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1 - Historical introduction

1.1 - Classical results

In 1730, with the aim of interpolating in a natural way the sequence n! , Euler
introduced the gamma-function
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([Eu], vol. XIV, pp. 1-24). In connection with this, he later considered some defi-
nite integrals over the interval (0 , 1 ) which have since been called Euler’s
integrals, in particular the beta-function

B(u , v) 4�
0

1

x u21 (12x)v21 dx4
G(u) G(v)

G(u1v)
(1.1)

([Eu], vol. XVII, pp. 268-288, 343-344, 355) and the hypergeometric integral

�
0

1
x b21 (12x)g2b21

(12xy)a
dx(1.2)

([Eu], vol. XII, pp. 254-256). In the special case a4g , the integral (1.2) is related
to the beta-function as follows:

�
0

1
x b21 (12x)g2b21

(12xy)g
dx4

B(b , g2b)

(12y)b
( Re gDRe bD0) .

More generally, for any a and for Re gDRe bD0 we have

�
0

1
x b21 (12x)g2b21

(12xy)a
dx4B(b , g2b) 2F1 (a , b ; g ; y) ,(1.3)

where 2F1 denotes the hypergeometric function, defined (with modern notation)
by the power series

2F1 (a , b ; g ; y) 4 !
n40

Q (a)n (b)n

(g)n

y n

n!
(1.4)

for NyNE1. Here the parameters a , b , g are any complex numbers with gc0,
21, 22, R , and the Pochhammer symbols (a)n , (b)n and (g)n are defined by

(j)0 41, (j)n 4j(j11)R(j1n21) (n41, 2 , R) .

Euler introduced the hypergeometric series (1.4) as a solution to the second
order linear differential equation

y(12y)
d2 z

dy 2
1 (g2 (a1b11) y)

dz

dy
2abz40(1.5)

([Eu], vol. XVI2 , pp. 41-55). The formula (1.3) can be easily proved either by
expanding (12xy)2a in a binomial series and by term-by-term integration, or by
showing that the integral (1.2) is also a solution, regular at y40, of the hypergeo-
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metric differential equation (1.5) ([Eu], vol. XII, p. 256). Since the integral (1.2) is
plainly a holomorphic function of y in the cut plane C0 [1 , 1Q), (1.3) yields the
analytic continuation of 2F1 (a , b ; g ; y) outside the unit disc NyNE1.

Suitable choices of the parameters a , b , g transform the hypergeometric
series (1.4) into the Taylor expansions of some elementary functions (see [Er] pp.
101-102, formulae (4)-(17)). Therefore, general methods to investigate arithmetical
properties of the values of 2F1 at special points yield interesting consequences
about the arithmetic of several «natural» constants. This has been traditionally
pursued by viewing 2F1 as a solution of the differential equation (1.5), and by em-
ploying (1.5) for the construction of Padé or Padé-type approximations to 2F1 (see,
e.g., [C]). However, in recent years new attention was directed to the Euler inte-
gral representation (1.3) of 2F1 , as well as to its generalizations to the higher di-
mensional cases.

We incidentally recall that natural generalizations of 2F1 are the func-
tions

pFq (a 1 , R , a p ; g 1 , R , g q ; y) 4 !
n40

Q (a 1 )n R (a p )n

(g 1 )n R (g q )n

y n

n!
,

the most interesting cases in number theory being obtained for p4q11.
By (1.1) and by the invariance of the series (1.4) under the interchange of a

and b , the integral representation (1.3) of 2F1 yields

(1.6) 2F1 (a , b ; g ; y) 4
G(g)

G(b) G(g2b)
�
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1
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(12xy)a
dx

4
G(g)
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0
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for Re gD max ]Re a , Re b( and min ]Re a , Re b( D0, and can be easily genera-
lized to q11Fq as follows:

q11Fq (a 1 , R , a q11 ; g 1 , R , g q ; y) 4
G(g 1 ) R G(g q )

G(a 1 ) G(g 1 2a 1 ) R G(a q ) G(g q 2a q )

3�
0

1
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x1

a 121 (12x1 )g 12a 121
R xq

a q21 (12xq )g q2a q21

(12x1 R xq y)a q11
dx1 R dxq

for Re g h DRe a h D0 (h41, R , q).
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1.2 - Further developments

In 1979, a few months after the appearance of Apéry’s celebrated proof of the

irrationality of z(3) 4 !
n41

Q

n 23 , Beukers [B] employed double and triple Euler-

type integrals to produce through a new and more natural method the same se-

quences of rational approximations to z(2) 4 !
n41

Q

n22 4p 2 /6 and to z(3) already

found by Apéry, and hence the same irrationality measures of these constants ob-
tained by Apéry (see (1.11) and (1.13) below).

We recall that m is said to be an irrationality measure of an irrational number
a if for any eD0 there exists a constant q0 4q0 (e) D0 such that

Na2
p

q N Dq 2m2e

for all integers p and q with qDq0 . As usual, we denote by m(a) the least irratio-
nality measure of a . Also, an irrationality measure of a number a is usually obtain-
ed by means of a sequence (rn /sn ) of rational approximations to a , by applying
the following well-known

P r o p o s i t i o n . Let a�R , and let (rn ), (sn ) be sequences of integers sati-
sfying

lim
nKQ

1

n
logNrn 2sn aN42R

and

lim sup
nKQ

1

n
logNsnNGS

for some positive numbers R and S . Then a�Q , and

m(a) G
S

R
11 .

Beukers [B] considered the integrals

�
0

1

�
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1g x(12x) y(12y)

12xy
hn dx dy

12xy
(1.7)
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for z(2), and
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1g x(12x) y(12y) z(12z)

12 (12xy) z
hn dx dy dz

12 (12xy) z
(1.8)

for z(3), and employed two different representations for each of the integrals
(1.7) or (1.8). By n-fold partial integration we have
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(12xy)n11
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d

dx
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(21)n
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(x n (12x)n)
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Hence, defining

Ln (x) »4
1

n!

dn

dx n
(x n (12x)n) 4 !

k40

n

(21)kun

k
v un1k

k
v x k �Z[x] ,(1.9)

the double integral (1.7) can be written as

(1.10) �
0

1

�
0

1g x(12x) y(12y)

12xy
hn dx dy

12xy
4 (21)n�

0

1

�
0

1

Ln (x)(12y)n dx dy

12xy
.

