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1 - Introduction: from torsion to small points

The former Manin-Mumford conjecture predicts that the set of torsion points
of a curve of genus F2 embedded in its jacobian is finite. More generally, let G
be a semi-abelian variety and V an algebraic subvariety of G , defined over some
algebraically closed field. We say that V is a torsion subvariety if V is a translate
of a proper subtorus by a torsion point of G . We also denote by Vtors the set of
torsion points of G lying on V . Then we have the following generalization of the
Manin-Mumford conjecture:

T h e o r e m 1.1. (i) If V is not a torsion subvariety, then the set Vtors of tor-
sion points of G lying on V is not Zariski dense.

(ii) The Zariski closure of Vtors is a finite union of torsion subvarieties.

The two assertions are clearly equivalent. Theorem 1.1 was proved by Ra-
ynaud ([Ray 1983]) when G is an abelian variety, by Laurent ([Lau 1984]) if
G4Gm

n , and finally by Hindry ([Hin 1988]) in the general situation.
We assume from now on that all varieties are algebraic, defined over Q and geo-

metrically irreducible. Bogomolov ([Bog 1981]) gave the following generalization of
the former Manin-Mumford conjecture: a curve C of genus F2 embedded in its jaco-
bian is discrete for the metric induced by the Néron-Tate height. In other words, Bo-
gomolov conjectures that the set of points of «sufficiently small» height on C is finite,
while the former Manin-Mumford conjecture makes a similar assertion on the set of
torsion points (which are precisely the points of zero height).

More generally, let G be a semi-abelian variety and let h× be a normalized hei-
ght on G(Q). Hence, h× is the Neron-Tate height if G is abelian, and it is the Weil
height if G4Gm

n %KPn (see section 2 for details); in particular h× is a non-negative
function on G and h×(P) 40 if and only if P is a torsion point. Given an algebraic
subvariety of G , we denote by V * the complement in V of the Zariski closure of
the set of torsion points of V . Therefore, by theorem 1.1, V0V *4 Vtors is a finite
union of torsion varieties.

T h e o r e m 1.2. Let V be a subvariety of a semi-abelian variety G . Then:

(i) If V is not a torsion subvariety, then there exists uD0 such that the set
V(u) 4 ]P�V such that h×(P) Gu( is not Zariski dense in V .
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(ii) V * is discrete for the metric induced by h×, i.e.

inf ]h×(P) such that P�V *( D0 .

It is easy to see that the two assertions are equivalent. In this formulation,
Theorem 1.2 was proved for G4Gm

n by Zhang (see [Zha 1995]). In the abelian ca-
se, Ullmo (see [Ull 1998]) proved Bogomolov’s original formulation for curves
(dim (V) 41); immediately after Zhang (see [Zha 1998]) prove theorem 1.2. The
semi-abelian case was solved by David and Philippon (see [Dav-Phi 2000]).

In this article we describe some quantitative versions of Theorem 1.2 for a to-
rus G4Gm

n and we sketch proofs of theorems which prove these conjectures «up
to an e».

The plan of the paper is as follows: in section 2 we introduce the normalized
height and the essential minimum of an algebraic subvariety of Gm

n . In section 3
we recall the main conjectures and results on the essential minimum. Proofs will
be sketched in section 4. Finally, in the last section, we give some more precise
conjectures and results on the distribution of points of small heights («small
points»).

2 - Heights

Let a� Q and let K be any number field containing a . We denote by MK the
set of places of K . For v�K , let Kv be the completion of K at v and let N QNv be the
(normalized) absolute value of the place v . Hence

NaNv 4NsaN ,

if v is an archimedean place associated with the embedding s : K %KQ. If v is a
non archimedean place associated with the prime ideal [ over the rational prime,
we have

NaNv 4p 2l/e ,

where e is the ramification index of [ and l is the exponent of [ in the factoriza-
tion of the ideal (a) in the ring of integers of K . This standard normalization
agrees with the product formula

»
v� MK

NaN[Kv : Qv ]
v 41

which holds for any a�K *.
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We define the Weil height of a by

h(a) 4
1

[K : Q]
!

v� MK

[Kv : Qv ] log max ]NaNv , 1( .

