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crystal in more singular classes, originates non-trivial formulas of analytic conti-
nuation of classical functions. As Katz puts it in [Ka], this should be considered a
formula of analytic continuation par excellence. We improve on Katz’ treatment at
least in that we allow logarithmic singularities. A typical example of a formula of
this type is the Koblitz-Diamond formula [Ko], [D], for the analytic continuation of
the function F(a , b , c ; l) [p-DE IV] related to the classical Gauss hypergeometric
function F(a , b , c ; l), for a , b , c�Zp , c�ZG0 . We recall that, for any (a , b , c)
� (Zp )3 for which it makes sense,

F(a , b , c ; l) 4 !
s40

1Q (a)s (b)s

(c)s s!
l s �Qp elf ,

where, as usual, we use Pochammer’s notation (a)s 4a(a11)R(a1s21). The
function F(a , b , c ; l) is the maximal p-adic analytic extension of the ratio

F(a , b , c ; l)

F(a 8 , b 8 , c 8 ; l p )
�11lQp elf

where for a�Zp , a 8�Zp is uniquely defined by the condition that pa 82a4m a

� ]0, 1 , R , p21( (We also recursively define a (0) 4a , and a (i11) 4 (a (i) )8 , for i
40, 1 , R). The Koblitz-Diamond formula asserts that if c (i) �Zp

3 and m c (i) Fm a (i)

1m b (i) for any i40, 1 , R , then F(a , b , c ; l) extends analytically to the open di-
sk of radius 1 around l41 and

F (a , b , c ; 1 ) 4
G p (c) G p (c2a2b)

G p (c2a) G p (c2b)

(where G p denotes the Morita p-adic gamma function), see [D], and [Ko] for c41.
A similar discussion, in the non-singular case, appears in [Ba], where it is used to
explain a formula of Young [Yo]: If m a (i) Gm b (i) Ep21, m a (i) even, and 2m b (i)

2m a (i) Gp21 for all i�N then F(a , b , 11a2b ; l) admits an analytic extension
to the class of 21, and

F (a , b , 11a2b ; 21) 4 (2)
m a
2

G pg a

2
h G pgb2

a

2
h

G p (a) G p (b2a)
.

The original paper by Young needs the further condition that a , b be rational (so

in
1

p f 21
Z , for some f�ZF1). The generalization and the interpretation in terms

of unit-root F-subcrystal is given in [Ba].
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The reader may have noticed already that our discussion goes beyond the
classical theory [Ka] of F-crystals, even if extended to the framework of logari-
thmic schemes [Sh]. What we are really dealing with is a Dwork family of (filte-
red, logarithmic) F-crystals: a structure which was introduced by the first author
in lectures at a p-adic Summer School held in Trento in June 1995, inspired on
Dwork’s treatment of hypergeometric differential modules [GHF]. Since those
lectures have unfortunately remained, as of today, unpublished, we quickly define
Dwork families of F-crystals in section 2 below, with the promise of making avai-
lable a more satisfactory treatment as soon as possible. The main point is that our
(logarithmic) crystals M(a , b , c) on, say, the formal p-adic base X× 4 P× »4p-adic
completion of P1

Zp
, with the log-structure induced by the three Zp-points

]0, 1 , Q( (or X× 4Spf Zp{l ,
1

l(12l)
} , if one prefers to avoid singularities) de-

pend on parameters a , b , c in Zp , and Frobenius is a horizontal transformation
F(W) : W* M(a 8 , b 8 , c 8 ) KM(a , b , c), where W is some lifting of the absolute Fro-
benius to (some open subset of) X×. This is reminiscent of Mazur’s theory of F-
spans [Mz], but differs from it in one crucial point. The underlying OX×-module of
M(a , b , c) is here independent of a , b , c , while the connection ˜a , b , c varies with
the parameters. In that respect, the hypergeometric M(a , b , c) is simply OP×

2 , and
we will always express the connection and the Frobenius map in terms of this tri-
vialization. This choice of global basis for the hypergeometric module, is also com-
patible with the filtration, which however varies with (a , b , c) (morally, with
(a , b , c) mod p). When a , b , c are rational numbers, say in (p f21)21 Z , after f
steps Frobenius gets us back to M(a , b , c), and an f-th iterate of Frobenius beco-
mes the standard semilinear automorphism of classical F-isocrystals, with respect
to W f .

The notion of a Dwork family of F-crystals is actually taken to be more flexi-
ble than what we just said. According to Dwork’s taste, we want to allow for inte-
gral translations of the parameters a , b , c , to reflect the existence of Gauss’ conti-
guity relations on classical hypergeometric functions [Po], [GHF], [Bo], [Ku],
[Ba]. These relations can be used in great generality to determine the finite-diffe-
rence equation behavior of the Frobenius matrix, and they determine its shape, at
least under the assumption that that matrix be p-adic meromorphic as a function
of the parameters a , b , c in Zp . This assumption is known as the Boyarsky prin-
ciple, and is know to hold for hypergeometric functions [GHF], 4.7.1. The matrix
g (W) (aK, b

K
; l) used in this article is the one of [Bo], 3.1 and [Ku], 1.12.3. (When aK

4 (a , b , c) �Zp
3 , b

K
4 (a 8 , b 8 , c 8 ) and W(l) 4l p , it coincides with the matrix

gB1

B3

B2

B4
h of [LDE], 4.5.1). The precise relation between the Frobenius matrix de-
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scribed in [GHF], 4.7.1 and the one of [LDE], 4.5.1 is given in [Ba], 2.21. We use
this finite-difference method in the appendix to provide an alternative calculation
of the dominant polar term of the Frobenius matrix in the singular classes at 0
and 1.

The main assumption in this paper is the splitting of the Frobenius matrix of
the hypergeometric family in the following cases [LDE], 6.6:

(1) m c E min (m a , m b),
(2) m c D max (m a , m b).
If a , b , c are rational, this type of condition leads to the existence of a unit

root F-subcrystal (of rank one) of the logarithmic F-crystal of rank two associated
to the hypergeometric system.

The p-adic theory of the hypergeometric system

d

dl
Y4Y

.
`
´

2
c

l

c2b

l

c2a

12l

a1b2c

12l

ˆ
`
˜

has been deeply investigated by Dwork [LDE]. The explanation of the Koblitz-
Diamond formula preliminarly requires the calculation of the eigenvalues of Fro-
benius operating on the eigenvectors of classical monodromy in the class of a sin-
gle logarithmic singularity. For this calculation to make sense, we must ensure
the convergence of the uniform part of the classical fundamental solution matrix
at the singular points in an open disk of radius 1. This forces us into a rather bi-
zarre domain for (a , b , c) �Zp

3 , ensuring that all exponents and exponent diffe-
rences of our differential system consist of p-adically non-Liouville numbers. The
standard transfer theorems of p-adic analysis can then be applied [Ch], [BC2],
[DGS], Chap. 6. For the hypergeometric system, the singular class of 0, and with
further restrictions on (a , b , c) (e.g. that they be in (Zp OQ)3), this is the difficult
computation of chapters 24 to 26 of [LDE].

To transfer that information to the class of, say, 1, one must understand suffi-
ciently well the action of Möbius transformations on the solutions of the hyper-
geometric equation. This action has also been analysed by Dwork in [Ku], a re-
markable paper that adds also to the classical cohomological understanding of the
Kummer transformations, and determines the effect of those transformations on
the Frobenius matrix. We need to complement section 4 of [Ku] with a more flexi-
ble formula for the changes in the Frobenius matrix.

For simplicity, we will further assume in our calculations that the monodromy
at 0 and 1 is semisimple as in [LDE], Chapter 25: this assumption does not affect
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the final result. One can in fact similarly extend the results of [LDE], Chapter 26,
to cover the case of logarithmic solutions. In any case, our method proves the Ko-
blitz-Diamond formula under the slightly modified assumptions min (m a (i) , m b (i) )
D0 and m c (i) Dm a (i) 1m b (i) for any i40, 1 , R .

The main point of this article is computational. We realized that, while waiting
for a more systematic exposition of the general ideas, recalled above, we were ri-
sking to forget about some difficult computations we had previously made to sup-
port our ideas. We therefore decided to store those computations in these procee-
dings, and at the same time to make them available to any willing colleague.

1 - Filtered logarithmic F-crystals

1.1 - Notation

Let K be a complete discrete valuation field of mixed characteristics (0 , p)
with perfect residue field k , and let V denote its ring of integers. We denote by
N N the absolute value of K , normalized by NpN4p 21 . For simplicity we will assu-
me here that V 4W(k) is absolutely unramified, and we will denote by s : V K V

the Frobenius (and its extension to K).

