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1 - Introduction

A well known conjecture about the distribution of primes asserts that

C o n j e c t u r e 1. For every integer n , the interval [n 2 , (n11)2 ] contains a
prime.

The proof of this conjecture is quite out of reach at present, even under the as-
sumption of the Riemann Hypothesis (RH). On the other side it is not difficult to
prove unconditionally that Conjecture 1 holds for almost all integers.

More precisely we can prove that, for every [n 2 , (n11)2 ] % [1 , N], we have
the expected number of primes with at most O(N 1/41e ) exceptions, and
O( ( ln N)21e ) exceptions under the assumption of RH, see Bazzanella [1]. To ob-
tain some results in the direction of Conjecture 1 we need to assume hypotheses
stronger than RH. Define

J(N , h) 4�
1

N

(w(x1h)2w(x)2h)2 dx ,

with w(x) 4 !
pGx

log p and p a prime number, and consider the following strong

form of Montgomery’s pair correlation conjecture.
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C o n j e c t u r e 2. Let g be Euler’s constant. For any eD0 we have

J(N , h) 4hN log (N/h)2 (g1 log 2p) hN1o(hN)1O(N) ,

uniformly for 1 GhGN 12e .
Goldston [5] deduced the validity of Conjecture 1 assuming Conjecture 2. The

basic idea of this paper is to connect the distribution of primes in intervals of the
type [n 2 , (n11)2 ] to the exceptional set for the asymptotic formula of the distri-
bution of primes in short intervals, and using the properties of this set, see Bazza-
nella [2] and Bazzanella and Perelli [3], to obtain a new conditional proof of Con-
jecture 1.

With this in mind we state the following conjecture.

C o n j e c t u r e 3.

J(N1Y , h)2J(N , h) 4o(hN) ,

uniformly for 1 GYGN 1/2 and N 1/2 bhbN 1/2 .
Assuming Conjecture 3 we can state our main theorem.

T h e o r e m . Assume Conjecture 3. The intervals of type [n 2 , (n11)2 ] con-
tain the expected number of primes for nKQ .

We note that although Conjecture 3 is weaker than Conjecture 2, our Theorem
is stronger than the result of Goldston [5], which asserts only the existence of a
prime in intervals of type [n 2 , (n11)2 ].

2 - Basic lemma

The proof of the Theorem is based on a result about the structure of the
exceptional set for the asymptotic formula

c(x1h(x) )2c(x) Ah(x) as xKQ .(1)

Let X be a large positive number, dD0, h(x) an increasing function such that
x eGh(x) Gx for some eD0,

D(x , h) 4c(x1h(x) )2c(x)2h(x) ,

and

Ed (X , h) 4 ]XGxG2X : ND(x , h)NFdh(x)( .
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It is clear that (1) holds if and only if for every dD0 there exists X0 (d) such that
Ed (X , h) 4¯ for XFX0 (d). Hence for small dD0 and X tending to Q the set
Ed (X , h) contains the exceptions, if any, to the expected asymptotic formula for
the number of primes in short intervals. Moreover, we observe that

Ed (X , h) %Ed 8 (X , h) if 0 Ed 8Ed .

The lemma about the structure of the exceptional set is the following.

L e m m a . Let 0 EuE1, h(x) increasing fuunction such that h(x) s x u ,
X be sufficiently large depending on the function h(x) and 0 Ed 8Ed with
d2d 8Fexp (2klog X). If x0 �Ed (X , h) then Ed 8 (X , h) contains the interval
[x0 2ch(X), x0 1ch(X) ]O [X , 2X], where c4 (d2d 8 )u/5 . In particular, if
Ed (X , h) c¯ then

NEd 8 (X , h)Ncu (d2d 8 ) h(X) .

P r o o f . We will always assume that x and X are sufficiently large as prescrib-
ed by the various statements, and eD0 is arbitrarily small and not necessarily the
same at each occurrence. From the Brun-Titchmarsh theorem, see Montgomery-
Vaughan [7], we have that

c(x1y)2c(x) G
21

10
y

log x

log y
(2)

for 10 GyGx . From (2) we easily see that

c(x1y)2c(x) G
9

4a
cY(3)

for XGxG3X and 0 GyGcY , where 0 EaE1, X a2eGYGX and

a

5
exp (2klog X) GcG1 .

