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Prime numbers between squares (**)

1 - Introduction
A well known conjecture about the distribution of primes asserts that

Conjecture 1. For every integer n, the interval [1n?%,(n + 1)?] contains a
prime.

The proof of this conjecture is quite out of reach at present, even under the as-
sumption of the Riemann Hypothesis (RH). On the other side it is not difficult to
prove unconditionally that Conjecture 1 holds for almost all integers.

More precisely we can prove that, for every [n2,(n +1)*]1c[1, N1, we have
the expected number of primes with at most O(NY*"¢) exceptions, and
O((InN)?*¢) exceptions under the assumption of RH, see Bazzanella [1]. To ob-
tain some results in the direction of Conjecture 1 we need to assume hypotheses
stronger than RH. Define

N
J(N, h) = J(ﬁ(ac +h) = 9(x) — h)Pde,
1

with 9(x) = 2 log p and p a prime number, and consider the following strong

p<u

form of Montgomery’s pair correlation conjecture.
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Conjecture 2. Let y be Euler’s constant. For any ¢ >0 we have
J(N, h) = hN log (N/h) — (y + log 27) hN + o(hN) + O(N),

uniformly for 1 <A< N!' ¢,

Goldston [5] deduced the validity of Conjecture 1 assuming Conjecture 2. The
basic idea of this paper is to connect the distribution of primes in intervals of the
type [n2,(n + 1)?] to the exceptional set for the asymptotic formula of the distri-
bution of primes in short intervals, and using the properties of this set, see Bazza-
nella [2] and Bazzanella and Perelli [3], to obtain a new conditional proof of Con-
jecture 1.

With this in mind we state the following conjecture.

Conjecture 3.
JIN+Y,h)—J(N, h)=0(hN),

uniformly for 1 <Y< N2 and N'2<Kh<<KN2,
Assuming Conjecture 3 we can state our main theorem.

Theorem. Assume Conjecture 3. The intervals of type [n?,(n + 1)?] con-
tain the expected number of primes for n— .

We note that although Conjecture 3 is weaker than Conjecture 2, our Theorem
is stronger than the result of Goldston [5], which asserts only the existence of a
prime in intervals of type [n?%,(n + 1)%].

2 - Basic lemma

The proof of the Theorem is based on a result about the structure of the
exceptional set for the asymptotic formula

1 Yo + h(x)) — yp(x) ~ h(x) as x— .

Let X be a large positive number, 6 >0, i(x) an increasing function such that
x° < h(x) <« for some £¢>0,

A(x, h) = yp(x + hx)) — y(x) — h(x),
and

Ey(X, h) = {X<w<2X: |A(x, h)| = oh(x)}.
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It is clear that (1) holds if and only if for every 6 > 0 there exists X,(d) such that
Es(X, h) =0 for X=X,(5). Hence for small 6 >0 and X tending to o the set
Es(X, h) contains the exceptions, if any, to the expected asymptotic formula for
the number of primes in short intervals. Moreover, we observe that

Es(X,h)cEy (X, h) if 0<0'<0.
The lemma about the structure of the exceptional set is the following.

Lemma. Let 0<6<1, h(x) increasing fuunction such that h(x) = x?,
X be sufficiently large depending on the function h(x) and 0<d' < with
0—0"=exp(—Viog X). If x,eEs(X, h) then Ey (X, h) contains the interval
[xg — ch(X), xy + ch(X)] N [X, 2X], where c¢=(d—0")0/5. In particular, if
Es(X, h) #0 then

| By (X, 1) |>>9(0 — ") h(X).

Proof. We will always assume that « and X are sufficiently large as prescrib-
ed by the various statements, and ¢ > 0 is arbitrarily small and not necessarily the
same at each occurrence. From the Brun-Titchmarsh theorem, see Montgomery-
Vaughan [7], we have that

21 1
) Y+ y) — pla) < —y 27
10 © log y

for 10 <y <x. From (2) we easily see that
9
3 Yx+y) — ) < —cY
da
for X<x<3X and 0<y<cY, where 0<a<1, X *<Y<X and
%exp(—\/logX)ScSl.

Let h(x) < 2%, xye Es(X, h) and x € [y — ci(X), 2y + ch(X)] N [X, 2X], where ¢
satisfies the above restrictions. We have

| A, h) | = |Axo, k) + A, h) — A2, 1) |

= |A(xy, 1) | = [y + h(®)) = @y + I(a)) | — |9(@) — (o) | — [ I(x) — hly) | -
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Hence from (3) with a = 6 we obtain
9 201+ 5 '
|A(x, h) | = oh(x) — %ch(X) +0X €)= oh(x) — Ech(X) =0 hix),

by choosing ¢ = (6 — ¢") 6/5, since h(x) is increasing. Hence x € 'y (X, 1) and the
Lemma follows.

3 - Proof of the theorem
The prime number theorem implies that

(e + h(x)) —y(x) ~h(x) as x— o,

for h(x) sufficiently large with respect to 2. Hence the expected number of primes
in intervals of type [%2,(n +1)?]is (n + 1)> — n% ~2n and then the Theorem as-
serts that

4) Y((n+12)—ypn?)~2n as n—> .

In order to prove the Theorem we assume that (4) does not hold. Then there
exist 6> 0 and a sequence x;— % with |A(x;, )| = dyh(x;) and

5) h(x) =2V +1.
For x; sufficiently large, choose 6" =09,/2 in the Lemma. Hence

o o o
|A(x, k)| = ?Oh(x)a ?0\/57 for x<wr<a+ 2—8\/@

From our assumption it follows that

w+Y
6) PR << j |A(, h) |2 de ,
T
where
o
7 Y= —+/x;.
(7 20 V;

From (5) we see that

h(x) = h(x;) + O(1) uniformly for x;swx<w;+7Y,
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and therefore

vi+Y v +Y

® [ 4@ 0 Pde= | [y b)) - @) - hi) e+ 0@

Recalling the definitions of the functions y(x) and J(x) we find that

v+Y

@ [ p@+ k) - p@) - i) [*de
w+Y
- J |9 + hay)) — Iw) — h(x;) |? dac + O *log? x;) .

Tj

From (6), (8 and (9) we can conclude that
w+Y

xfP< J |9 + h(ay)) — Hw) — W) |Pdac = J(a; + Y, h(wy)) — I (g, W)

Assuming Conjecture 3 we get a contradiction, and then the Theorem follows.
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Abstract

A well known conjecture about the distribution of primes asserts that between two
consecutive squares there is always at least one prime number. The proof of this conjec-
ture is out of reach at present, even under the assumption of the Riemann Hypothesis.
The aim of this paper is to provide a conditional proof of the conjecture assuming a hy-
pothesis about the behavior of Selberg’s integral in shovt intervals.
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