1.2 - Let X be a smooth p-adic formal scheme over of finite type over Spf V,
and D be a divisor in X with strict normal crossings relative to V. The pair (X , D)
defines a fine log scheme (X , MD ) in the sense of Fontaine-Illusie and Kato [KK],
over Spf V endowed with the trivial log structure. It reduces modulo p to a simi-
lar pair (Xk , Dk ). In local étale coordinates (x1 , R , xn ), we may assume that the
ideal sheaf ID of D is generated by x1 R xd , and that the sheaf of log differentials

V X
1 (log D) 4V (X , D)

1 admits the OX-basis
dx1

x1

, R ,
dxd

xd

, dxd11 , R , dxn . We de-

note by SD the OX-algebra 5jF0 I2j
D . For any formal scheme T over Spf V, T s will

denote the formal scheme over Spf V obtained by the base change s . Similarly,
for an OT-module E (with connection ˜), Es will denote the OT s-module (with con-
nection ˜s) obtained by the base change s .

1.3 - Definitions

A logarithmic crystal on (X , D) / V consists of
(a) a finite projective OX-module E;
(b) an integrable logarithmic connection ˜ : E K E 7A V 1

X (log D).
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The logarithmic crystal (E, ˜) on (X , D) / V is convergent if the following conver-
gence condition holds:

(c) for any eD0, and any section e of E over a coordinate domain
(U , x1 , R , xn ), the section of E defined by

p eS i m i
1

P i (m i ! )
»
i41

n

»
j40

m i

(˜i 2 j) e

converges to 0 when S i m i goes to Q . Here the operators ˜i are defined

by the formula ˜(e) 4!
i

˜i (e)
dxi

xi

.

A (resp. convergent) logarithmic crystal (E, ˜) on (X , D) / V is filtered if it is
equipped with

(d) a decreasing and finite filtration, exhaustive and separated, ]Fil i E(i by lo-
cal direct factors of E satisfying the Griffiths transversality ˜(Fil i E)
’Fil i21 E 7V 1

X (log D).

For f�ZF1 , a lifting of the f-th order relative Frobenius of Xk to the log sche-
me (X , D) is a lifting W f : XKX s f

of the f-th order relative Frobenius of Xk (co-
ming from the f-th iterate of the standard Frobenius) adapted to the divisor D ,
i.e. such that W f* D s f

4p fD . So, in terms of local coordinates as above, for any i
one has W f*(xi ) 4xi

p f
up to units in OX . When f41, we avoid mentioning f .

A logarithmic F-crystal over (X , D) / V for the f-th order Frobenius, is a con-
vergent logarithmic crystal (E, ˜) over (X , D) / V, together with the assignment,
for any local lifting of the f-th order Frobenius W f : UKU s f

, adapted to DOU , to
an open formal V-subscheme U of X , of a horizontal SDOU-linear monomorphism

F(W f ) : W f*(SD 7 E, ˜)s f

NU s f K (SD 7 E, ˜)NU

which becomes an isomorphism when tensored with K . (Notice that ˜ induces a
logarithmic connection on SD 7 E, and that W f extends to a morphism of ringed
spaces (U , SDOU ) K (U , SDOU )s f

.)
We say that (E, ]Fil i E(i , ˜ , F) is a filtered logarithmic F-crystal over

(X , D) / V for the f-th order Frobenius, if (E, ˜ , F) is a logarithmic F-crystal over
(X , D) / V for the f-th order Frobenius, and (E, ]Fil i E(i , ˜) a filtered convergent
logarithmic crystal over (X , D) /V. Then, (E, ]Fil i E(i , ˜ , F) is divisible if, for any i ,

F(W f )gW f*(Fil i Es f
)NU s fh%p i (SD 7 E)NU .
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(In our application, the stronger condition

F(W f )gW f*(Fil i Es f
)NU s fh%p fi(SD 7 E)NU ,

will be considered, at the expense of the strength of our results.) We omit the na-
tural extensions of the previous definitions to a relative situation (X , D) /S , where
S is a formal p-adic scheme, smooth and of finite type over Spf V and D is a divi-
sor in X , with strict normal crossings relative to S . In the present discussion how-
ever a logarithmic crystal on (X , D) /S will rarely be convergent in the natural re-
lative generalization of this notion. This is because the points of S will play for us
the role of variable «exponents of monodromy» rather than the one of rational pa-
rameters as in the theory of Picard-Fuchs equations.

1.4 - Let (E, ˜ , F) be a logarithmic F-crystal over (X , D) / V for the f-th order
Frobenius, and let us assume, for simplicity, that X is of relative dimension 1 over
V, with coordinate x , and that D consists of a finite set of V-valued points x
4 t1 , R , tr , with ti � V. In particular, as a topological space, D consists of a finite
set of k-valued points x 4 t1 , R , tr , for the reduced coordinate x. We recall the
bounded Robba ring RX , ti

of X at ti , which is the ring of Laurent series !
j�Z

aj (x

2 ti )j , with aj � V, converging in some annulus eENx2 ti NE1. Then, according
to [Ke], §4, one can develop Dieudonné theory over RX , ti

, and consequently defi-
ne the notion of special Newton polygon of (E, ˜ , F) at ti , that is over RX , ti

. So,
combining this result with the classical theory of Newton polygons of F-crystals
[Ka], we associate to (E, ˜ , F) a Newton polygon at each k-valued point of the k-
scheme Xk , where k denotes the algebraic closure of k . We will say that (E, ˜ , F)
is a unit root logarithmic F-crystal over (X , D) / V, if its Newton polygon is a ho-
rizontal segment at any k-valued point of the k-scheme Xk .

1.5 - We will give an example of the following reasonable generalization of
[Ka], 4.1, whose proof does not seem to appear in the literature. We plan to give
full details elsewhere.

T h e o r e m . Let (E, ]Fil 2 E 40 %Fil 1 E %Fil 0 E 4 E(, ˜ , F) be a divisible F-
crystal for the f-th order Frobenius on (X , D) / V, with a two-step filtration. As-
sume X is of relative dimension 1 over V, and that at every k-valued point of Xk ,
its Newton polygon begins with a side of slope zero, always of the same length n

F1 (i.e., point by point, the unit root part has rank n) and that E /Fil 1 E is of con-
stant rank n . Then there exists a logarithmic unit root F-sub-crystal (U, ˜ , F)
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% (E, ˜ , F), whose underlying module U is transversal to Fil 1 E (i.e. E

4 U 5Fil 1 E).

2 - Dwork families of logarithmic F-crystals

This section is an abstract formulation of the theory of generalized hypergeo-
metric functions of [GHF] and [Ad].

2.1 - Let (X , D) be as in the previous section, and let H4Spf Zp ]a1 , R , ar (,
(XH , DH ) 4 (X , D)3H , with projections pX : XH KX and pH : XH KH . The coor-
dinates a1 , R , ar will play a special role in what follows, together with a finite set
of linear forms L 4 ]l 1 (aK), R , l N (aK)( %Z[a1 , R , ar ].

We will assume that the system of inequalities l i (aK) F0, for i41, R , N , de-
fines a rational polyhedral cone CL of dimension r in Rr , and that, for any i , l i (aK)
40 is a 1-codimensional face of CL , and l i (Zr ) 4Z . A meromorphic function on
an open formal V-subscheme of XH will be assumed to have a finite set of polar
hypersurfaces of the form pX

21 (D) and of the form pH
21 (l i (aK) 4 j), for i

41, R , N and j�Z . So, in local coordinates (x1 , R , xn ) over an open formal
subscheme U of X , with DOU4V(x1 R xd ), a meromorphic function g on U3H
will be a quotient of a section h�G(U3H , OXH

), by an expression of the form
x1

u1
R xd

ud»
i , j

(l i (aK)2 j). We will loosely talk about meromorphic structures on XH

in that sense.

2.2 - Let E0 be a locally free OX-module of finite type, E 4pX* E0 , ]Fil i E(i be a
filtration of E0 by local direct factors, and let ˜ be an integrable (XH , DH ) /H-con-
nection on E, such that (E, ]Fil i E(i , ˜) becomes a filtered logarithmic crystal over
(XH , DH ) /H . We will replace the relative convergence condition by the following
weaker convergence condition (c 8) For any aK �H(QOZp ) (E aK , ](Fil i E)aK (i , ˜aK )
4 aK*(E, ]Fil i E(i , ˜) is a filtered convergent logarithmic crystal.