From (1.9) we get

Lng 12 t

2
h4

1

2n n!

dn

d t n
(t 2 21)n ,

and this is the n-th Legendre polynomial ([Er] p. 151, formula (17)).

By expanding (12xy)21 4 !
k40

Q

x k y k and integrating term by term, one

easily sees that the right side of (1.10) has the arithmetic form an 2bn z(2) for
suitable an �Q and bn �Z . Moreover we have dn

2 an �Z , where d0 41 and
dn 4l.c.m. ]1, R , n( for n41, 2 , R . Thus one can apply the Proposition above
with a4z(2), rn 4dn

2 an and sn 4dn
2 bn . Standard asymptotic estimates for the in-

tegral (1.7) as nKQ , together with the asymptotic formula dn 4exp (n1o(n) )
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given by the prime number theorem, show that z(2) �Q and

m(z(2) ) G

5 log
k511

2
12

5 log
k511

2
22

11 411.85078 R .(1.11)

A similar but more involved computation, again based on repeated partial inte-
gration, yields the analogue of (1.10) for the triple integral (1.8), i.e.,
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1

�
0

1 g x(12x) y(12y) z(12z)

12 (12xy) z
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12 (12xy) z
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0

1

�
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1
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0

1

Ln (x) Ln (y)
dx dy dz

12 (12xy) z
,

where Ln is again the polynomial (1.9). The right side of (1.12) is easily seen to be
a 8n 22b 8n z(3) with b 8n �Z and dn

3 a 8n �Z . Then standard estimates for (1.8) yield
z(3) �Q and

m(z(3) ) G
4 log (k211)13

4 log (k211)23
11 413.41782 R .(1.13)

The remarkable importance and originality of Beukers’ paper [B] generated a
diffuse – and, in a sense, misleading – opinion that the key instruments for fruitful
applications of Euler-type integrals to irrationality problems should be the Legen-
dre (or Legendre-type) polynomials and the related partial integration method.
For instance, in 1980 Alladi and Robinson [AR] applied to simple Euler-type inte-
grals the one-dimensional analogue of Beukers’ method, again based upon Legen-
dre polynomials and partial integration. Thus they obtained irrationality measu-
res, subsequently improved by other authors, for log 2 , p/k3 , and some other
constants.

The next step forward, again in the main stream of Beukers’ method involving
Legendre polynomials and partial integration, was made by Hata [H] who consi-
dered one-, two-, and three-dimensional integrals containing suitable Legendre-
type polynomials whose coefficients are products of binomial coefficients of a spe-
cial type. Such polynomials are relevant because their coefficients possess a large
common divisor. In [H] as well as in a series of subsequent papers, Hata showed
how to eliminate common prime factors of the above-mentioned binomial coeffi-



125THE ARITHMETIC OF EULER’S INTEGRALS[7]

cients occurring in Legendre-type polynomials. Thus he succeeded in reducing
the size of the rational coefficients of linear forms involving constants such as
log 2, p/k3 , z(2), z(3), etc., given by suitable Euler-type integrals, and obtained
improvements on the irrationality measures of the constants involved.

As with (1.10) and (1.12), Hata’s highly technical method ultimately relies on a
twofold representation, obtained by repeated partial integration, for each of the
Euler-type integrals considered. In the representation similar to (1.7)-(1.8), i.e.
where the Legendre-type polynomials do not explicitly appear, Hata’s integrals
for z(2) and z(3) essentially correspond to integrals (1.7) or (1.8) where the expo-
nents of the five factors in the rational function x(12x)y(12y)(12xy)21 , or
of the seven factors in x(12x)y(12y)z(12z)(12 (12xy)z)21 , are not all
equal.

2 - Birational transformations and permutation groups

The state of the art changed in 1996 with the publication of the paper [RV1] by
Rhin and the author, where we introduced new ideas to deal with suitable families
of double integrals of Euler-Beukers’ type and we proved the best irrationality
measure of z(2) obtained so far, namely

m(z(2) ) E5.441242 R .(2.1)

The method of [RV1] was subsequently adapted to one-dimensional integrals
for the diophantine study of logarithms of rational numbers [V2] and of logari-
thms of algebraic numbers [AV], and, overcoming considerable new difficulties, to
triple integrals of Euler-Beukers’ type in the paper [RV2], where we obtained the
best known irrationality measure of z(3), namely

m(z(3) ) E5.513890 R .(2.2)

We refer the reader to [V3], Section 1, for the successive improvements on the ir-
rationality measures of z(2) and z(3) obtained since Apéry’s upper bounds (1.11)
and (1.13), until our results (2.1) and (2.2).

Very recently, in [RV3], Rhin and the author have also applied their method to
the diophantine study of double integrals of Euler’s type related to the dilogari-

thm Li2 (x) 4 !
n41

Q

x n /n 2 . Thus we have obtained qualitative and quantitative im-

provements on all the best previously known irrationality results for the values of
the dilogarithm at positive rational numbers.

The core of Rhin and Viola’s method consists in the construction of a permuta-
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tion group acting on a family of Euler-type integrals related to the constant stu-
died (z(2), or z(3), or the dilogarithm of a rational number, etc.). Such a permuta-
tion group is obtained by combining the hypergeometric integral transformation
expressed by the relation (1.6) with the action of a suitable birational transforma-
tion. The latter, and in particular its dimension, depends on the constant studied,
whereas the hypergeometric transformation (1.6) is the same in all cases. The al-
gebraic structure of the above-mentioned permutation group yields strong infor-
mation on the factorization of the rational coefficients of the linear forms involv-
ing the constant considered, and hence on the diophantine properties of that con-
stant. Presumably, a better knowledge of the geometry of the birational transfor-
mations coming into play would yield further consequences on the arithmetic of
the constants involved (see [F] for a first step towards the study of varieties rela-
ted to the Rhin-Viola permutation groups).

2.1 - Double Euler-type integrals

We outline here the main results of the paper [RV1]. For integers h , i , j , k ,
lF0 let

I(h , i , j , k , l) 4�
0

1

�
0

1
x h (12x)i y k (12y)j

(12xy)i1 j2 l

dx dy

12xy
,(2.3)

and let t : (x , y) O (X , Y) be the birational transformation defined by

t :
.
/
´

X4
12x

12xy

Y412xy .