It is easy to see that this definition does not depend on the field K containing a;
hence, it defines a function h : Q KR1 .

More generally, let a4 (a 0 : Q Q Q : a n ) �Pn (K) and let K be any number field
containing a 0 , R , a n . We define the Weil height of a by:

h(a) 4
1

[K : Q]
!

v� MK

[Kv : Qv ] log max ]Na 0Nv , R , Na nNv ( .

As before, this definition does not depend on the number field K; moreover it does
not depend on the projective coordinates of a (by the product formula).

The Weil height of an algebraic number is related to the Mahler measure of a
polynomial. Let f�C[x] be non-zero; then its Mahler measure is

M( f ) 4exp�
0

1

logNf (e 2pit )Ndt .

Let a 1 , R , a d be the roots of f and fd be its leading coefficient; by Jensen’s for-
mula we easily see that

M( f ) 4NfdN »
j41

d

max ]Na jN , 1( .(1)

Let f�Z[x] be the minimal polynomial of a over Z (i.e. f is irreducible in Z[x],
f (a) 40 and its leading coefficient is positive); from (1) it is also easy to see
that

h(a) 4
log M( f )

[Q(a) : Q]
.(2)

We now consider a torus Gm
n and we fix the «standard embedding»

i : Gm
n %KPn ,

i(x1 , R , xn ) 4 (1 : x1 : Q Q Q : xn ) .

This gives the height function h×(x1 , R , xn ) 4h(1 : x1 : Q Q Q : xn ). The following pro-
perties hold:
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(i) the function h× is a positive function on Gm
n (Q), vanishing only on its tor-

sion points;

(ii) h×(ab) G h×(a)1h×(b). Moreover, if z is a torsion point, h×(za) 4 h×(a) and if
n�N then h×(an ) 4nh×(a);

(iii) a subset of Gm
n (Q) of bounded height and bounded degree is finite.

2.1 - Hypersurfaces

We have a «natural» definition of height on hypersurfaces since we can extend
the Mahler measure to polynomials in several variables. Let f�C[x1 , R , xn ]; we
define its Mahler measure as:

M(P) 4exp�
0

1

Q Q Q�
0

1

logNf (e 2pit1 , R , e 2pitn )Ndt1 R dtn .

Let now K be a number field and let V be an hypersurface in Gm
n defined over

K:

V4 ]a�Gm
n such that f (a) 40(

for some polynomial f�K[x] (irreducible over Q[x]). We define:

h×(V) 4
1

[K : Q]
!

v� MK

[Kv : Qv ] log Mv ( f ) ,

where Mv ( f ) is the maximum of the v-adic absolute values of the coefficients of f
if v is non archimedean, and Mv ( f ) is the Mahler measure of sf if v is an archime-
dean place associated with the embedding s : K %KQ.

R e m a r k 2.1. If n41, then V4 ]a( and we have

h×(V) 4 h×(a) ,(3)

since Mv (x2a) 4 max ]1, NaNv ( (by (1)).

Let V be an arbitrary subvarieties of Gm
n . For l�N , we define

[l]21 V4 ]a�Gm
n such that al �V(

and

[l]V4 ]al such that a�V( .
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We are interested in relations between the degree (1) and the height of V , [l]21 V
and [l]V . For the degree we have:

deg ( [l]21 V) 4 l codim (V) deg (V)(4)

and

deg ( [l]V) 4
l dim (V) deg (V)

NKer ( [l] )OStab (V)N
,(5)

where Stab (V) 4 ]a�Gm
n such that aV4V( is the stabilizer of V . The first equa-

lity is easily proved, while the second one follows from the first and from

[l]21 [l]V4 0
v�Ker ( [l] )

vV .

For further references we remark that

NKer ( [l] )OStab (V)N4 l dim Stab (V) NKer ( [l] )O ( Stab (V) /Stab (V)0 )N ,(6)

where Stab (V)0 is the neutral component of Stab (V) (i.e. its connected component
containing 1).

Let us suppose that V is an hypersurface. We have

h×( [l]21 V) 4 h×(V)

and

h×( [l]V) 4
l n h×(V)

NKer ( [l] )OStab (V)N
.