2.3 - For uK �Ga
r (Z), we denote by

s uK : HKH

the translation mapping aKO aK1 uK, inducing

s uK 4 idX 3s uK : XH KXH .
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We assume the existence of horizontal meromorphic isomorphisms

buK : (E, ˜) Ks uK* (E, ˜)

such that for uK, vK �Ga
r (Z)

buK1 vK 4s uK* (bvK ) i buK .

We will assume that for m
K

�Zr OCL , the only poles of the map buK be along D . To
be more precise [GHF], Conjecture 6.3.1, [Ad], Thm. 8.1, we may consider the na-
tural map of ringed spaces qX : (XH , pX* SD ) KXH . Then, we will assume that, for
uK �Zr OCL , buK is a honest morphism

buK : qX*(E, ˜) KqX* s uK* (E, ˜) ,

and that det buK vanishes if and only if

»
i41

N

(l i (aK) )l i (uK) 40 .

2.4 - For m
K

�Zr and r4p 2s , s�ZF0 , we define D(2 m
K, r) to be the formal

counterpart of the closed analytic disk D(2 m
K, r) 4 ]aK �Cp

r NNai 1m iNGr , (i
41, R , r(, that is the formal V-subscheme of H

D(2 m
K, r)

4Spf V]a1 , R , ar , b1 , R , br ( /(p s b1 2a1 2m 1 , R , p s br 2ar 2m r ) .

For rE1, there are natural morphisms

t mK : D(2 m
K, r) KD( 0

K
, pr)

aKO
aK1 m

K

p
.

Notice that for any m
K, uK, vK �Ga

r (Z)

s uK i t mK 4t p uK2 vK1 mK i s vK .

Let U be an open formal subscheme of X and W : UKU s be a s-linear lifting
of Frobenius adapted to UOD . We consider the map

W3t mK : U3D(2 m
K, r) KU s3D(0

K
, pr)

(x , aK) O uW(x),
aK1 m

K

p
v .
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We assume that for each (U , W), r�p ZE0 , and m
K

�Zr , as before, there exists
a meromorphic morphism of logarithmic crystals over (U3D(2 m

K, r),
D3D(2 m

K, r) ) /D(2 m
K, r)

F(W , m
K) : (W3t mK )*(Es )NU3D(2 mK, r) K ENU3D(2 mK, r) .

The previous data should satisfy

s vK* (F(W , p uK2 vK1 m
K) ) i (W3t mK )*(buK

s ) 4bvK i F(W , mK) .

What this simply means is that the map F(W , m
K) may be coherently regarded as a

system of maps

F(W , m
K)(x , aK) 4F(aK, b

K
; x , W(x) ) : Es

( b
K

, W(x) ) K E( aK, x) ,

for any, say, V-valued points (x , aK) of U3D(2 m
K, r) and (W(x), b

K
) of U s

3D( 0
K

, pr), with p b
K

2 aK 4 m
K

�Zr . It will also be sometimes convenient to use
the notation F(W ; aK, b

K
; x) or F(W ; aK, b

K
) for that map. From the viewpoint of p-

adic convergence, our condition means that the matrix g (W) (aK, b
K

; x) expressing
F(W ; aK, b

K
; x) in terms of a global basis of E0 , is p-adically meromorphic in the va-

riables (aK, b
K

; x), for fixed m
K

4p b
K

2 aK in Zr and b
K

�D( 0
K

, 1 ).
A more precise meromorphy condition, satisfied for generalized hypergeome-

tric functions [GHF], 4.7.1, [Ad], 9.12, is that the polar locus of F(W , m
K) should be

contained in the union of pX
21 (D) and of the zero locus of the determinant of the

map (W3t mK )*(bvK ), where vK �Zr OCL is such that

Zr OgvK2
m
K

p
1CLh%CL .

In particular, [GHF], 6.13.2, [Ad], 9.14, if m
K

�Zr OCL , and l i (m
K) Gp21, for any

i41, R , N , then F(W , m
K) is a honest morphism

F(W , m
K) : ((W3t mK )*(qX* E)s )NU3D(2 mK, r) K (qX* E)NU3D(2 mK, r) .

2.5 - Definition

A set of data (E, ]Fil i E(i , ˜ , ]buK (uK , F) as before, will be called a Dwork fami-
ly of filtered convergent logarithmic F-crystals on X, parametrized by H, with
set of singular forms L, on (X , D) / V.
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2.6 - The notion of divisibility for Dwork family of filtered F-crystals
(E, ]Fil i E(i , ˜ , ]buK (uK , F), is perhaps a little unexpected. It first requires that the
filtration ]Fil i E(i is constructed in the following way. Let A 4 ]m

K
( be a set of

representatives of H(Zp ) modulo p . Therefore H(Zp ) is the disjoint union of
D(2 m

K, p 21 ), for m
K

� A. We will assume to be given a family, indexed by m
K

� A,
of filtrations ]Fil i

mK E0 (i of E0 by local direct factors. We assume that, for all i and
m
K, on X3D(2 m

K, p 21 ), Fil i E coincides with the inverse image via the first pro-
jection of Fil i

mK E0 .
The Dwork family will then said to be divisible if, for any i , any m

K
�Zr , and

any r4p 2s E1,

F(W , m
K)(( (W3t mK )*(Fil i E)s )NU3D(2 mK, r)) %p i (qX* E)NU3D(2 mK, r) .

2.7 - Let (E, ]Fil i E(i , ˜ , ]buK (uK , F) be a Dwork family of logarithmic conver-
gent filtered F-crystals on (X , D) / V, parametrized by H4Spf Z]a1 , R , ar (,
with set of singular forms L 4 ]l 1 , R , l N (. Now, for aK �Zp

r , let us choose two
sequences aK[i] �Zp

r and m
K[i] �Zr , i40, 1 , R , so that aK[0] 4 aK, and p aK[i11] 2 aK[i]

4 m
K[i] , for any i . One possible choice is aK[i] 4 aK(i) 4 (a1

(i) , R , ar
(i) ) and m

K[i] 4 m
K

aK[i]

4 (m a1
(i) , R , m ar

(i) ), as defined in the introduction. If aK � (QOZp )r , then there
exists f�ZF1 such that (p f21) aK �Zr : the minimal such f will be called the per-
iod of aK, and we will say that aK is of finite period f . So, if aK is of finite period f ,
we may arrange the previous choices so that aK[ f ] 4 aK.

If U is an open formal subscheme of X and W is a lifting of Frobenius on U ,
adapted to DOU , the map

F(W , m
K[i] ) : (W3t mK[i] )* (Es )NU3D(2 mK[i] , r) K ENU3D(2 mK[i] , r)

is represented, in terms of a basis of global sections eK of E0 over U , by a matrix of
functions meromorphic in U3D(2 m

K[i] , r). So, for aK �H(V), outside of a well-un-
derstood polar locus (e.g. if l i (aK) �Z , for i41, R , N), the previous map can be
specialized to induce a meromorphic map, necessarily horizontal,

F(W ; aK[i] , aK[i11] ) : (W*(E aK[i11] , ˜aK[i11] )s )NU K (E aK[i] , ˜aK[i] )NU .

If moreover aK is in H(QOZp ), say aK[ f ] 4 aK, our assumptions imply that

(E aK[ f ] , ˜aK[ f ] ) 4 (E aK , ˜aK ) ,

and, outside of some polar locus (e.g. if l i (aK[j] ) �Z , for i41, R , N and



44 FRANCESCO BALDASSARRI and MAURIZIO CAILOTTO [12]

j40, R , f21), that

F(W ; aK[ f21] , aK[ f ] ) i F(W ; aK[ f22] , aK[ f21] ) i RR i F(W ; aK[0] , aK[1] )

is a meromorphic horizontal map

F(W f; aK): (W f)*(E aK , ˜aK )s f

NU K (E aK , ˜aK )NU .

The structure (E aK , ˜aK , F(2 ; aK) ) is then a logarithmic F-crystal on (X , D) / V for
the f-th iterate of the Frobenius, in the usual sense.

The convergence assumption now implies, by [Ka], 3.1.2, that the solutions of
(E aK , ˜aK ) at any rigid point x of the Raynaud generic fiber XK of X , not in the open
tube of Dk , converge in the open tube of radius 1 around x . Therefore, by [BC1],
the holomorphic part of the solution matrix at a point of DK , in the sense of the
classical theory of regular singularities, converges in the open tube of Dk .

2.8 - We now propose an extension of 1.5 for divisible Dwork families of logari-
thmic F-crystals. This paper gives an example of this situation in relative dimen-
sion 1.