(2.4)

It is easy to check that t has period 5 and maps the open unit square (0 , 1 )2 onto
itself. Moreover, the jacobian determinant of (2.4) is

d(X , Y)

d(x , y)
4

x

12xy
,

and by (2.4) we have x412XY . Hence

dX dY

12XY
4

dx dy

12xy
,
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so that both the integration domain (0 , 1 )2 and the measure dxdy/(12xy) in the
integral (2.3) are invariant under the action of t . Therefore, if we apply the bira-
tional transformation t to I(h , i , j , k , l), i.e., if we make the change of variables

t21 :
.
/
´

x412XY

y4
12Y

12XY

and then replace X , Y with x , y respectively, we easily obtain

I(h , i , j , k , l) 4I(i , j , k , l , h) ,

whence the value of the integral (2.3) is invariant under the action of the cyclic
permutation t defined by

t4 (h i j k l) .

Similarly, let s : (x , y) O (X , Y) be defined by

s :
.
/
´

X4y

Y4x .

If we apply the transformation s to I(h , i , j , k , l), i.e., if we interchange the va-
riables x , y in the integral (2.3), we get

I(h , i , j , k , l) 4I(k , j , i , h , l) ,

so that the value of (2.3) is also invariant under the action of the permutation s
defined by

s4 (h k)(i j) .

Thus the value of (2.3) is invariant under the action of the permutation group

T4 at , sb(2.5)

generated by t and s , which is plainly isomorphic to the dihedral group ±5 of
order 10 .

Besides the integers

h , i , j , k , l ,(2.6)
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a crucial role is played by the five integers

j1k2h , k1 l2 i , l1h2 j , h1 i2k , i1 j2 l .(2.7)

We extend the actions of the permutations t and s on any linear combination of
the integers (2.6) by linearity. Therefore t and s act on the ten integers (2.6)-(2.7)
as follows:

t4 (h i j k l)( j1k2h k1 l2 i l1h2 j h1 i2k i1 j2 l)(2.8)

and

s4 (h k)(i j)( j1k2h h1 i2k)(k1 l2 i l1h2 j) .(2.9)

Let d0 41 and dn 4l.c.m. ]1, R , n( for any integer nF1. Also, we denote by
max, max8, max9 , R the successive maxima in a finite sequence of real numbers: if
A 4 (a1 , R , an ) is any finite sequence of real numbers (with nF3) and i1 , R , in

is a reordering of 1 , R , n such that

ai1
Fai2

Fai3
FRFain

,

we define

max A 4ai1
, max8 A 4ai2

, max9 A 4ai3
.(2.10)

Let S be the sequence of the integers (2.7):

S 4 ( j1k2h , k1 l2 i , l1h2 j , h1 i2k , i1 j2 l) ,

and let

M4 max S, N4 max8 S .(2.11)

In [RV1], Theorem 2.2, we prove that

I(h , i , j , k , l) 4a2bz(2) with b�Z and dM dN a�Z ,(2.12)

where M and N are defined by (2.11).
As far as I know, the proof of (2.12) given in Theorem 2.2 of [RV1] is the first

example in the literature where the arithmetical structure (i.e., in the present
case, the expression a2bz(2) with a�Q and b�Z) of an Euler-type integral of
dimension F2 is obtained without using Legendre or Legendre-type polynomials
and partial integration. The proof of (2.12) in [RV1] is based on the invariance of
the value of I(h , i , j , k , l) under the action of the group (2.5), and on a method of
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descent obtained by suitable linear decompositions of the rational function

f (x , y) »4
x h (12x)i y k (12y)j

(12xy)i1 j2 l
.(2.13)

Moreover, the same method of descent shows that the integer b in (2.12) is given
by a double contour integral:

b4 g 1

2pk21
h2

�
C

�
Cx

x h (12x)i y k (12y)j

(12xy)i1 j2 l

dx dy

12xy
,(2.14)

where C4 ]x�C : NxN4r 1 ( and Cx 4 ]y�C : Ny21/xN4r 2 ( for any r 1 ,
r 2 D0.

It is easy to see that if i1 j2 lD min ]h , i , j , k(, which is in fact the case
with the numerical choice (2.34) below yielding the best known irrationality mea-
sure (2.1) of z(2), the integral I(h , i , j , k , l) cannot be transformed by partial in-
tegration into an integral containing Legendre-type polynomials to which Hata’s
method applies. Therefore it is essential to dispense with the partial integration
method and with Legendre-type polynomials, and to use instead the method of
descent introduced in [RV1].

From (2.8) and (2.9) we see that the permutation group (2.5) is intransitive
over the integers (2.6)-(2.7), because each of the two sets (2.6) and (2.7) is mapped
onto itself by both t and s . As we anticipated above, under the further assumption
that the integers (2.7) are all F0 we can enlarge the permutation group (2.5) by
introducing a «hypergeometric» permutation W , induced by the relation (1.6), with
the effect that the new permutation group F4 aW , t , sb is transitive over (2.6)-
(2.7). Moreover, the hypergeometric permutation W brings into play the factorials
of the integers (2.6) and (2.7) through the gamma-factors appearing in (1.6). The
p-adic valuation of such factorials replaces – with the double advantage of being
simpler and more general – Hata’s p-adic valuation of binomial coefficients occur-
ring in Legendre-type polynomials.

We choose in (1.6)

a4 i1 j2 l11, b4h11, g4h1 i12 .

Then (1.6) yields

�
0

1
x h (12x)i

(12xy)i1 j2 l11
dx4

h! i!

(i1 j2 l) ! (l1h2 j) !
�

0

1
x i1 j2 l (12x)l1h2 j

(12xy)h11
dx .
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Multiplying by y k (12y)j and integrating in 0 GyG1 we obtain

(2.15) I(h , i , j , k , l) 4
h! i!

(i1 j2 l) ! (l1h2 j) !
I(i1 j2 l , l1h2 j , j , k , l),

whence

I(h , i , j , k , l)

h! i! j! k! l!
4

I(i1 j2 l , l1h2 j , j , k , l)

(i1 j2 l) ! (l1h2 j) ! j! k! l!
.(2.16)

Let W be the integral transformation acting on the quotient

I(h , i , j , k , l)

h! i! j! k! l!
(2.17)

as is given by (2.16), and let W be the corresponding permutation, mapping h , i , j ,
k , l respectively to i1 j2 l , l1h2 j , j , k , l and extended to any linear combina-
tion of h , i , j , k , l by linearity. Then the action of W on (2.6)-(2.7) is

W4 (h i1 j2 l)(i l1h2 j)( j1k2h k1 l2 i)

and, by (2.16), the value of the quotient (2.17) is clearly invariant under the action
of the permutation group

F4 aW , t , sb

generated by W , t and s . In [RV1], p. 38, we show that the group F is isomorphic
to the symmetric group E5 of permutations of five elements. In particular, F has
order

NFN45!4120 .

