
p21

2
, its residues of 2n-th power modulo p cover

all the elements of Zp
32n since k 2n

fp (p2k)2n with 1 GkEp .
Combining (2.1a) and Lemma 2 we get

!
k41

p21

2

D

N k 2n

p F

N 4 !
k41

p21

2 k 2n

p
2 !

k41

p21

2 m k 2n

p
n

4
1

p
W2ng p21

2
h2

p21

4

which gives us also the second formula thanks again to (2.1b). r

In what follows, we will display four pairs of explicit summation formulas.
Their proofs can analogously be fulfilled by means of Lemma 2 and Lemma 4, and
therefore will not be reproduced for brevity.
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T h e o r e m 7 (Two summation formulas). For p�P and n�N with
p21

(n , p21)
being even, there hold the following summation formulas:

!
k41

p21

D

N k n

p
1

1

2 F

N 4
1

p
Wn (p21)(2.10a)

!
k41

p21

N
C k n

p
2

1

2 N
E

4
1

p
Wn (p21) .(2.10b)

P r o p o s i t i o n 8 (Two summation formulas). For p�P and n�N with
p21

(2n , p21)
being even, there hold the following summation formulas:

!
k41

p21

2

D

N k 2n

p
1

1

2 F

N 4
1

p
W2ng p21

2
h(2.11a)

!
k41

p21

2

N
C k 2n

p
2

1

2 N
E

4
1

p
W2ng p21

2
h .(2.11b)

T h e o r e m 9 (Two summation formulas). For p�P and n�N with
p21

(n , p21)
being even, there hold the following summation formulas:

!
k41

p21

D

N k n

p
2

1

2 F

N 4
1

p
Wn (p21)2 (p21)(2.12a)

!
k41

p21

N
C k n

p
1

1

2 N
E

4
1

p
Wn (p21)1 (p21) .(2.12b)

P r o p o s i t i o n 10 (Two summation formulas). For p�P and n�N with
p21

(2n , p21)
being even, there hold the following summation formulas:

!
k41

p21

2

D

N k 2n

p
2

1

2 F

N 4
1

p
W2ng p21

2
h2

p21

2
(2.13a)
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!
k41

p21

2

N
C k 2n

p
1

1

2 N
E

4
1

p
W2ng p21

2
h1

p21

2
.(2.13b)

2.2 - The case pf8 7

For n�N and p�P with pf8 7 , the structure of Zp
3n is not symmetric with

respect to p/2 . However on the basis of Lemma 3, we are able to establish some
summation formulas.

T h e o r e m 11 (Two summation formulas). Let n�N and p�P with pf8 7 .
If (2n , p21) 42, then there hold the summation formulas

!
k41

p21

2

D

N k 2n

p
1

1

2 F

N 4
1

p
W2ng p21

2
h(2.14a)

!
k41

p21

2

N
C k 2n

p
2

1

2 N
E

4
1

p
W2ng p21

2
h .(2.14b)

The first identity stated in the theorem can be considered as a generalization
of the formula appeared in [7]:

!
k41

p21

2

D

N k 2

p
1

1

2 F

N 4
p 2 21

24
.

P r o o f . For each real number x , it holds that

D

Nx1
1

2 F

N 4D2xF2DxF

which leads us to the following reformulation:

!
k41

p21

2

D

N k 2n

p
1

1

2 F

N 4 !
k41

p21

2

D

N 2k 2n

p F

N2 !
k41

p21

2

D

N k 2n

p F

N 4 !
k41

p21

2 k 2n

p
(2.15a)
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2 !
k41

p21

2 m mod [2k 2n , p]

p
2

mod [k 2n , p]

p
n .(2.15b)

From Lemma 3, we know that 2 �Zp
32n which is equivalent to Zp

32n 42Zp
32n .

Therefore as k runs from 1 to (p21) /2 , both mod [2k 2n , p] and mod [k 2n , p] ge-

nerate exactly the same set Zp
32n with NZp

32nN4
p21

(2n , p21)
4

p21

2
, in view of

the remark contained at the end of Lemma 1. This cancels the two modular sums
displayed in (2.15b) and proves the first formula in the theorem.

For x�Z , we have CxE4DxF11. This gives us the following

N
C k 2n

p
2

1

2 N
E

4
D

N k 2n

p
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1

2 F

N11 4
D

N k 2n

p
1

1

2 F

N

whose combination with the formula just proved leads us immediately to the se-
cond formula displayed in the theorem. r

In accordance with the facts

D

N k 2n

p
2

1

2 F

N 4 N
C k 2n

p
2

1

2 N
E

21

N
C k 2n

p
1

1

2 N
E

4
D

N k 2n

p
1

1

2 F

N11

the formulas just demonstrated read through directly as the following:

T h e o r e m 12 (Two summation formulas). Let n�N and p�P with pf8 7 .
If (2n , p21) 42, then there hold the summation formulas

!
k41

p21

2

D

N k 2n

p
2

1

2 F

N 4
1

p
W2ng p21

2
h2

p21

2
(2.16a)

!
k41

p21

2

N
C k 2n

p
1

1

2 N
E

4
1

p
W2ng p21

2
h1

p21

2
.(2.16b)
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2.3 - The case (p21)Nn

For p�P and n�N with n being a multiple of p21, Fermat’s little theorem
tells us that

mod [k n , p] 41 ` m k n

p
n4

1

p
for 1 GkEp .