Q u e s t i o n . Let (X , D) be as in 1.2. Let (E, ]Fil 2 E 40 %Fil 1 E %Fil 0 E 4 E(,
˜ , ]buK (uK �Zr , F) be a divisible Dwork family of logarithmic convergent filtered
F-crystals on (X , D) / V, parametrized by H4Spf Z]a1 , R , ar (, with set of sin-
gular forms L 4 ]l 1 , R , l N (. Let us assume that, for any aK �H(Zp ) of finite
period f , such that l i (aK) �Z , for i41, R , N , the divisible logarithmic F-crystal
(E aK , ]Fil 2 E aK 40 %Fil 1 E aK %Fil 0 E aK 4 E aK (, ˜aK , F(2 , aK) ) over (X , D) / V for the
f-th order Frobenius, admits a logarithmic unit root F-sub-crystal (U aK , ˜aK ,
F(2 , aK) ), whose underlying module UaK is transversal to Fil 1 EaK (i.e. EaK

4 UaK 5Fil 1 EaK). Then does there exist a logarithmic sub-crystal (U, ˜ , F) of (E, ˜)
on (XH , DH) /H , stable under the map F , in the sense that for any (U , W) as above,
for any m

K
�Zr , and any r4p 2sE1, F induces a meromorphic morphism of loga-

rithmic crystals over (U3D(2 m
K, r), D3D(2 m

K, r) ) /D(2 m
K, r)

F(W , m
K) : (W3t mK )*(Us)NU3D(2 mK, r)K UNU3D(2 mK, r) ,

whose underlying module U is transversal to Fil 1 E (i.e. E 4 U5Fil 1 E) and whose
specialization at any aK �H(QOZp) coincides with (UaK , ˜aK , F(2 , aK) )?

We remark that the rank of the underlying modules U aK may vary with the
class of aK mod p . We treat a simplified version of the previous question, where we
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restrict our parameters aK to a bizarre subset R2 of H(Zp ), stable under the map
aKO aK(1) , and such that the filtration Fil 2 E aK 40 %Fil 1 E aK %Fil 0 E aK 4 E aK of E aK is
independent of aK �R2 .

3 - The hypergeometric family

A very interesting example of the preceding situation is connected with the
hypergeometric system:

dY

dl
4YGaK (l), aK 4 (a1 , a2 , a3 ) �Zp

3

where

GaK (l) 4

.
`
´

2
a3

l

a3 2a2

l

a3 2a1

12l

a1 1a2 2a3

12l

ˆ
`
˜

.

In this case, the relevant linear forms are

L 4 ]l 1 (aK) 4a3 2a1 , l 2 (aK) 4a3 2a2 , l 3 (aK) 4a2 , l 4 (aK) 4a1 ( .

We denote by CaK (z , l) the matrix solution at zc0, 1 , Q such that CaK (z , z) 4 I2 ,
the 232 identity matrix. When the entries of aK are rational, that matrix conver-
ges if Nl2zNENzNmin (1 , N12zN) [LDE].

3.0.1 - The F-crystal structure of the hypergeometric system is expressed by
the following data. We take aK, b

K
�Zp

3 , p b
K

2 aK 4 m
K

�Z3 , W any lifting of Frobe-
nius on an open formal subscheme U of P×, adapted to D4 ]0, 1 , Q(. We obtain a
matrix g (W) (aK, b

K
; l) meromorphic in the variables (aK, b

K
, l), for fixed m

K, such
that:

C b
K
s
(W(z), W(l))g (W) (aK, b

K
; l)t 4g (W) (aK, b

K
; z)t CaK (z , l) ,

whenever CaK (z , l) converges; this holds, in particular, if aK � (QOZp )3 , z
c0, 1 , Q and Nl2zNENzNmin (1 , N12zN). Notice that we transpose the Fro-
benius matrix g (W) (aK, b

K
; l) in this formula in view of compatibility with the nota-

tion of Dwork in [Ku] and [GHF].
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3.0.2 - We assume in our calculations that the local monodromy semisimple.
In the singular classes we formally write the solutions in the form:

g1

0

0

l2a3
h

g1

0

0

(12l)a32a12a2
h U (1)

aK (l)

gl2a1

0

0

l2a2
h U (Q)

aK (l)

U (0)
aK (0) 4 ga3 2a2

12a3

a3

0
h

U (1)
aK (1) 4 ga1 1a2 1a3

0

a1 2a3

a1 1a2 2a3 21
h

U (Q)
aK (Q) 4 g a3 2a2

a2 2a1 11

a3 2a1

a2 2a1 11
h .

Under suitable assumptions on aK, UaK
(i) (l) is a holomorphic matrix on the residue

class of i� ]0, 1 , Q(. Let UaK
(i) (l) 4 gu1

(i)

u3
(i)

u2
(i)

u4
(i)h for i� ]0, 1 , Q(. We know

that

.
`
/
`
´

u1
(0) 4 (a3 2a2 ) F(a1 , a2 , a3 11; l)

u2
(0) 4a3 F(a1 , a2 , a3 ; l)

u3
(0) 4 (12a3 ) F(a2 2a3 , a1 2a3 , 12a3 ; l)

u4
(0) 4 (a3 2a1 ) lF(11a2 2a3 , 11a1 2a3 , 22a3 ; l)

.
`
/
`
´

u1
(1) 4 (a1 1a2 2a3 ) F(a1 , a2 , a1 1a2 2a3 ; 12l)

u2
(1) 4 (a1 2a3 ) F(a1 , a2 , a1 1a2 2a3 11; 12l)

u3
(1) 4 (a3 2a2 )(12l) F(a3 2a1 11, a3 2a2 11, a3 2a1 2a2 12; 12l)

u4
(1) 4 (a1 1a2 2a3 21) F(a3 2a1 , a3 2a2 , a3 2a1 2a2 11; 12l)

.
`
/
`
´

u1
(Q) 4 (a3 2a2 ) F(a1 , a1 2a3 , a1 2a2 11; l21 )

u2
(Q) 4 (a3 2a1 ) F(a1 , a1 2a3 11, a1 2a2 11; l21 )

u3
(Q) 4 (a2 2a1 11) F(a22a3 , a2 , a2 2a1 11; l21 )

u4
(Q) 4 (a2 2a1 11) F(a2 2a3 11, a2 , a2 2a1 11; l21 )

(cf. [Po], §22, or, more precisely, [LDE], Lemma 24.1 for the solution at 0).

3.0.3 - We denote by W i a lifting of Frobenius to a formal neighborhood Ui

of i� ]0, 1 , Q(, adapted to i . Since W 0 (l) 4l p (11elu(l)) with NeNE1 and
u(l) � V elf , we have that

W 0 (l)b3

l a3
4lm 3 (11elv(l))
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where v(l) � V elf converges inside a disk of radius D1, and

U b
K
(0)s

(W 0 (l))g (W 0 ) (aK, b
K

; l)t 4 uj 1
(0) (aK, b

K
)

0

0

j 2
(0) (aK, b

K
)

W 0 (l)b3

l a3

v UaK
(0)

(l) .

Similarly,

U b
K
(1)s

(W 1 (l)) g (W 1 ) (aK, b
K

; l)t4uj 1
(1) (aK, b

K
)

0

0

j 2
(1) (aK, b

K
)

(12W 1 (l))b11b22b3

(12l)a11a22a3

v UaK
(1)

(l)

and

U b
K(Q)s (W Q (l)) g (W Q ) (aK, b

K
; l)t

4 uj 1
(Q) (aK, b

K
)

l a1

W Q (l)b1

0

0

j 2
(Q) (aK, b

K
)

l a2

W Q (l)b2

v UaK
(Q) (l) .

Inspection of the dominant terms at l40, 1 , Q , makes it clear that, for any i
40, 1 , Q and j41, 2 , the functions j (i)

j (aK, b
K

) have the same p-adic meromor-
phic behavior as the entries of the function g (W i ) (aK, b

K
; l), with possibly some

extra poles. This might be surprising, since the matrix UaK
(i) (l) itself is not a p-adic

meromorphic function of (aK, l).