Let f� Q[x] be an equation for V . Again, the first equality is clear, since f (xl ) is
an equation for [l]21 V and Mv ( f (xl ) ) 4Mv ( f ), while the second equality follows
from the first one and from the multiplicativity of Mv .

Let V f V1 be the sum of the absolute values of the coefficients of f�C[x] (the
«length» of f ). Since the maximum of NfN on the product of unit disks is bounded
by V f V1 , we have M( f ) GV f V1 . Moreover,

V f V1 G2d11R1dn M( f ) ,

(1) The degree of an algebraic set V’Gm
n is the degree of its Zariski closure in Pn .
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where d1 , R , dn are the partial degrees of f . If n41, this follows from (1) and
from usual formulas for the coefficients in C[x], while the general case can be
proved by induction on n , see [Mig 1992] for details.

Now, let V QV be any norm on C[x1 , R , xn ] such that

log V f V4 log V f V1 1o((deg f )111/(n21)) .(7)

We define an height on hypersurfaces of Gm
n by choosing the norm V QV at the ar-

chimedean places. We define

h(V) 4
1

[K : Q]
!

v� MK

[Kv : Qv ] log Hv ( f ) ,

where Hv ( f ) 4Mv ( f ) if v is non archimedean, and Hv ( f ) 4Vsf V if v is an archi-
medean place associated with the embedding s : K %KQ. Then, by the previous
discussion,

h×( [l]V) 4h( [l]V)1o(deg ( [l]V)111/(n21)) ,

as lK1Q . Using the relations between degree and height of V and [l]V we see
that

h×( [l]V) deg (V)

l deg ( [l]V)
4 h×(V)

and deg ( [l]V) G l n21 deg (V). We have proved:

R e m a r k 2.2. Let h(Q) be any height function on the hypersurfaces of Gm
n

defined at the archimedean places by a norm satisfying (7). Then

lim
l O Q

h( [l]V) deg (V)

l deg ( [l]V)
4 h×(V) .

2.2 - Subvarieties of arbitrary dimension

The last remark suggests a «simple» definition of normalized height on subva-
rieties of Gm

n , alternative to the one commonly used in Arakelov theory. We start
by choosing a height on the subvarieties. If V is a d dimensional subvariety and F
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is its Chow form (2), we can define the height h(V) as the height of the hypersur-
face in Gm

(d21)n defined by ]F40(, choosing any reasonable norm (i.e. satisfying
(7)) at the archimedean places. David and Philippon (see [Dav-Phi 1999]) prove
that the limit

h×(V) 4 lim
lK1Q

h( [l]V) deg (V)

l deg ( [l]V)

exists. It is easy to see (compute the Chow form) that this definition of normalized
height specializes in the previous ones if V is a point or if V is an hypersurface
(see [Dav-Phi 1999]). Moreover:

(i) the function h×(Q) is non-negative;

(ii) for every l�N we have

h×( [l]21 V) 4 l codim (V)21 h×(V)

and

h×( [l]V) 4
l dim (V)11 h×(V)

NKer ( [l] )OStab (V)N
.

(iii) for every torsion point z we have h×(zV) 4 h×(V).

Using property (iii) and (ii), we see that a torsion subvariety V4zH has hei-
ght zero. Indeed, if z is a torsion point and H is a subtorus, then h×(zH) 4 h×(H)
and h×(H) 4 h×( [l]H) 4 lh×(H) for any l�N (since H4 [l]H and NKer ( [l] )OHN

4 l dim (H)).
Are torsion varieties the only varieties of zero height? The answer is positive;

more precisely, this question is equivalent to the multiplicative analogue of the
former Bogomolov’s conjecture. To see this, let us define the essential minimum
m×ess (V) of a subvariety V as the infimum of the set of uD0 such that the
subset

V(u) 4 ]P�V such that h×(P) Gu(

is Zariski dense in V . Theorem 1.2 asserts that m×ess (V) 40 if and only if V is tor-
sion. By a special case of an inequality of Zhang (see [Zha 1995], theorem 5.2.), we

(2) i.e. the irreducible multihomogeneous polynomial F(u1 , R , ud21 ), where u j

4 (u j
0 , R , u j

n ), vanishing precisely if the intersection of V with the hyperplanes of coordina-
tes u1 , R , ud21 is non empty.
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also have

m×ess (V)G
h×(V)

deg (V)
G (dim (V)11) m×ess (V) .(8)

Hence h×(V) 40 if and only if m×ess (V) 40.