When pD2 with p and n as before, it is obvious that n is even. Then we have the
following particular results:

!
k41

p21

2 m k n

p
n4

p21

2p
(2.17a)

!
k41

p21

2 m k n

p
6

1

2
n4

(p21)(21p)

4p
.(2.17b)

From them it is not hard to establish the following summation formulas.

P r o p o s i t i o n 13. For p�P with pF3 and n�N subject to (p21)Nn , the
following six summation formulas hold:

!
k41

p21

2

D

N k n

p F

N 4
1

p
Wng p21

2
h2

p21

2p
(2.18a)

!
k41

p21

2

N
C k n

p N
E

4
1

p
Wng p21

2
h1

(p21)2

2p
(2.18b)

!
k41

p21

2

D

N k n

p
1

1

2 F

N 4
1

p
Wng p21

2
h2

p21

2p
(2.18c)

!
k41

p21

2

N
C k n

p
2

1

2 N
E

4
1

p
Wng p21

2
h2

p21

2p
(2.18d)

!
k41

p21

2

D

N k n

p
2

1

2 F

N 4
1

p
Wng p21

2
h2

p 2 21

2p
(2.18e)

!
k41

p21

2

N
C k n

p
1

1

2 N
E

4
1

p
Wng p21

2
h1

(p21)2

2p
.(2.18f)
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2.4 - The case nf2 1

For an odd prime p�P and an odd integer n�N , we see that
p21

(n , p21)
is

even. Then we have two summation formulas displayed in Theorem 5. Here we
present an alternative and direct approach which permits us to generalize slightly
these identities.

For non negative integers x , y , z and p�P subject to x1y4pz , it is obvious
that

pNx & pNy ¨

.
`
/
`
´

D

N x

p F

N1
D

N y

p F

N 4z

N
C x

p N
E

1N
C y

p N
E

4z

and

p=x & p=y ¨

.
`
/
`
´

D

N x

p F

N1
D

N y

p F

N 4z21

N
C x

p N
E

1N
C y

p N
E

4z11 .

They can be used to prove the following formulas.

T h e o r e m 14 (Two summation formulas). For p�P and m , n�N with n
being odd, there hold summation formulas:

!
k41

pm21

D

N k n

p F

N 4
1

p
Wn (pm21)2

(p21) m

2
(2.19a)

!
k41

pm21

N
C k n

p N
E

4
1

p
Wn (pm21)1

(p21) m

2
.(2.19b)

P r o o f . Reversing the summation order, we can compute the first sum as
follows:

!
k41

pm21

D

N k n

p F

N 4
1

2
!

k41

pm21 {
D

N k n

p F

N1
D

N (pm2k)n

p F

N}
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4
1

2
!

k41

pm21 k n 1 (pm2k)n

p
2

1

2
!

k41
p=k

pm21

1

4 !
k41

pm21
k n

p
2

1

2
!

k41
p=k

pm21

1 .

Then the first formula (2.19a) follows immediately from the observation

N]1 GkEpmNp=k(N4 (pm21)2
D

N pm21

p F

N 4 (p21) m .

Similarly, we can demonstrate the second formula (2.19b). r

Recalling summation formulas (2.4) of powers of natural numbers, we can
exhibit, for m41, the first five formulas of (2.19a) as follows.

E x a m p l e 15 (Five summation formulas).

!
k41

p21

D

N k

p F

N 40(2.20a)

!
k41

p21

D

N k 3

p F

N 4
(p 2 21)(p22)

4
(cf. [4])(2.20b)

!
k41

p21

D

N k 5

p F

N 4
(p 2 21)(p22)

12
(322p12p 2 )(2.20c)

!
k41

p21

D

N k 7

p F

N 4
(p 2 21)(p22)

24
(622p15p 2 26p 3 13p 4 )(2.20d)

!
k41

p21

D

N k 9

p F

N 4
(p 2 21)(p22)

20
(524p13p 2 15p 4 26p 5 12p 6 ) .(2.20e)

3 - Summation formulas on the integer parts of radicals

In this section, we will investigate the sums of the integer functions of radicals
by connecting them to the summation formulas established in the previous
sections.