3.1 - Determination of Frobenius matrix

3.1.1 - For the calculations we use notation and results of [Ku]. In that paper,
Dwork investigates the effect of Kummer transformations on the solutions of the
hypergeometric equation. We need a generalized form of the theorem in [Ku], §4,
where only the standard lifting of Frobenius lOl p is considered. We rewrite the
original statement as

Hm (aK, l) ggMm (aK), Mm ( b
K

); w m (l), w m (l p )h4g(aK, b
K

, l) Hm
s ( b

K
, l p )

(this is possible once we make explicit hm (aK, b
K

, l) 4hm (aK, l) /hm
s ( b

K
, l p ) and
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Hm (aK, l) 4hm (aK, l)Nm (l) in the original formula

hm (aK, b
K

, l) ggMm (aK), Mm ( b
K

); w m (l), w m (l p )h4Nm (l)21 g(aK, b
K

, l) Nm (l p )

of Dwork’s article). Our generalized statement is then

T h e o r e m . Let l O W(l) be a function analytic in a region of the type

inf ]NlN , Nl21N , N12lN( D12e

for some eD0 and «close to Frobenius», in the sense that

NW(l)2l pNE1

for every l for which NlN41 4N12lN. Then

Hm (aK, l) ggMm (aK), Mm ( b
K

); w m (l), w m (W(l) )h4g(aK, b
K

; l , W(l) ) Hm
s ( b

K
, W(l) ).

We also write the previous formula in the form

Hm (aK, l) g (W)gMm (aK), Mm ( b
K

); w m (l)h4g (W) (aK, b
K

; l) Hm
s ( b

K
, W(l) ) .

P r o o f . We first use formula (3.1.7) of [Ku] for the variation of the lifting of
Frobenius, we then apply the original statement, then formula (2.9) of [Ku] (beha-
viour of solutions under Kummer transformations) and finally again (3.1.7) of
[Ku]:

Hm (aK, l) g (W)gMm (aK), Mm ( b
K

); w m (l)h

4Hm (aK, l) g (l O lp )gMm (aK), Mm ( b
K

); w m (l)h CMm ( b
K

) (w m (W(l) ), w m (l p ))t

4g (l O lp ) (aK, b
K

; l) Hm
s ( b

K
, l p ) CMm ( b

K
) (w m (W(l) ), w m (l p ))t

4g (l O lp ) (aK, b
K

; l) Cb
K (W(l), l p )t Hm

s ( b
K

, W(l) )

4g (W) (aK, b
K

; l) Hm
s ( b

K
, W(l) ) . r

3.1.2 - Notation

In the following formulas we use Dwork’s symbol g p (x , y) defined in [LDE],
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ch. 21, for py2x4m�Z and d(x , Z) Gp 21 , by

g p (x1m , y1n) 4 (2p)n2m G(x1m) G(y)

G(x) G(y1n)
g p (x , y)

for any m , n�Z and

g p (x , y) 4pm G p (x)

if m� ]0, 1 , R , p21(. Here p is a fixed element in Qp such that p p21 42p . We
recall also the symplectic relation

g p (x , y) g p (12x , 12y) 4 (2)py2x p

(equivalent to G p(x) G p(12x)42(2)t with tf2x mod p , t� ]0, R , p21().

3.1.3 - For the Frobenius matrix at the origin, Dwork [LDE], ch. 25 obtains the
values:

j 1
(0) (aK, b

K
) 4

g p (a2 , b2 ) g p (a3 2a2 , b3 2b2 )

g p (11a3 , 11b3 )

j 2
(0) (aK, b

K
) 4 (2)m 22m 3

g p (a3 21, b3 21) g p (12a1 , 12b1 )

g p (11a3 2a1 , 11b3 2b1 )
.

We complete his calculations:

3.1.4 - T h e o r e m .

j j
(1) (aK, b

K
) 4 (2)m 2 j j

(0)gM (1) (aK), M (1) ( b
K

)h

j j
(Q) (aK, b

K
) 4 (2)m 11m 22m 3 j j

(0)gM (Q) (aK), M (Q) ( b
K

)h

where j41, 2 and

M (1) (aK) 4 (a1 , a2 , a1 1a2 2a3 )

M (Q) (aK) 4 (a1 , a1 2a3 , a1 2a2 ) .

P r o o f . The argument is to compare the Frobenius action at infinity with the
Frobenius action at the origin by using the transformation w 9 of [Ku]; then to
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compare the Frobenius at 1 with the one at infinity by using the transformation
w 11 of [Ku]. We need for a lemma relating the analytic part of solutions at a point
and its image:

3.1.5 - L e m m a .

UaK
(Q) (l) 4UM9 ( aK)

(0) (w 9 (l) ) N9
t

UaK
(1) (l) 4UM5 ( aK)

(0) (w 5 (l) ) N5
t

UaK
(1) (l) 4UM11 ( aK)

(Q) (w 11 (l) ) N11
t

where the transformations are named after Dwork’s tables in [Ku]. In particular
w 9 (l) 4l21 , w 5 (l) 412l , w 11 (l) 4 (12l)21.

P r o o f o f t h e L e m m a . For convenience we report the essential infor-
mation about the transformations we need, from Dwork’s tables in [Ku]:

yw 9 (l) 4l21

h9 (aK, l) 4 (2)a32a12a2 l2a1

h9 (aK, b
K

, l) 4 (2)m 11m 22m 3 l2m 1

M9 (aK) 4 (a1 , a1 2a3 , a1 2a2 )

N9 (aK) 4 g1
1

0
21

h

yw 5 (l) 412l

h5 (aK, l) 4 (2)a2

h5 (aK, b
K

, l) 4 (2)2m 2

M5 (aK) 4 (a1 , a2 , a1 1a2 2a3 )

N5 (aK) 4 g0
1

1
0
h

yw 11 (l) 4 (12l)21

h11 (aK, l) 4 (2)a32a2 (12l)2a1

h11 (aK, b
K

, l) 4 (2)m 22m 3
(12l p )b1

(12l)a1

M11 (aK) 4 (a1 , a3 2a2 , a1 2a2 )

N11 (aK) 4 g1

1

21

0
h .

Moreover Hm (aK, l) 4hm (aK, l)Nm (aK).
From [Ku], §2, for a solution matrix CaK (x , l) of the hypergeometric system at

a point x , then CMm ( aK) (x , w m (l) )Hm (aK, l)t is a solution matrix of the hypergeo-
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metric equation at w m (x). So

u1

0

0

w 9 (l)2M9 ( aK)3
v UM9 ( aK)

(0) (w 9 (l) ) H9 (aK, l)t 4 gl2a1

0

0

l2a2
h UM9 ( aK)

(0) (w 9 (l) ) N9
t

is a solution at infinity; comparing with the solution in 3.0.2 we obtain the first
formula.

For the second we start with

u1

0

0

w 5 (l)2M5 ( aK)3
v UM5 ( aK)

(0) (w 5 (l) ) H5 (aK, l)t

4 g1

0

0

(12l)a32a12a2
h UM5 ( aK)

(0) (w 9 (l) ) N5
t ,

a solution matrix at 1, and compare it with the given solution at that point. For
the third we begin with

uw 11 (l)2M11 ( aK)1

0

0

w 11 (l)M11 ( aK)22M11 ( aK)3

v UM11 ( aK)
(Q) (w 11 (l) ) H11 (aK, l)t

4 g1

0

0

(12l)a32a12a2
h UM11 ( aK)

(Q) (w 11 (l) ) N11
t

and use the same argument. r

We now come to the proof of our theorem. For the second formula, we use the
standard lifting of Frobenius, adapted to the origin and to infinity, l O l p , to
write

Ub
K(Q)s (l p ) g(aK, b

K
; l)t 4 uj 1

(Q) (aK, b
K

) lm 1

0

0

j 2
(Q) (aK, b

K
) lm 2

v UaK
(Q) (l) .

Using the lemma and the following formula of [Ku] §4:

g(aK, b
K

; l)t 4hm (aK, b
K

; l) Nm* ggMm (aK), Mm ( b
K

); w m (l)h
t
Nm

t ,
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for m49 and h9 (aK, b
K

; l) 4 (2)m 11m 22m 3 lm 1 , we obtain

UM9 ( b
K

)
(0)s g 1

l p h g gM9 (aK), M9 ( b
K

);
1

l
ht

4 (2)m 11m 22m 3uj 1
(Q) (aK, b

K
)

0

0

j 2
(Q) (aK, b

K
) lm 22m 1

v UM9 ( aK)
(0) g 1

l
h .

(Q8)

On the other side, from the solution at the origin, by using M9 (aK) instead of aK

and 1 /l instead of l , we can write:

UM9 ( b
K

)
(0)s g 1

l p h g gM9 (aK), M9 ( b
K

);
1

l
ht

4 uj 1
(0) (M9 (aK), M9 ( b

K
) )

0

0

j 2
(0) (M9 (aK), M9 ( b

K
) ) l2M9 (mK)3

v UM9 ( aK)
(0) g 1

l
h .