3 - Quantitative results

We are interested in lower bounds for the essential minimum of a non-torsion
subvariety V of G . These lower bounds will depend on some geometric invariants
of V , for instance its degree. Moreover, if we do not make any further geometric
assumption on the variety, they must also depend on its field of definition
(«arithmetic case»). Indeed, let H be any subgroup of Gm

n and let an be a sequence
of non-torsion points whose heights converge to zero (for instance, an

4 (21/n , R , 21/n )). Then, the varieties Vn 4Han have fixed degree deg (H) and
essential minimum m×ess (Vn ) G h×(an ) K0. In spite of that, if we also assume that V
is not a translate of a proper subgroup (even by a point of infinite order), then
Bombieri and Zannier ([Bom-Zan 1995]) proved that the essential minimum of V
can be bounded from below only in terms of the degree of V («geometric case»).
In the sequel, we formulate some sharp conjectures and we describe more recent
results in the arithmetic and in the geometric case.

The problem of finding sharp lower bounds for m×ess (V) for subvarieties of Gm
n

is a generalization of a famous problem of Lehmer. Let a be a non-zero algebraic
number of degree d which is not a root of unity. Lehmer (see [Leh 1993]) asks
whether there exists an absolute constant cD0 such that

h(a) F
c

d
.

This should be the best possible lower bound for the height (without any further
assumption on a), since h(21/n ) 4 (log 2) /n .

Lehmer’s conjecture is still open, but a celebrated result of Dobrowolski ([Dob
1979]) shows that it is almost true:

T h e o r e m 3.1 (Dobrowolski). For an algebraic number a of degree dF2
which is not a root of unity, we have

h×(a) F
d

1200
g log log d

log d
h3

.
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Our aim is to generalize Lehmer’s problem and Dobrowolski’s theorem (origi-
nally stated on Gm) to Gm

n . Let V be a subvariety of Gm
n and let K be a subfield of

Q. We denote by VK the algebraic set

0
s�Gal (Q /K)

sV

and we remark that deg (VK) 4 [LK : K] deg (V), where L is the field of definition
of V . Let us define the «obstruction index» v K (V) of V over K as the minimum of
deg (ZK) where Z is an hypersurface containing V .

For instance, if V4 ]a( ’Gm we have v K (a) 4 [K(a) : K] and, if V4 ]a(

’Gm
n ,

v K (V) Gn[K(a) : K]1/n(9)

by a linear algebra argument. More generally, if Z is any subvariety of Gm
n contai-

ning V ,

v K (V) Gn deg (ZK)1/codim (Z)
(10)

by a result of Chardin ([Cha 1988]).
It turns out that v Q (V), and not the degree of VQ , is the right invariant to for-

mulate the sharpest conjectures on m×ess (V) in the «arithmetic case». Similarly,
v Q (V), and not deg V , is the right invariant in the «geometric case».

3.1 - Arithmetic case

We propose the following conjecture, which generalizes Lehmer’s one:

C o n j e c t u r e 3.2. Let V be a subvariety of Gm
n and assume that V is not

contained in any torsion subvariety. Then, there exist a constant c(n) such
that

m×ess (V) F
c(n)

v Q (V)
.

We remark that a 0-dimensional variety V4 ]a( is contained in a torsion sub-
variety if and only if a 1 , R , a n are multiplicatively dependent (indeed a subtorus
of Gm

n is contained in a subtorus of codimension 1 , which has equation x1
l 1

R xn
l n

461 for some integers l 1 , R , l n).
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In [Amo-Dav 1999] (case dim V40), [Amo-Dav 2000] (case codim V41) and
[Amo-Dav 2001] (general case) the following analogue of Dobrowolski theorem
on Gm

n is proved:

T h e o r e m 3.3. Let V be a subvariety of Gm
n of codimension k and assume

that V is not contained in any torsion subvariety. Then there exists two positive
constants c(n) and k(k) such that

m×ess (V) F
c(n)

v Q (V)
(log 3v Q (V))2k(k)

.