Since the value of (2.17) is invariant under the action of F , for any permuta-
tion r�F we have

I(h , i , j , k , l)

h! i! j! k! l!
4

I(r(h), r(i), r( j), r(k), r(l) )

r(h) ! r(i) ! r( j) ! r(k) ! r(l) !
.(2.18)

Thus we associate with r the quotient

h! i! j! k! l!

r(h) ! r(i) ! r( j) !r(k) ! r(l) !
(2.19)

resulting from the transformation formula (2.18) for I(h , i , j , k , l). If r , r8�F
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lie in the same left coset of the subgroup T4 at , sb in F , the quotient (2.19)
equals the analogous quotient for r8 . Thus with each left coset of T in F we asso-
ciate the corresponding quotient (2.19), where r is any representative of the coset
considered.

For any r�F we simplify the quotient (2.19) by removing the factorials of the
integers appearing both in the numerator and in the denominator. If, after this
simplification, the resulting quotient has v factorials in the numerator and v in the
denominator, we say that r is a permutation of level v , or that the left coset rT
has level v .

Since NFN4120 and NTN410, there are 12 left cosets of T in F , yielding 12
distinct quotients of factorials (2.19), which can be classified as follows (see [RV1],
pp. 39-40):

1 coset of level 0 ,

5 cosets of level 2 ,

5 cosets of level 3 ,

1 coset of level 5 .

We remark that the integers M and N defined by (2.11) are invariant under
the actions of the permutations t and s , but not under the action of W . However,
in order to get arithmetical consequences for z(2) from the group-theoretic argu-
ments outlined above, we require M and N to be invariant under the action of the
whole permutation group F . Therefore, at this point we must change the defini-
tions of M and N as follows. Let

R4 (h , i , j , k , l , j1k2h , k1 l2 i , l1h2 j , h1 i2k , i1 j2 l)

be the sequence of the integers (2.6)-(2.7). We define

M4 max R , N4 max8 R .(2.20)

Plainly the M and N defined by (2.20) are invariant under the action of F . Also,
since the former M and N defined by (2.11) do not exceed the new ones, (2.12)
holds a fortiori with M and N given by (2.20).

We replace in (2.12) h , i , j , k , l by hn , in , jn , kn , ln respectively, where h , i ,
j , k , l are fixed and n41, 2 , R , so that M and N are replaced by Mn and Nn re-
spectively. Then (2.12) yields

I(hn , in , jn , kn , ln) 4an 2bn z(2)(2.21)

with bn �Z and dMn dNn an �Z .
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Let

An 4dMn dNn an , Bn 4dMn dNn bn .

From (2.21) we have

dMn dNn I(hn , in , jn , kn , ln) 4An 2Bn z(2)(2.22)

with An , Bn �Z . In order to get a good irrationality measure of z(2) through the
Proposition of Section 1.2, one (essentially) requires two sequences of integers,
say the (An ) and (Bn ) in (2.22), such that An 2Bn z(2) c0 and, for nKQ ,

NAn 2Bn z(2)NK0(2.23)

as rapidly as possible, with

NBnNKQ(2.24)

as slowly as possible. For suitable h , i , j , k , l the permutation group method
allows one to improve considerably the sequences (An ) and (Bn ) in (2.22). One
finds a large common divisor D n D 8n of An and Bn (see (2.28) below), so that,
defining

Dn 4
dMn dNn

D n D 8n
,(2.25)

the integers Dn an 4An /(D n D 8n ) and Dn bn 4Bn /(D n D 8n ) yield a linear form
NDn an 2Dn bn z(2)N tending to 0 more rapidly than (2.23), with a growth of
NDn bnN slower than (2.24).

The construction of the common divisor D n D 8n of An and Bn is as follows.
By the invariance of M and N under the action of the permutation W we get, as
in (2.22),

dMn dNn I( (i1 j2 l)n , (l1h2 j) n , jn , kn , ln) 4A 8n 2B 8n z(2)

with A 8n , B 8n �Z . Therefore, if we apply in (2.22) the transformation formula
(2.15) corresponding to W we obtain

An 2Bn z(2) 4
(hn) ! (in) !

( (i1 j2 l) n) ! ( (l1h2 j)n) !
(A 8n 2B 8n z(2) ) ,
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whence, by the irrationality of z(2),

( (i1 j2 l) n) ! ( (l1h2 j)n) ! An 4 (hn) ! (in) ! A 8n ,

( (i1 j2 l) n) ! ( (l1h2 j)n) ! Bn 4 (hn) ! (in) ! B 8n .
(2.26)

For a prime number p , let

v4 ]n/p( 4n/p2 [n/p]

denote the fractional part of n/p . Using the p-adic valuation of the factorials ap-
pearing in (2.26), it is easy to see ([RV1], pp. 44-45) that any prime pDkMn for
which

[ (i1 j2 l) v]1 [ (l1h2 j) v] E [hv]1 [iv](2.27)

divides An and Bn .
The above discussion applies to each transformation formula (2.18) correspond-

ing to a left coset of T in F of level 2 . The five quotients of factorials (2.19) as-
sociated with the five left cosets of level 2 are easily seen to yield the five inequa-
lities for v obtained by applying the powers of the permutation t to (i1 j2 l ,
l1h2 j , h , i) in (2.27). Let V be the set of real numbers v� [0 , 1 ) satisfying at
least one of such five inequalities. We infer that any prime pDkMn for which
]n/p( �V divides An and Bn .

A similar analysis applies to the five transformation formulae (2.18) correspond-
ing to the five left cosets of T in F of level 3 , and yields a subset V 8%V such that
p 2 divides An and Bn for any prime pDkMn satisfying ]n/p( �V 8 .