(Q9)

Comparing (Q8) with (Q9), and defining M (Q) 4M9 , we conclude.
For the first formula of the theorem, we consider the lifting of Frobenius,

adapted to one and infinity, l O W(l) 412 (12l)p , and we write

U b
K
(1)s

(W(l) ) g (W) (aK, b
K

; l)t 4 uj 1
(1) (aK, b

K
)

0

0

j 2
(1) (aK, b

K
)(12l)m 11m 22m 3

v UaK
(1)

(l) .

By the lemma, and replacing (12l)21 by l , we have

UM11 ( b
K

)
(Q)s (l p ) N11

t g (W)gaK, b
K

; 12
1

l
ht

4 uj 1
(1) (aK, b

K
)

0

0

j 2
(1) (aK, b

K
) lm 32m 12m 2

v UM11 ( aK)
(Q) (l) N11

t .

Now, the transformation w 7 is inverse to w 11 . We use again the formula of [Ku]
§4, specialized to

g (W) (aK, b
K

; w 7 (l) )t 4h7 (M11 (aK), M11 ( b
K

); l)21 N7
t g (W) (M11 (aK), M11 ( b

K
); l)t N7*
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with h7 (M11 (aK), M11 ( b
K

); l) 4 (2)2M11 (mK)2 l M11 (mK)1 4 (2)m 32m 2 lm 1 , to obtain

UM11 ( b
K

)
(Q)s (l p ) g (W) (M11 (aK), M11 ( b

K
); l)t

4 (2)m 22m 3uj 1
(1) (aK, b

K
) lm 1

0

0

j 2
(1) (aK, b

K
) lm 32m 2

v UM11 ( aK)
(Q) (l) .

(18)

On the other side, using the solution at infinity, and M11 (aK) instead of aK, we can
write:

(19)

U (Q)s
M11 ( b

K
) (l

p ) g (W) (M11 (aK), M11 ( b
K

); l)t

uj 1
(Q) (M11 (aK), M11 ( b

K
) ) l M11 (mK)1

0

0

j 2
(Q) (M11 (aK), M11 ( b

K
) ) l M11 (mK)2

v UM11 ( aK)
(Q) (l) .

Again, comparing (18) and (19) gives the equalities, for j41, 2 ,

j j
(1) (aK, b

K
) 4 (2)m 22m 3 j j

(Q)gM11 (aK), M11 ( b
K

)h .

Finally, using the formulae for j j
(Q) , we obtain the results, where we define

M (1) »4M5 4M9 i M11 . r

3.2 - The unit root subcrystal

We know that, under the conditions m
K

� ]0, 1 , R , p21(3 and

m 3 E min (m 1 , m 2 )(1)

or

m 3 D max (m 1 , m 2 ) ,(2)

for any lifting Frobenius W the matrix g (W) (aK, b
K

; l) is of the form

g A

pC

B

pD
h(1)

or

gpA

C

pB

D
h ,(2)
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respectively, where A , B , C , D are analytic functions, bounded by 1 on a domain
of the form D(2 m

K, p 21 )3 Se where

Se4D(0 , e21 )0(D(0 , e)ND(1 , e) )

for e� (0 , 1 ).
Moreover, for each m

K as before, there is a polynomial FmK (l) �Z[l], of degree
p21, such that the region NFmK (l)NE1, consists of p21 residue classes, called
supersingular with the property that, for any hypergeometric system with para-
meters aK �D(2 m

K, p 21 ), on all classes D(z , 12 ) not singular nor supersingular,
one has NA(z)N41 (resp. ND(z)N41) in case (1) (resp. (2)).

In case (2) we define

R2 4 maK �Zp
3 Nm a3

(i) D max (m a1
(i) , m a2

(i) ) (in

H2 4 ml�PCp
1 rig N) aK �R2s.t. NFmK (l)NE1n

S2 4PCp
1 rig 0( singular classesNH2 ) .

So S2 is the complement of a finite number of residue classes, and, for any lifting
of Frobenius W : S2 K S2 we consider the map

W : R2 3 S2

(aK, l)

K

O

R2 3 S2

(aK8 , W(l) ) .

The search for the unit root F-subcrystal entails to write the bounded solution in-
side a residue class D(z , 12 ) % S2 as (hu , u). Such a solution is an eigenvector of
Frobenius with a unit eigenvalue:

W*(hu , u) g (W) 4j(hu , u)

with NjN41. So we have

h4
pAW*(h)1C

pBW*(h)1D

and this proves the analyticity of h in R2 3 S2 , because the function

v O
pAW*(v)1C

pBW*(v)1D
(M)
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is a contraction of the Banach space of analytic functions bounded by 1 on
R2 3 S2 .

The unit root F-subcrystal is then defined over R2 3 S2 by

u 8

u
4

a3 2a1

12l
h1

a1 1a2 2a3

12l
.

Our main result is that, if W is adapted at the singular point z� ]0, 1 , Q(, then
the map M is a contraction of the space of analytic functions bounded by 1 on R2

3D(z , 12 ). Therefore h admits an extension inside the three singular classes
(unless they are at the same time supersingular!) and therefore the unit root F-
subcrystal also extends as a logarithmic F-subcrystal of the hypergeometric
system everywhere except on the supersingular locus. Moreover, this logarithmic
F-subcrystal is not singular (i.e. it is an F-crystal in the usual sense) in the class
D(z , 12 ) for z� ]0, 1 , Q( if and only if the bounded solution is holomorphic, that
is, if and only if Nj 1

(z) N41.

3.3 - The Koblitz-Diamond formula

Under the hypothesis aK �R2 we have Nj 1
(0) (aK, aK8 )N41, so the first row of

UaK
(0) is bounded by 1 , i.e. the unit F-subcrystal is not singular in the class

D(0 , 12 ). The hypothesis of the Koblitz-Diamond theorem implies in fact that the
same is true in the class D(1 , 12 ). Then under these hypotheses the unit root F-
subcrystal is a crystal in the usual sense in a region containing both classes
D(0 , 12 ) and D(1 , 12 ). The bounded solution in these two classes is (u1

(z) , u2
(z) )

and h4
u1

(z)

u2
(z)

.

Let W be a lifting of Frobenius to the formal affine line A×, adapted at 0 and 1: for

example one could take W g l

12l
h4 g l

12l
hp

. We note that, if w indicates the

transformation l O
l

12l
, one obtains

l4w21 (w(l) ) 4
t

11 t
i

l

12l

therefore

W(l) 4w21 (w(l)p ) 4
l p /(12l)p

11l p /(12l)p
4

l p

(12l)p 1l p
4l p (12plP(l) )21
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where P(l) 4 !
i41

p21 1

p
gp

i
h (2l)i21 , hence W(l) � O(A×). In similar way we ob-

tain

W(12l) 4 (12l)p (12p(12l) P(12l))21 .

From the formulas

W*(u1
(z) , u2

(z)) g (W) 4j 1
(z) (u1

(z) , u2
(z))

for z� ]0, 1(, we obtain

W*(u1
(z)) g 12

(W) 1W*(u2
(z)) g 22

(W) 4j 1
(z) u2

(z)

and (dividing by W*(u2
(z) ))

W*(h) g 12
(W) 1g 22

(W) 4j 1
(z) u2

(z)

W*(u2
(z))

for z� ]0, 1(. Then, if W is adapted to 0 and 1 , we have the equality

j 1
(0) (aK, aK8 )

a3

a38
F (W) (aK; l)

4j 1
(1) (aK, aK8 )

a1 2a3

a182a38
F (W) (a1 , a2 , a1 1a2 2a3 11; 12l)

as analytic functions on R2 3 (S2 ND(0 , 12 )ND(1 , 12 ) ). Now, we are dealing
with the Frobenius matrix F(W) for an F-crystal non-singular at 0 and 1, so we
can forget the restriction that W be adapted to the singularities, that is we can re-
place W in the equality with the standard Frobenius lOl p . Evaluation at l41
then gives

j 1
(0) (aK, aK8 )

a3

a38
F (aK; 1 ) 4j 1

(1) (aK, aK8 )
a1 2a3

a182a38

i.e.

F (aK; 1 ) 4
a38

a3

Q
a1 2a3

a182a38
Q

j 1
(1) (aK, aK8 )

j 1
(0) (aK, aK8 )

.