This theorem sometimes produces lower bounds for the height of algebraic
numbers which are even stronger than what is expected by Lehmer’s conjecture.
Let a 1 , R , a n multiplicatively independent algebraic numbers of height Gh ,
lying in a number field of degree D . Let V4 ]a(. Then m×ess (V) Gh and, by
(9),

v Q (V) GnD 1/n .

Thus, by theorem 3.3,

hF
c(n)

D 1/n
(log 3D)2k(n) ,

for some c(n) D0.

3.2 - Geometric case

Assuming that the subvariety V is not a translate of a subgroup, we now look
for lower bounds for m×ess (V) which do not depend on the field of definition of V .
Then we have ([Amo-Dav 2003]) the following conjecture which is the analogue of
conjecture 3.2.

C o n j e c t u r e 3.4. Let V be a subvariety of Gm
n and assume that V is not

contained in any translate of a proper subgroup. Then, there exists a positive
constant c(n) such that

m×ess (V) F
c(n)

v Q (V)
.

In the same paper the following analogue of theorem 3.3 is proved:
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T h e o r e m 3.5. Let V be an irreducible subvariety of Gm
n of codimension k

and assume that V is not contained in any translate of a proper subgroup. Then
there exist two positive constants c(n) and l(k) such that

m×ess (V) F
c(n)

v Q (V)
(log 3v Q (V))2l(k)

.

4 - Methods

We now describe the methods of the proofs of theorems 3.3 and 3.5. By con-
tradiction, we assume that the essential minimum is sufficiently small. We then
follow the usual steps of a transcendence proof: interpolation (construction of an
auxiliary function), extrapolation, zero estimates and conclusion. For subvariety of
codimension kD1, we need a rather technical extra step (descent argument). At
the end of the proof, we obtain a contradiction which shows that the assumption
on the essential minimum was false.

As usual, we introduce some parameters which depend on the obstruction in-
dex of V (and on the dimension n). A parameter L which bounds from above the
degree of the auxiliary function, T which bounds from below the multiplicity of the
auxiliary function on V , and k parameters N1 , R , Nk which control the set on
which we shall extrapolate.

To simplify our exposition, we start with the case where V is an hypersurface.
In this simpler case, the zero estimate are trivial in both arithmetic and geometric
case, since the varieties have codimension 1 . Moreover we can conclude without
the descent argument.

Afterwards, we consider varieties of arbitrary dimension, with an extra assumption
which allows us to avoid again the descent. In this case the zero estimates we need are va-
riants of Philippon’s zero estimate (see [Phi 1986] and [Phi 1996]).

Finally (section 4.3) we give a sketch of the final step of the proofs of Theo-
rems 3.3 and 3.5 in the more general situation.

4.1 - Hypersurfaces

Let V be an hypersurface in Gm
n and assume that V is non-torsion (arithmetic

case) or that V is not a translate of a subgroup (geometric case). Let

K4
.
/
´

Q ( arithmetic case );

Q ( geometric case )



13SMALL POINTS ON SUBVARIETIES...[13]

and define v4 deg (VK). Let also (3)

NB

TB

(log v)2

log log v
;

.
`
/
`
´

log v

log log v
( arithmetic case );

N log v

log log v
( geometric case )

and LBT 2 v .
We suppose that the essential minimum of V is small:

m×ess (V) b

.
`
/
`
´

log v

NL
( arithmetic case ) ;

log v

L
( geometric case ) .

(11)

4.1.1 - I n t e r p o l a t i o n

In the arithmetic case the auxiliary function is a polynomial with rational inte-
ger coefficients, degree GL , vanishing on V with multiplicity at least T and of
«small» height (4).

Let S’Gm
n (Q) and define L(S) to be the vector space of polynomials with ra-

tional coefficients, degree GL , vanishing on S with multiplicity FT . Let us assu-
me that S is a set of bounded height and that L4L(S) is a vector space of non-
negative finite dimension. Using Bombieri-Vaaler’s version of Siegel’s lemma
([Bom-Vaa 1983]) we can prove that there exists a non-zero F�L with integer
coefficients satisfying

h(F) Gr( (T1n) log (L11)1L sup
a�S

h(a) ) ,

(3) The symbols B, b and c have the following meaning: ABB if and only if A
4c(n) B with c(n) D0. The constant c(n) is assumed to be sufficiently large (or small) in
such a way that the forthcoming assumptions are verified. Similarly, AbB (or BcA) if and
only if AGc(n)B where c(n) D0 has the same meaning as before.