Let

D n 4 »
pDkMn
]n/p( �V

p , D 8n 4 »
pDkMn

]n/p( �V 8

p (n41, 2 , R) ,(2.28)

where p denotes a prime. From the above discussion we get D n D 8nNAn and
D n D 8nNBn . Also, by standard arguments ([V1], pp. 463-464) we have

lim
nKQ

1

n
log D n 4�

V

dc(x) , lim
nKQ

1

n
log D 8n 4�

V 8

dc(x) ,

where c(x)4G 8(x)/G(x) is the logarithmic derivative of the Euler gamma-func-
tion. Since dMn dNn 4exp ( (M1N) n1o(n) ) by the prime number theorem, the
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definition (2.25) yields

lim
nKQ

1

n
log Dn 4M1N2 u �

V

dc(x)1�
V 8

dc(x)v .(2.29)

Dividing (2.22) by D n D 8n we get

Dn I(hn , in , jn , kn , ln) 4Dn an 2Dn bn z(2) �Z1Zz(2) ,(2.30)

and we obtain an irrationality measure of z(2) by applying to (2.30) the Proposi-
tion in Section 1.2. For this purpose we use (2.29) together with

lim
nKQ

1

n
log I(hn , in , jn , kn , ln)(2.31)

and

lim sup
nKQ

1

n
logNbnN .(2.32)

The advantage of using (2.30) instead of (2.22) is quantified by the arithmetical
correction

�
V

dc(x)1�
V 8

dc(x)

in (2.29).
Assuming the integers (2.6)-(2.7) to be all strictly positive, a straightforward

computation shows that the function f (x , y) defined by (2.13) has exactly two sta-
tionary points (x0 , y0 ) and (x1 , y1 ) for which x(12x)y(12y) c0, and that these
points satisfy the inequalities 0 Ex0 E1, 0 Ey0 E1, x1 E0, y1 E0, x1 y1 D1. Thus
the limit (2.31) is given by log f (x0 , y0 ), and using the double contour integral re-
presentation for bn given by (2.14) one easily proves that (2.32) does not exceed
logNf (x1 , y1 )N .

If we denote

c0 42 log f (x0 , y0 ), c1 4 logNf (x1 , y1 )N ,

c2 4M1N2 u �
V

dc(x)1�
V 8

dc(x)v ,
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from (2.30) and the Proposition in Section 1.2 we obtain the irrationality
measure

m(z(2) ) G
c1 1c2

c0 2c2

11 4
c0 1c1

c0 2c2

,(2.33)

provided that c0 Dc2 .
The choice

h4 i412, j4k414, l413(2.34)

gives c0 431.27178857R, c1 430.41828189R, c2 419.93429159R. From (2.33) we
obtain

m(z(2) ) E5.441242R .

2.2 - Triple Euler-type integrals

We summarize here the chief points of the arithmetic theory for triple inte-
grals of Euler-Beukers’ type related to z(3), given in the paper [RV2]. We consi-
der the integral

�
0

1

�
0

1

�
0

1
x h (12x)l y k (12y)s z j(12z)q

(12 (12xy) z)q1h2r

dx dy dz

12 (12xy) z
(2.35)

for integer parameters h , j , k , l , q , r , sF0 such that hGk1r (these inequali-
ties are easily seen to be necessary and sufficient for the integral (2.35) to be fini-
te). Let w : (x , y , z) O (X , Y , Z) be the birational transformation defined by

w :

.
`
/
`
´

X4 (12y) z

Y4
(12x)(12z)

12 (12xy) z

Z4
y

12 (12y) z
.

(2.36)

It is easy to check that w has period 8 and maps the open unit cube (0 , 1 )3 onto
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itself. Moreover, under the action of w we have

dX dY dZ

12 (12XY) Z
42

dx dy dz

12 (12xy) z
.(2.37)

Thus, if we apply the transformation w to the integral (2.35), i.e., if we make the
change of variables

w21 :

.
`
/
`
´

x4
(12Y)(12Z)

12 (12XY) Z

y4 (12X) Z

z4
X

12 (12X) Z

and then replace X , Y , Z with x , y , z respectively, the integral becomes

(2.38) �
0

1

�
0

1

�
0

1
x j (12x)k1r2h y l (12y)h z k (12z)r

(12 (12x) z) j1q2 l2s(12 (12xy) z)r1 l2q

dx dy dz

12 (12xy) z
.

We define m4k1r2h , whence mF0 and

h1m4k1r ,(2.39)

and we make the further assumption

j1q4 l1s ,(2.40)

which eliminates from (2.38) the «parasite» factor 12 (12x) z . By (2.40) we have
r1 l2q4r1 j2s , so that the integral (2.38) can be written as

�
0

1

�
0

1

�
0

1
x j (12x)m y l (12y)h z k (12z)r

(12 (12xy) z)r1 j2s

dx dy dz

12 (12xy) z
.

This integral is obtained from (2.35) by applying to the parameters the cyclic per-
mutation (h j k l m q r s). Therefore, if for any integers h , j , k , l , m , q , r ,
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sF0 satisfying (2.39) and (2.40) we define

(2.41) I(h , j , k , l , m , q , r , s)

4�
0

1

�
0

1

�
0

1
x h (12x)l y k (12y)s z j(12z)q

(12 (12xy) z)q1h2r

dx dy dz

12 (12xy) z
,

where m is a «hidden» parameter, the transformation w given by (2.36) changes
(2.41) into I( j , k , l , m , q , r , s , h). Therefore the value of the integral (2.41) is in-
variant under the action of the cyclic permutation w defined by

w4 (h j k l m q r s) .(2.42)

Let now s : (x , y , z) O (X , Y , Z) be defined by

s :
.
/
´

X4y

Y4x

Z4z .

(2.43)

If we apply the transformation s to (2.41), i.e., if we interchange the variables
x , y , by virtue of (2.39) we get the integral I(k , j , h , s , r , q , m , l). Hence the
value of (2.41) is also invariant under the action of the permutation s defined by

s4 (h k)(l s)(m r) .

Thus the value of (2.41) is invariant under the action of the permutation group

U4 aw , sb(2.44)

generated by w and s , which is isomorphic to the dihedral group ±8 of order 16.
Besides the integers

h , j , k , l , m , q , r , s ,(2.45)
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we consider the eight integers

h 8 »4

j 8 »4

k 8 »4

l 8 »4

m 8 »4

q 8 »4

r 8 »4

s 8 »4

h1 l2 j4h1q2s ,

j1m2k4 j1r2h ,

k1q2 l4k1s2 j ,

l1r2m4 l1h2k ,

m1s2q4m1 j2 l ,

q1h2r4q1k2m ,

r1 j2s4r1 l2q ,

s1k2h4s1m2r ,

(2.46)

where the double expression for each of (2.46) is obtained by applying (2.39) or
(2.40).