This equality is essentially the Koblitz-Diamond formula. In fact, for p b
K

2 aK 4 m
K,
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we can rewrite the r.h.s. as

b3

a3

Q
a1 2a3

b1 2b3

Q
j 1

(1) (aK, b
K

)

j 1
(0) (aK, b

K
)

4 (2)m 2
b3

a3

Q
a1 2a3

b1 2b3

Q
j 1

(0) (a1 , a2 , a1 1a2 2a3 , b1 , b2 , b1 1b2 2b3 )

j 1
(0) (aK, b

K
)

4(2)m 2
b3

a3

Q
a12a3

b12b3

Q
g p(a2 , b2) g p(a12a3 , b12b3) g p(11a3 , 11b3)

g p(a11a22a311, b11b22b311) g p(a2 , b2) g p(a32a2 , b32b2)

4 (2)m 2
g p (a1 2a3 11, b1 2b3 11) g p (a3 , b3 )

g p (a1 1a2 2a3 11, b1 1b2 2b3 11) g p (a3 2a2 , b3 2b2 )

4 (2)m 2
pm 12m 311 G p (a1 2a3 11) pm 3 G p (a3 )

pm 11m 22m 311 G p (a1 1a2 2a3 11) pm 32m 2 G p (a3 2a2 )

4 (2)m 2
G p (a1 2a3 11) G p (a3 )

G p (a1 1a2 2a3 11) G p (a3 2a2 )

4 (2)m 2
(2)m 12m 3

(2)m 11m 22m 3

G p (a3 2a2 2a1 ) G p (a3 )

G p (a3 2a1 ) G p (a3 2a2 )

4
G p (a3 2a2 2a1 ) G p (a3 )

G p (a3 2a1 ) G p (a3 2a2 )
.

4 - Appendix: determination of Frobenius eigenvalues via modular relations

4.1 - Our calculations are based on the Dwork’s article [Bo] §3. In particular,
we recall the interplay of the base change matrices B(aK, b

K
; l), for aK f b

K
mod Z ,

of loc. cit., with solutions

CaK (z , l) B(aK, aK1 uK; l)t 4B(aK, aK1 uK; z)t CaK1 uK (z , l)

and with Frobenius matrices

B(aK, aK1 uK; l) g (W) (aK, b
K

; l) 4g (W) (aK1 uK, b
K

1 vK; l) B( b
K

, b
K

1 vK; W(l) )

(the second formula follows from the first using the Frobenius action 3.0.1 on
solutions).
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4.1.1 - For z40, 1 , Q , we use the solution matrix of 3.0.2

CaK (z , l) 4 lz (l)Dz ( aK) U (z)
aK (l)

where lz (l) 4l , 12l , l21 , and

Dz (aK) 4 g0

0

0

2a3
h , g0

0

0

a3 2a1 2a2
h , ga2

0 a3
h ,

respectively. We notice that B(aK, aK1 uK; z)t CaK1 uK (z , l) is a solution at z of the

system
dY

dl
4YGaK1 uK (l), so that we can write

lz (l)Dz ( aK) U (z)
aK (l) B(aK, aK1 uK; l)t 4Dlz (l)Dz ( aK1 uK) U (z)

aK1 uK (l)

with D diagonal and, using that lz (l)Dz ( aK) is a diagonal matrix, the formula
gives

U (z)
aK1 uK (l) 4 ua (z)

1 (aK, uK)

0

0

a (z)
2 (aK, uK)

v lz (l)2Dz (uK) U (z)
aK (l) B(aK, aK1 uK; l)t .(4.1.2)

4.2 - From this we make explicit calculations at the singular points using the
solutions written in 3.0.2.

4.2.1 - L e m m a . With the previous notation we have the following values for
the terms a (z)

i : at the origin

a (0)
1 (aK, eK1 ) 41

a (0)
1 (aK, eK2 ) 4

a3 2a2 21

a2

a (0)
1 (aK, eK3 ) 4

a3 11

a3 2a2

a (0)
2 (aK, eK1 ) 4

a1

a1 2a3

a (0)
2 (aK, eK2 ) 421

a (0)
2 (aK, eK3 ) 4

a1 2a3 21

a3 21
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at 1

a (1)
1 (aK, eK1 ) 4

a1 1a2 2a3 11

a1 2a3

a (1)
1 (aK, eK2 ) 4

a3 2a1 2a2 21

a2

a (1)
1 (aK, eK3 ) 4

a1 2a3 21

a1 1a2 2a3

a (1)
2 (aK, eK1 ) 4

a1

a1 1a2 2a3 21

a (1)
2 (aK, eK2 ) 4

a2 2a3 11

a3 2a1 2a2 11

a (1)
2 (aK, eK3 ) 4

a1 1a2 2a3 22

a3 2a2

and at infinity

a (Q)
1 (aK, eK1 ) 4

a1 2a2 11

a3 2a1

a (Q)
1 (aK, eK2 ) 4

a3 2a2 21

a2 2a1

a (Q)
1 (aK, eK3 ) 4

a3 2a1 11

a3 2a2

a (Q)
2 (aK, eK1 ) 4

a1

a1 2a2 21

a (Q)
2 (aK, eK2 ) 4

a2 2a1 12

a2

a (Q)
2 (aK, eK3 ) 41 .

P r o o f . The computation follows in every case the strategy of the previous
section. For example, in the calculation of a (0)

i (aK, eK1 ), we specialize uK 4 eK1

4 (1 , 0 , 0 ) so aK1 uK 4 (a1 11, a2 , a3 ). From [Bo] we read

B(aK, aK1 eK1 ; l)t 4
1

a1
ua1 2a3

a3 2a2

(a1 2a3 )
l

l21

a1 2l(a3 2a2 )

12l

v
and we can specialize our general formula (4.1.2) to

U (0)
aK1 eK1

(l) 4 ua (0)
1 (aK, eK1 )

0

0

a (0)
2 (aK, eK1 )

v I2 U (0)
aK (l) B(aK, aK1 eK1 ; l)t

(the singular parts in this case disappear). Using the solution matrix of 3.0.2 eva-
luated for l40 (i.e. we consider only the constant term of the expansion w.r.t. l),
we obtain:

ga3 2a2

12a3

a3

0
h4 ua (0)

1 (aK, eK1 )

0

0

a (0)
2 (aK, eK1 )

v ga3 2a2

12a3

a3

0
h 1

a1
ga1 2a3

a3 2a2

0

a1
h
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from which the results for a (0)
1 (aK, eK1 ) and a (0)

2 (aK, eK1 ) follow:

a1ga3 2a2

12a3

a3

0
h4 ua (0)

1 (aK, eK1 )

0

0

a (0)
2 (aK, eK1 )

v u a1 (a3 2a2 )

(12a3 )(a1 2a3 )

a1 a3

0
v .

In other cases a more precise evaluation of the matrix solution is necessary. For
example, in the calculation of a (1)

i (aK, eK1 ) we can specialize our general formula
(4.1.2) to

U (1)
aK1 eK1

(l) 4 ua (1)
1 (aK, eK1 )

0

0

a (1)
2 (aK, eK1 )

v g1

0

0

(12l)
h U (1)

aK (l) B(aK, aK1 eK1 ; l)t .

In this case we use the evaluation at l41 and it is convenient to write the matrix
B(aK, aK1 eK1 ; l)t in the form

B(aK, aK1 eK1 ; l)t 4
1

a1
ua1 2a3

a3 2a2

(a1 2a3 )1 (a1 2a3 )
1

l21

(a3 2a2 )1 (a1 1a2 2a3 )
1

12l

v .

We need the lowest order term in the expansion w.r.t. (12l) for the solution
given in 3.0.2. We obtain the equality

a1ga1 1a2 2a3 11

0

a1 2a3 11

a1 1a2 2a3
h

4 ua (1)
1 (aK, eK1 )

0

0

a (1)
2 (aK, eK1 )

v ua1 (a1 2a3 )

0

a1 (a1 2a3 )
a1 2a3 11

a1 1a2 2a3 11

(a1 1a2 2a3 )(a1 1a2 2a3 11)

v
from which the result follows. The other cases are obtained in a similar
way. r

4.2.2 - We have the obvious relations

a (z)
i (aK, uK1 vK) 4a (z)

i (aK1 uK, vK) a (z)
i (aK, uK) and a (z)

i (aK, 0
K

) 41 .

So, if we write

a (z)
i (aK, uK) 4

W (z)
i (aK1 uK)

W (z)
i (aK)

we have the following
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L e m m a .