(4) Let F� Q[x] be a polynomial of n variables and of total degree d . Let N4 gd1n
n

h.

The height h(F) of F is the Weil height of the vector f �PN21 (Q) of its coefficients.



14 FRANCESCO AMOROSO [14]

where

r4

gL1n
n

h2dim L(S)

dim L(S)
.

Let uD m×ess (V) and let V(u) be the set of points on V of height Gu . Then L(V)
4L(V(u) ) (since V(u) is Zariski dense on V) and

dim L(V) 4 uL2Tv1n

n
v .

By the previous application of Siegel’s lemma, there exists a non-zero polynomial
F�Z[x1 , R , xn ] of degree at most L , vanishing on V with multiplicity at least T ,
and of height

h(F) Gr((T1n) log(L11)1Lu) ,

where

r4

gL1n
n

h2 gL2Tv1n
n

h
gL2Tv1n

n
h b

Tv

L
.

By our choice of parameters (and by the assumption on m×ess (V)) we have
h×(F) b log v .

The construction in the geometric case is similar, but we need to avoid any de-
pendence on the field of definition of V . For this, we use an absolute Siegel’s lem-
ma (see [Dav-Phi 1999], lemma 4.7) which is a consequence of Zhang’s inequality
(see [Zha 1995], theorem 5.2). The auxiliary function is now a non-zero polynomial
F with algebraic integers coefficients, whose degree, multiplicity on V and height
satisfy the same conditions as before.

4.1.2 - E x t r a p o l a t i o n

In the arithmetic case we extrapolate on some «multiples» of V . Let [ be the
set of prime numbers p such that N/2 GpGN . Using a variant of Dobrowolski’s
main lemma ([Dob 1979], lemma 1) and a density argument, we prove that our au-
xiliary function must vanish on [p]V for all p�[ .

Indeed, if F does not vanish on some [p]V , then there exists a�V of height
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G m×ess (V)1e such that F(ap ) c0. A generalization of Dobrowolski’s main lemma
gives:

NF(ap)Nv Gp 2T max ]1, Na 1 Nv , R , Na n Nv (pL

for any vNp . Using the product formula, we obtain

0 G

G

2T log p1h(F)1n log (L11)1pLh(a)

2T log (N/2 )1h(F)1n log (L11)1NL(m×ess (V)1e)

which is a contradiction (5), since

T log (N/2 )2h(F)2n log (L11) c log v

by the choice of the parameters and by the estimate on h(F), and

NL(m×ess (V)1e) b log v

by the assumption on m×ess (V).
In the geometric case, we extrapolate on some translate of V , and we show

that the auxiliary function must vanish on zV for all p-torsion points z and for all
p�[ (where [ is the same set as before).

Indeed, let p�[; if F does not vanish on zV for some p-torsion point z , then
there exists a�V of height G m×ess (V)1e such that F(za) c0. The inequality
N12zNv Gp 21/p , which holds for a p-root of unity z and a place vNp , gives

NF(a)Nv Gp 2T/p max ]1, Na 1 Nv , R , Na n Nv (L

for any vNp . Using the product formula, we obtain

0 G

G

2T
log p

p
1h(F)1n log (L11)1Lh(a)

2
T

N
log (N/2 )1h(F)1n log (L11)1L(m×ess (V)1e)

which is a contradiction (see note 5), since

T

N
log (N/2 )2h(F)2n log (L11) c log v

(5) If we choose properly the implicit constants in the parameters.
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by the choice of the parameters and by the estimate on h(F), and

L(m×ess (V)1e) b log v

by the assumption on m×ess (V).

4.1.3 - Z e r o e s t i m a t e a n d c o n c l u s i o n

Let us consider the arithmetic case first.