Let h(x) s x u , x0 �Ed (X , h) and x� [x0 2ch(X), x0 1ch(X) ]O [X , 2X], where c
satisfies the above restrictions. We have

ND(x , h)N4ND(x0 , h)1D(x , h)2D(x0 , h)N

FND(x0 , h)N2Nc(x1h(x) )2c(x0 1h(x0 ) )N2Nc(x)2c(x0 )N2Nh(x)2h(x0 )N .
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Hence from (3) with a4u we obtain

ND(x , h)NFdh(x)2
9

2u
ch(X)1O(X 2u211e ) Fdh(x)2

5

u
ch(X) Fd 8 h(x) ,

by choosing c4 (d2d 8 ) u/5 , since h(x) is increasing. Hence x�Ed 8 (X , h) and the
Lemma follows.

3 - Proof of the theorem

The prime number theorem implies that

c(x1h(x) )2c(x) Ah(x) as xKQ ,

for h(x) sufficiently large with respect to x . Hence the expected number of primes
in intervals of type [n 2 , (n11)2 ] is (n11)2 2n 2 A2n and then the Theorem as-
serts that

c( (n11)2 )2c(n 2 ) A2n as nKQ .(4)

In order to prove the Theorem we assume that (4) does not hold. Then there
exist d 0 D0 and a sequence xj KQ with ND(xj , h)NFd 0 h(xj ) and

h(x) 42kx11 .(5)

For xj sufficiently large, choose d 84d 0 /2 in the Lemma. Hence

ND(x , h)NF
d 0

2
h(x) F

d 0

2
kxj for xj GxGxj 1

d 0

20
kxj .

From our assumption it follows that

xj
3/2 b �

xj

xj1Y

ND(x , h)N2 dx ,(6)

where

Y4
d 0

20
kxj .(7)

From (5) we see that

h(x) 4h(xj )1O(1) uniformly for xj GxGxj 1Y ,
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and therefore

�
xj

xj1Y

ND(x , h)N2 dx4 �
xj

xj1Y

Nc(x1h(xj ) )2c(x)2h(xj )N2 dx1O(xj
1/2 ) .(8)

Recalling the definitions of the functions c(x) and w(x) we find that

(9) �
xj

xj1Y

Nc(x1h(xj ) )2c(x)2h(xj )N2 dx

4 �
xj

xj1Y

Nw(x1h(xj ) )2w(x)2h(xj )N2 dx1O(xj
1/2 log2 xj ) .

From (6), (8) and (9) we can conclude that

xj
3/2 b �

xj

xj1Y

Nw(x1h(xj ) )2w(x)2h(xj )N2 dx4J(xj 1Y , h(xj ) )2J(xj , h(xj ) ) .

Assuming Conjecture 3 we get a contradiction, and then the Theorem follows.

References

[1] D. BAZZANELLA, Primes between consecutive square, Arch. Math. 75 (2000),
29-34.

[2] D. BAZZANELLA, Primes in almost all short intervals II. Boll. Un. Mat. Ital. (8) 3-
B (2000), 717-726.

[3] D. BAZZANELLA and A. PERELLI, The exceptional set for the number of primes in
short intervals, J. Number Theory 80 (2000), 109-124.

[4] H. DAVENPORT, Multiplicative number theory, second edition, Graduate Texts
Mathematics 74, Springer - Verlag, Berlin 1980.

[5] D. A. GOLDSTON, Linnik’s theorem on Goldbach numbers in short intervals,
Glasgow Math. J. 32 (1990), 285-297.

[6] D. A. GOLDSTON and M. L. MONTGOMERY, Pair correlation of zero and primes in
short intervals, Analytic Number Theory and Diophantine Problems, Ed. by
A.C. Adolphson et al., Birkhäuser Verlag, Boston 1987.

[7] H. L. MONTGOMERY and R. C. VAUGHAN, The large sieve, Mathematika 20 (1973),
119-134.

[8] A. SELBERG, On the normal density of primes in small intervals, and the diffe-
rence between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105.



164 DANILO BAZZANELLA [6]

A b s t r a c t

A well known conjecture about the distribution of primes asserts that between two
consecutive squares there is always at least one prime number. The proof of this conjec-
ture is out of reach at present, even under the assumption of the Riemann Hypothesis.
The aim of this paper is to provide a conditional proof of the conjecture assuming a hy-
pothesis about the behavior of Selberg’s integral in short intervals.

* * *