We extend the actions of the permutations w and s on any linear combination
of the integers (2.45) by linearity. Note that this is possible because w and s pre-
serve the linear conditions (2.39) and (2.40). In fact we have

w(h)1w(m) 4 j1q4 l1s4w(k)1w(r),

w( j)1w(q) 4k1r4m1h4w(l)1w(s),

s(h)1s(m) 4k1r4h1m4s(k)1s(r),

s( j)1s(q) 4 j1q4s1 l4s(l)1s(s).

Therefore w and s act on the sixteen integers (2.45)-(2.46) as follows:

w4 (h j k l m q r s)(h 8 j 8 k 8 l 8 m 8 q 8 r 8 s 8 )

and

s4 (h k)(l s)(m r)(h 8 k 8 )(l 8 s 8 )(m 8 r 8 ).

Let

U 4 (h 8, j 8, k 8, l 8, m 8, q 8, r 8, s 8 )

be the sequence of the integers (2.46), and let

M4 max U, N4 max8 U, Q4 max9 U ,(2.47)
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with the notation (2.10). Similarly to (2.12) and (2.14), using the action of the
group (2.44) and a method of descent, in [RV2] we prove that

(2.48) I(h , j , k , l , m , q , r , s) 4a22bz(3) with b�Z and dM dN dQ a�Z ,

where

b42g 1

2pk21
h3

�
C

�
Cx

�
Cx , y

x h (12x)l y k (12y)s z j (12z)q

(12 (12xy) z)q1h2r

dxdy dz

12 (12xy) z
,

with C4 ]x�C : NxN4r 1 (, Cx 4 ]y�C : Ny21/xN4r 2 ( and Cx , y 4 ]z�C :
Nz2 (12xy)21 N4r 3 ( for any r 1 , r 2 , r 3 D0.

We remark that the linear conditions (2.39) and (2.40) are essential for the vali-
dity of (2.48), because one can show that if j1qD l1s , the integral (2.35) in ge-
neral is a linear combination of 1 , z(2) and z(3) with rational coefficients.

From now on, we assume the non-negative integers (2.45) to be such that
(2.46) are also non-negative. Then we can enlarge the permutation group (2.44) by
introducing two hypergeometric permutations W and x , as follows. In (1.6) we
change y into 2yz/(12z) and choose

a4q1h2r11, b4h11, g4h1 l12 .

Then we obtain

�
0

1
x h (12x)l

(12 (12xy) z)q1h2r11
dx4 (12z)r2q h! l!

q 8! r 8!
�

0

1
x q 8 (12x)r 8

(12 (12xy)z)h11
dx .

Multiplying by y k (12y)s z j(12z)q and integrating in 0 GyG1, 0 GzG1, we
get

I(h , j , k , l , m , q , r , s) 4
h! l!

q 8! r 8!
I(q 8, j , k , r 8, m , r , q , s),

whence

I(h , j , k , l , m , q , r , s)

h! j! k! l! m! q! r! s!
4

I(q 8, j , k , r 8, m , r , q , s)

q 8! j! k! r 8! m! r! q! s!
.(2.49)

Let W be the integral transformation acting on the quotient

I(h , j , k , l , m , q , r , s)

h! j! k! l! m! q! r! s!
(2.50)
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as in (2.49), and let W be the corresponding permutation, mapping h , j , k , l , m , q ,
r , s respectively to q 8, j , k , r 8, m , r , q , s and extended to any linear combination
of h , j , k , l , m , q , r , s by linearity. Again this is possible because W preserves
(2.39) and (2.40):

W(h)1W(m) 4q 81m4k1q4W(k)1W(r),

W( j)1W(q) 4 j1r4r 81s4W(l)1W(s).

Therefore W acts on (2.45)-(2.46) as follows:

W4 (h q 8 )(l r 8 )(q r)(m 8 s 8 ).

We now change in (1.6) x into z and y into 12xy , and choose

a4q1h2r11, b4 j11, g4 j1q12.

Thus

�
0

1
z j(12z)q

(12 (12xy) z)q1h2r11
dz4

j! q!

q 8! j 8!
�

0

1
z q 8 (12z)j 8

(12 (12xy) z) j11
dz .

Multiplying by x h (12x)l y k (12y)s and integrating in 0 GxG1, 0 GyG1, we
get

I(h , j , k , l , m , q , r , s) 4
j! q!

q 8! j 8!
I(h , q 8, k , l , m , j 8, r , s) ,

whence

I(h , j , k , l , m , q , r , s)

h! j! k! l! m! q! r! s!
4

I(h , q 8, k , l , m , j 8, r , s)

h! q 8! k! l! m! j 8! r! s!
.(2.51)

Let x be the integral transformation acting on the quotient (2.50) as in (2.51), and
let x be the corresponding permutation, mapping h , j , k , l , m , q , r , s respectively
to h , q 8, k , l , m , j 8, r , s and extended by linearity. Again, x preserves (2.39) and
(2.40):

x(h)1x(m) 4h1m4k1r4x(k)1x(r),

x( j)1x(q) 4q 81 j 84 l1s4x(l)1x(s).
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Therefore

x4 ( j q 8 )(q j 8 )(h 8 r 8 )(k 8 m 8 ),

and the value of the quotient (2.50) is invariant under the action of the permuta-
tion group

F4 aW , x , w , sb(2.52)

generated by W , x , w and s . In [RV2], p. 283, we show that there exists an exact
sequence of multiplicative groups:

1 KK %KFKE5 K1,(2.53)

where K is isomorphic to the additive group (Z/2Z)4 , and E5 is the symmetric
group of permutations of five elements. This implies in particular NKN424 ,
NE5N45! , whence, by the exact sequence (2.53), the order of F is

NFN424 Q5!41920.

The rest of this theory proceeds on the same lines of the discussion in Section
2.1. With any permutation r�F we associate the quotient

h! j! k! l! m! q! r! s!

r(h) ! r( j) ! r(k) ! r(l) ! r(m) ! r(q) ! r(r) ! r(s) !
,(2.54)

and if r , r8 lie in the same left coset of U4 aw , sb in F , the quotient (2.54) equals
the analogous quotient for r8 . We say that r is a permutation of level v , or that
the left coset rU has level v , if, after simplifying (2.54), we have v factorials in the
numerator and v in the denominator.