For p�P and n�N , consider the integer sequence ]D
n
kkpF(kF1 . Given a na-

tural number m , denote by p n (m) the turning point k on which the value of the
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next term in the integer sequence just mentioned switches from m to m11. That
means

p n (m) 4 max ]k�NND
n
kkpFGm((3.1)

from which we get explicitly

mG
n
kpp n (m)Em11 ` p n (m) 4

D

N (m11)n 21

p F

N .(3.2)

Now we define the frequency function fn (m) as the multiplicity of m in the se-
quence ]D

n
kkpF(kF1 . It is not difficult to check that this function is determined

by the difference

fn (m) 4p n (m)2p n (m21) 4
D

N (m11)n 21

p F

N2
D

N m n 21

p F

N .(3.3)

Then we can evaluate the integer sum !D
n
kkpF by collecting the same terms to-

gether with their multiplicities in the sequence ]D
n
kkpF(kF1 . The main result

may be stated as follows.

T h e o r e m 16 (Summation formula on radicals). For p�P and m , n�N ,
there holds the summation formula

!
k41

p n (m)

D
n
kkpF4

D

N m

p F

N1mp n (m)2 !
k41

m

D

N k n

p F

N(3.4)

where p n (m) is given by (3.2).

P r o o f . Denote by V n (m) the sum stated in (3.4). It can be manipulated as
follows:

V n (m) »4

4

4

4

!
k41

p n (m)

D
n
kkpF4 !

k41

m

kfn (k)

!
k41

m

k {
D

N (k11)n 21

p F

N2
D

N k n 21

p F

N}

!
k41

m11

(k21)
D

N k n 21

p F

N2 !
k41

m

k
D

N k n 21

p F

N

m
D

N (m11)n 21

p F

N 2 !
k41

m

D

N k n 21

p F

N .
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On account of the fact

p=k ¨
D

N k n 21

p F

N 4
D

N k n

p F

N

pNk ¨
D

N k n 21

p F

N 4
D

N k n

p F

N21

we have

!
k41

m

D

N k n 21

p F

N 4 !
k41

m

D

N k n

p F

N2
D

N m

p F

N

which leads us to the following

V n (m) 4
D

N m

p F

N1m
D

N (m11)n 21

p F

N2 !
k41

m

D

N k n

p F

N .

This is exactly the same as (3.4) and the proof of the theorem is comple-
ted. r

For mKmp21, it is easy to check p n (pm21) 4m n p n21 21. Then the
summation formula (3.4) reads as

!
k41

m n p n2121

D
n
kkpF4m](mp)n 2 (mp)n21 2p11(2 !

k41

mp21

D

N k n

p F

N .(3.5)

Combining (2.19a) with (3.5), we obtain the following formula.

P r o p o s i t i o n 17 (Summation formula on radicals). For p�P and m , n�N
with n being odd, there holds the summation formula

!
k41

m n p n2121

D
n
kkpF4m m(mp)n 2 (mp)n21 2

p21

2
n2

1

p
Wn (pm21) .(3.6)

Furthermore, the combination of the case m41 of (3.5) with Theorem 5 resul-
ts in another summation formula.
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P r o p o s i t i o n 18 (Summation formula on radicals). For p�P and n�N

with
p21

(n , p21)
being even, there holds the summation formula

!
k41

p n2121

D
n
kkpF4 (p21) mp n21 2

1

2
n2

1

p
Wn (p21) .(3.7)

Applying (2.4) to Proposition 17, we obtain the following formulas.

E x a m p l e 19 (Three summation formulas on radicals).

V 3 (p21) 4
(p21)(p11)(3p22)

4
(3.8a)

V 5 (p21) 4
(p21)(p11)

12
(10p 3 26p 2 15p26)(3.8b)

V 7 (p21) 4
(p21)(p11)

24
(21p 5 212p 4 17p 3 212p 2 114p212) .(3.8c)

Similarly applying (2.4) to the case m4p22 of Theorem 16, we can establish the
following formulas.

E x a m p l e 20 (Three summation formulas on radicals).

V 3 (p22) 4
(p21)(p22)(3p25)

4
(cf. [4])(3.9a)

V 5 (p22) 4
(p21)(p22)

12
(10p 3 236p 2 147p227)(3.9b)

V 7 (p22) 4
(p21)(p22)

24
(21p 5 2117p 4 1265p 3 2315p 2 1212p278)(3.9c)

where we have applied explicitly

p n (p22) 4
12p1 (p21)n

p
with nf2 1 .

When n is even, the evaluation of V n (m) are closely related to the integer sums
displayed in Section 2. The details are omitted for the limit of space.
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A b s t r a c t

For an odd prime p , the algebraic structure of the group Zp
3 under modular multipli-

cation is investigated. Arithmetical identities on the sums related to integer functions are
established. Other closed formulas on integer sums of radicals are obtained as conse-
quences.

* * *