W (0)
1 (aK)

W (1)
1 (aK)

W (Q)
1 (aK)

4
G(a311)

G(a2) G(a32a2)

4(2)a2
G(a11a22a311)

G(a2) G(a12a3)

4(2)a11a21a3
G(a12a211)

G(a32a2) G(a12a3)

W (0)
2 (aK)

W (1)
2 (aK)

W (Q)
2 (aK)

4(2)a2
G(a1)

G(a12a3) G(a321)

4
G(a1)

G(a11a22a321) G(a32a2)

4(2)a2
G(a1)

G(a12a221) G(a2)
.

P r o o f . This follows directly from the previous lemma, using the functional
equation G(x11) 4xG(x) (i.e. G(x21) 4G(x) /(x21)) for the (classical) Gamma
function. r

4.3 - We now deduce the modular properties of the Frobenius eigenvalues
j i

(z) (aK, b
K

) in terms of the a (z)
i (aK, uK). The Frobenius action of 3.0.1 adapted to a

singular point, on solutions at the same point, gives

lz (W(l) )Dz ( b
K

) U b
K(z) (W(l) ) g (W) (aK, b

K
; l)t 4 uj 1

(z) (aK, b
K

)

0

0

j 2
(z) (aK, b

K
)
v lz (l)Dz ( aK) UaK

(z)(l)

and, the singular part of solutions being diagonal,

U b
K
(z) (W(l) ) g (W) (aK, b

K
; l)t4uj 1

(z) (aK, b
K

)

0

0

j 2
(z) (aK, b

K
)
v lz (l)Dz ( aK) lz (W(l) )2Dz ( b

K
) UaK

(z) (l) .

We make the substitutions aK to aK1 uK and b
K

to b
K

1 vK:

U b
K

1 vK
(z) (W(l) ) g (W) (aK1 uK, b

K
1 vK; l)t

4 uj 1
(z) (aK1 uK, b

K
1 vK)

0

0

j 2
(z) (aK1uK, b

K
1 vK)

v lz (l)Dz ( aK1uK) lz (W(l) )2Dz ( b
K

1 vK) UaK1uK
(z) (l) ,

then we apply the translation formulas on solutions and Frobenius:

ua (z)
1 ( b

K
, vK)

0

0

a (z)
2 ( b

K
, vK)

v lz (W(l) )Dz ( b
K

)2Dz ( b
K

1 vK) U (z)
b
K (W(l) ) B( b

K
, b

K
1 vK; W(l) )t

B( b
K

, b
K

1 vK; W(l) )* g (W) (aK, b
K

; l)t B(aK, aK1 uK; l)t
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4 uj 1
(z) (aK1 uK, b

K
1 vK)

0

0

j 2
(z) (aK1 uK, b

K
1 vK)

v lz (l)Dz ( aK1 uK) lz (W(l) )2Dz ( b
K

1 vK)

ua (z)
1 (aK, uK)

0

0

a (z)
2 (aK, uK)

v lz (l)Dz ( aK)2Dz ( aK1 uK) U (z)
aK (l) B(aK, aK1 uK; l)t .

We finally make the possible simplifications and use Frobenius on the left

ua (z)
1 ( b

K
, vK)

0

0

a (z)
2 ( b

K
, vK)

v uj 1
(z) (aK, b

K
)

0

0

j 2
(z) (aK, b

K
)
v lz (l)Dz ( aK) UaK

(z) (l)

4uj 1
(z)(aK1uK, b

K
1vK)

0

0

j 2
(z)(aK1uK, b

K
1vK)

v ua (z)
1 (aK,uK)

0

0

a (z)
2 (aK,uK)

v lz(l)Dz( aK)U (z)
aK (l) .

From this formula we deduce

ua (z)
1 ( b

K
, vK)

0

0

a (z)
2 ( b

K
, vK)

v uj 1
(z) (aK, b

K
)

0

0

j 2
(z) (aK, b

K
)
v

4 uj 1
(z) (aK1 uK, b

K
1 vK)

0

0

j 2
(z) (aK1 uK, b

K
1 vK)

v ua (z)
1 (aK, uK)

0

0

a (z)
2 (aK, uK)

v

that is

j i
(z) (aK1 uK, b

K
1 vK) 4

a (z)
i ( b

K
, vK)

a (z)
i (aK, uK)

j i
(z) (aK, b

K
)

for i41, 2 , which express the modular properties of j i
(z) (aK, b

K
).

4.3.1 - L e m m a . Let w(aK, b
K

) be a function defined for all (aK, b
K

) �D(0 , 1 )6 ,
with p b

K
2 aK �Z3 . We assume that w is a p-adic analytic function of (aK, b

K
), for
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fixed m
K

4p b
K

2 aK �Z3 , subject to the modular properties

w(aK1 uK, b
K

1 vK) 4
a( b

K
, vK)

a(aK, uK)
w(aK, b

K
)

for every u , v�Z3 with

a(aK, uK) 4
W(aK1 uK)

W(aK)

and

W(aK) 4
G(l 1 (aK) )

G(l 2 (aK) ) G(l 3 (aK) )

where the l i (aK) are linear functions of a1 , a2 , a3 . Then, up to a multiplicative
constant, w is of the form

w(aK, b
K

) 4
g p (l 2 (aK), l 2 ( b

K
) ) g p (l 3 (aK), l 3 ( b

K
) )

g p (l 1 (aK), l 1 ( b
K

) )
.

P r o o f . It is sufficient to check the modular properties for w(aK, b
K

): we
have

w(aK1 uK, b
K

1 vK)

w(aK, b
K

)
4

W(aK)

W(aK1 uK)

W( b
K

1 vK)

W( b
K

)

4
G(l 1(aK))

G(l 2(aK)) G(l 3(aK))

G(l 2(aK1uK)) G(l 3(aK1uK))

G(l 1(aK1uK))

G(l 1( b
K

1vK))

G(l 2( b
K

1vK)) G(l 3( b
K

1vK))

G(l 2( b
K

)) G(l 3( b
K

))

G(l 1( b
K

))

4
G(l 1(aK)) G(l 1( b

K
)1l 1( vK))

G(l 1(aK)1l 1(uK)) G(l 1( b
K

))

G(l 2(aK)1l 2(uK)) G(l 2( b
K

))

G(l 2(aK)) G(l 2( b
K

)1l 2( vK))

G(l 3(aK)1l 3(uK)) G(l 3( b
K

))

G(l 3(aK)) G(l 3( b
K

)1l 3( vK))

and the result follows using the modular properties of the function g p . r
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4.3.2 - C o r o l l a r y . For b
K

�D(0 , 1 )3 , p b
K

2 aK �Z3 , then:

j (0)
1 (aK, b

K
) 4

g p (a2 , b2 ) g p (a3 2a2 , b3 2b2 )

g p (a3 11, b3 11)

j (0)
2 (aK, b

K
) 4 (2)m 2

g p (a1 2a3 , b12b3 ) g p (a3 21, b3 21)

g p (a1 , b1 )

j (1)
1 (aK, b

K
) 4 (2)m 2

g p (a2 , b2 ) g p (a1 2a3 , b1 2b3 )

g p (a1 1a22a3 11, b1 1b2 2b3 11)

j (1)
2 (aK, b

K
) 4

g p (a1 1a2 2a3 21, b1 1b2 2b3 21) g p (a3 2a2 , b3 2b2 )

g p (a1 , b1 )

j (Q)
1 (aK, b

K
) 4 (2)m 11m 21m 3

g p (a3 2a2 , b3 2b2 ) g p (a1 2a3 , b1 2b3 )

g p (a1 2a2 11, b1 2b2 11)

j (Q)
2 (aK, b

K
) 4 (2)m 2

g p (a1 2a2 21, b1 2b2 21) g p (a2 , b2 )

g p (a1 , b1 )

up to multiplicative constants.

P r o o f . Use the previous lemma and the modular properties of the functions
j (z)

i for i41, 2 and z� ]0, 1 , Q(. r
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A b s t r a c t

In this paper, we define the notion of Dwork family of logarithmic F-crystals, a typi-
cal example of which is the family of Gauss hypergeometric differential systems, viewed
as parametrized by their exponents of algebraic monodromy. The p-adic analytic depen-
dence of the Frobenius operation upon those exponents, is Dwork’s «Boyarsky Principle».
We discuss, in favorable cases, the p-adic analytic continuation of the unit root F-sub-
crystal in the open tube of a singularity, uniformly w.r.t. the exponents.Using these ideas,
we obtain a conceptual proof of the Koblitz-Diamond formula p-adically analog to Gauss’
evaluation of F(a , b , c ; 1 ).

* * *