Since we now have NFN41920 and NUN416, there are 120 left cosets of U in
F , yielding 120 distinct quotients of factorials (2.54), which can be classified as
follows (see [RV2], pp. 286-287):

1 coset of level 0 ,

12 cosets of level 2 ,

32 cosets of level 3 ,

30 cosets of level 4 ,

32 cosets of level 5 ,

12 cosets of level 6 ,

1 coset of level 8 .
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Let

V 4 (h , j , k , l , m , q , r , s , h 8, j 8, k 8, l 8, m 8, q 8, r 8, s 8 )

be the sequence of the integers (2.45)-(2.46). Similarly to (2.20), we change the de-
finition (2.47) as follows:

M4 max V, N4 max8 V, Q4 max9 V.

For fixed h , j , k , l , m , q , r , s and n41, 2 , R , (2.48) yields

I(hn , jn , kn , ln , mn , qn , rn , sn) 4an 22bn z(3)

with bn �Z and dMn dNn dQn an �Z . Therefore

dMn dNn dQn I(hn , jn , kn , ln , mn , qn , rn , sn) 4An 22Bn z(3)(2.55)

with An , Bn �Z .
As in Section 2.1, one can divide (2.55) by a large common divisor of An and

Bn , thus obtaining

(2.56) Dn I(hn , jn , kn , ln , mn , qn , rn , sn) 4Dn an 22Dn bn z(3) �Z12Zz(3),

where, as with (2.29),

lim
nKQ

1

n
log Dn 4M1N1Q2 ( arithmetical correction ) .(2.57)

Assuming the integers (2.45)-(2.46) to be all strictly positive, the function

f (x , y , z) »4
x h (12x)l y k (12y)s z j (12z)q

(12 (12xy) z)q1h2r

has exactly two stationary points (x0 , y0 , z0 ) and (x1 , y1 , z1 ) for which
x(12x) y(12y) z(12z)c0, and these points satisfy 0Ex0 , y0 , z0E1, x1 , y1 , z1E0,
x1 y1 D1, z1 E (12x1 y1 )21 . Then we have

lim
nKQ

1

n
log I(hn , jn , kn , ln , mn , qn , rn , sn) 4 log f (x0 , y0 , z0 )(2.58)

and

lim sup
nKQ

1

n
logNbnNG logNf (x1 , y1 , z1 )N .(2.59)
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Using (2.57), (2.58) and (2.59), we can apply the Proposition in Section 1.2 to the
linear form (2.56). As we show in [RV2], Section 5, the choice

h416, j417, k419, l415, m412, q411, r49, s413,

satisfying (2.39) and (2.40) as required, yields the irrationality measure

m(z(3) ) E5.513890 R .

3 - Sorokin’s integral

The success of our permutation group method in the treatment of the triple inte-
gral (2.41) essentially depends upon two «miracles»: one is the (highly non-trivial)
three-dimensional birational transformation w of period 8 defined by (2.36), which
shows that, assuming (2.39) and (2.40), the value of (2.41) is invariant under the
action of the cyclic permutation w in (2.42). The second miracle is the a priori
unexpected phenomenon that the linear conditions (2.39) and (2.40) are preserved
by all the four permutations w , s , W , x , so that, under no additional restrictive as-
sumptions besides (2.39) and (2.40), the permutation group (2.52) automatically acts
on the sixteen integers (2.45)-(2.46).

As a first contribution towards a possible interpretation of the first miracle, in
[V3], Sections 5 and 6, we give a constructive method to derive w from the two-
dimensional transformation t defined by (2.4), and we also show how our method
can be used to construct suitable four-dimensional involutions which can be applied
to quadruple integrals of Euler-Vasilyev’s type.

At present, we have no convincing explanation of the second miracle, nor any
method to predict for which integrals or transformations such a phenomenon
occurs.

In order to illustrate this point, we consider a suitable generalization of Soro-
kin’s integral. In [S] p. 51, Sorokin introduced the triple integral

cn (t) 4�
0

1

�
0

1

�
0

1
t n11 x n (12x)n y n (12y)n z n (12z)n

(t2xy)n11 (t2xyz)n11
dx dy dz .

In the spirit of our paper [RV2] we choose here t41, and we generalize cn (1) by
taking different exponents for the eight factors appearing inside the resulting inte-
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gral. For integers h , j , k , l , m , q , r , sF0, let

(3.1) J(h , j , k , l , m , q , r , s)

4�
0

1

�
0

1

�
0

1
x s (12x)k y h (12y)q z r (12z)j

(12xy)q1k2m (12xyz)m1 j2 l

dx dy dz

(12xy)(12xyz)
.

Moreover, let h : (x , y , z) O (X , Y , Z) be the birational transformation defined by

h :

.
`
/
`
´

X4yz

Y4
12x

12xyz

Z4
12z

12yz
,

(3.2)

whence

h21 :

.
`
/
`
´

x4
12Y

12XY

y4
X

12 (12X) Z

z412 (12X) Z ,

(3.3)

and, by a straightforward computation of the jacobian determinant,

dX dY dZ

12 (12XY) Z
42

dx dy dz

(12xy)(12xyz)
.(3.4)

From (3.2) and (3.3) it is plain that h maps the open unit cube (0 , 1 )3 onto itself. If
we apply the transformation h to the integral J(h , j , k , l , m , q , r , s), i.e., if we
make in (3.1) the change of variables (3.3) and then replace X , Y , Z with x , y , z
respectively, by virtue of (3.4) we obtain the integral

(3.5) �
0

1

�
0

1

�
0

1
x h (12x)l y k (12y)s z j (12z)q

(12xy)l1s2 j2q (12 (12x) z)h1m2k2r (12 (12xy) z)q1k2m

3
dx dy dz

12 (12xy) z
.
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Therefore, if we assume the linear conditions (2.39) and (2.40) which we write
again here:

h1m4k1r ,

j1q4 l1s ,
(3.6)

the parasite factors 12xy and 12 (12x) z disappear from (3.5), and the expo-
nent q1k2m can be written as q1h2r . Hence (3.5) becomes (2.41). Thus, as-
suming the linear conditions (3.6), we get

J(h , j , k , l , m , q , r , s) 4I(h , j , k , l , m , q , r , s),

so that all the results proved in [RV2] for I(h , j , k , l , m , q , r , s) under the as-
sumptions (3.6) hold for the integral J(h , j , k , l , m , q , r , s) defined by (3.1).

Naturally we can transfer the action of the transformation w given by (2.36) to
the integral (3.1), by defining w *4h21 wh , the transformation obtained by ap-
plying first h , then w , and then h21 . By (2.36), (3.2) and (3.3), one easily sees that
the transformation w *: (x , y , z) O (X , Y , Z) is given by the equations

w *4h21 wh :

.
`
/
`
´

X4y

Y4
12z

12yz

Z4
(12yz) x

12xyz
.

(3.7)

Since w has period 8 , w * has also period 8 . Moreover, by (2.37) and (3.4), under
the action of w * we have

dX dY dZ

(12XY)(12XYZ)
42

dx dy dz

(12xy)(12xyz)
.

Thus, if we apply the transformation w * directly to the integral (3.1), i.e., if we
make in (3.1) the change of variables

w *
21 4h21 w21 h :

.
`
/
`
´

x4
(12XY) Z

12 (12 (12Y) Z) X

y4X

z4
12Y

12XY
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and then replace X , Y , Z with x , y , z respectively, by the second of (3.6) we get
the integral J( j , k , l , m , q , r , s , h). Therefore with the action of the transforma-
tion w * on J(h , j , k , l , m , q , r , s) we associate the permutation

w*4w4 (h j k l m q r s),(3.8)

and if we assume both the linear conditions (3.6), we see that they are preserved
by the permutation (3.8).

So far everything runs nicely, and one may even consider the pair (J , w *)
given by (3.1) and (3.7) to be more convenient than (I , w) given by (2.41) and
(2.36). In fact, in contrast with (2.41), all the eight parameters h , j , k , l , m , q , r , s
explicitly appear on the right side of (3.1), and moreover the factors 12xy and
12xyz in the denominator of (3.1) look simpler and more natural than the factor
12(12xy) z in (2.41).

However, if we apply to (3.1) the transformation s given by (2.43) without em-
ploying h and h21 , i.e., if we interchange the variables x , y directly in (3.1), we
obtain the integral J(s , j , q , l , m , k , r , h), so that the permutation associated
with the action of s on J(h , j , k , l , m , q , r , s) is (h s)(k q), which does not pre-
serve the linear conditions (3.6).

Similarly, if we apply to (3.1) the hypergeometric integral transformation with
respect to z , i.e., if in (1.6) we change x into z and y into xy , choose a4m1 j2 l
11, b4r11, g4 j1r12, and then multiply by

x s (12x)k y h (12y)q

(12xy)q1k2m11

and integrate in 0 GxG1, 0 GyG1, we get (with the notation (2.46)):

J(h , j , k , l , m , q , r , s) 4
j! r!

l 8! m 8!
J(h , l 8, k , l , m , q , m 8, s) .

Thus the associated permutation is ( j l 8 )(r m 8 ), which again does not preserve
the linear conditions (3.6).

We infer that there is no natural construction of a permutation group similar
to (2.52) acting directly on

J(h , j , k , l , m , q , r , s)

h! j! k! l! m! q! r! s!
,

i.e., obtained without passing through I(h , j , k , l , m , q , r , s) by means of the
transformations h and h21 .
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There are some variations on this theme. We can introduce an equivalence re-
lation A by defining

h 8Ah

if there exist l� aw , sb and n� asb such that

h 84lhn ,(3.9)

the transformation obtained by applying first n (i.e., either the identity or (2.43)),
then h given by (3.2), and then l (i.e., any product of transformations (2.36) and
(2.43)).

It is easily seen that hsh21 � aw , sb. Thus if lhn4l 1 hn 1 with l , l 1 � aw , sb
and n , n 1 � asb, then n4n 1 whence l4l 1 . Since Naw , sbN416 and NasbN42,
there are 32 transformations (3.9) equivalent to h , each of which, under the as-
sumptions (3.6), plainly changes a Sorokin-type integral (3.1) (with a suitable reor-
dering of h , j , k , l , m , q , r , s depending on l and n) into the integral
(2.41).

As the referee kindly pointed out, Fischler ([F], Section 5.5.2) gave a transfor-
mation in any dimension n which for n43 (using a notation consistent with ours)
can be written as

.
`
/
`
´

X412z

Y4
(12x) y

12xy

Z4x ,

(3.10)

whence

.
`
/
`
´

x4Z

y4
Y

12 (12Y) Z

z412X .

(3.11)

It is easy to check that Fischler’s transformation (3.10) is given by (3.9) for l4ws
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and n4s , and hence is equivalent to h . Specifically, if we define

(3.12) K(h , j , k , l , m , q , r , s) »4J(k , h , m , r , q , s , l , j)

4�
0

1

�
0

1

�
0

1
x j(12x)m y k (12y)s z l (12z)h

(12xy)s1m2q (12xyz)q1h2r

dx dy dz

(12xy)(12xyz)

with J given by (3.1), applying the transformation (3.10) to
K(h , j , k , l , m , q , r , s), i.e. making in (3.12) the change of variables (3.11) and
then replacing X , Y , Z with x , y , z respectively, yields the integral

�
0

1

�
0

1

�
0

1
x h (12x)l y k (12y)s z j (12z)q

(12 (12y) z)k1r2h2m (12 (12xy) z)q1h2r

dx dy dz

12 (12xy) z
.

By the first of (3.6), this integral is (2.41). Hence under the assumptions (3.6) we
have

K(h , j , k , l , m , q , r , s) 4I(h , j , k , l , m , q , r , s).

If we apply the transformation s to (3.12), i.e. if we interchange x , y , we get the
integral K(h , k , j , l , s , q , r , m). Thus the associated permutation is ( j k)(m s),
which again does not preserve the linear conditions (3.6).
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A b s t r a c t

We define double and triple Euler-type integrals generalizing the integrals considered
by Beukers in 1979. We show how the permutation group method, recently introduced by
Rhin and the author, applies to such integrals to yield the best known irrationality mea-
sures of z(2) and z(3). In the last section we introduce a family of 32 three-dimensional
birational transformations changing integrals of Sorokin’s type into integrals of Beukers’
type. Such a family includes a transformation recently given by Fischler.

* * *