Since V is not torsion, for any s�Gal (Q /Q) the varieties [p]V and s[q]V are
distinct if p and q are distinct primes. Moreover, if we avoid some exceptional pri-
mes, [p]Vcs[p]V for any s�Gal (Q /Q) such that sVcV . A generalization of a
combinatorial lemma of Dobrowolski ([Dob 1979] lemma 3) shows that the num-
ber of these primes is G (logr) /2 , where r is the degree over Q of the field of defi-
nition of V . Moreover, we have

deg ( [p]V) 4p n212dim Stab (V) deg (V) ,

if p does not divide the index l4 [Stab (V) : Stab (V)0 ] (see (5) and (6)). Again the
number of these exceptional primes is bounded by

log l

log 2
G

log deg Stab (V)

log 2
G

n log deg (V)

log 2
.

Let E(V) be the set of all the previous exceptional primes. Then

Card (E(V) ) b log deg (VQ) 4 log v ,(12)

and therefore is negligible (6). Using the Prime Number Theorem we obtain:

LF deg (F) F deg g 0
p�[0E(V)

[p]VQh
F !

p�[0E(V)
p n212dim Stab (V) deg (VQ)(13)

F
N n2dim Stab (V) v

log N
F

Nv

log N
.

Since

LBT 2 vB
(log v)2 v

(log log v)2

(6) Because Card ([) BN/ log NB (log v/ log log v)2 is much bigger than log v .
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and

Nv

log N
B

(log v)2 v

(log log v)2

we get a contradiction (see note 5). Thus, our assumption on m×ess (V) is false and
we have

m×ess (V) c
log v

NL
c

1

v
g log log v

log v
h3

.

R e m a r k 4.1. Let s4 dim Stab (V); if V is not a translate of a subgroup,
then n2sD1 and we can improve the error term in the previous lower bound
by choosing NB ((log v)2 / log log v)1/(n2s)

. We obtain

m×ess (V) c
log v

NL
c

1

v
3

(log log v)211/(n2s)

(log v)112/(n2s)
.

Unfortunately, there is now a technical problem with the exceptional set E(V),
since its cardinality could now exceeds

Card ([) B
N

log N
B

(log v)2/(n2s)

(log log v)111/(n2s)
.

A generalisation of an inductive argument of Rausch ([Rau 1985]) allows us to
avoid this problem (see [Amo-Dav 2000] for details).

We now consider the geometric case.

Let us set again l4 [Stab (V) : Stab (V)0 ], s4 dim Stab (V) and let E(V) be
the set of exceptional primes dividing l . Then, if p1 , p2 �[0E(V) are two primes
not dividing l and if z1 and z2 are two torsion points of order exactly p1 and p2 ,
then z1 V4z2 V if and only if z1 fz2 mod Stab (V)0 . Moreover, for p1 cp2 we have
z1 fz2 mod Stab (V)0 if and only if z1 , z2 � Stab (V)0 (by Bezout’s theorem). Since
the cardinality of the set of p-torsion points in Stab (V)0 is p s , we have

LF deg (F) F

4

deg g 0
p�[0E(V)

0
z� Ker [p]

zVh

g11 !
p�[0E(V)

(p n2s 21)h deg (V).
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As in the arithmetic case, the set E(V) has cardinality less than

Card (E(V) ) G
log l

log 2
G

log deg Stab (V)

log 2
G

n log deg V

log 2
b log v(14)

and therefore is again negligible (see note 6). Hence, by the Prime Number
Theorem,

Lc
N n2s11 v

log N
.

We have that sEn21, since V is not a translate of a subgroup; hence n2s11
F3 and we deduce that

Lc
N 3 v

log log v
.

By the choice of the parameters, we have:

LBT 2 vB
N 2 (log v)2 v

(log log v)2
B

N 3 v

log log v
;

which gives again a contradiction (see note 5). Again our assumption on m×ess (V) is
false, hence

m×ess (V) c
log v

L
c

1

v

(log log v)4

(log v)5
.

R e m a r k 4.2. It could be possible to improve the error term in the previous
lower bound. Choosing NB ((log v)2 / log log v)1/(n2s21)

we would obtain

m×ess (V) c
1

v
3

(log log v)212/(n2s21)

(log v)114/(n2s21)
.

Unfortunately, as in the arithmetic case (c.f. Remark 4.1), this choice of N gives
a technical problem with the cardinality of the exceptional set E(V).

4.2 - Varieties of arbitrary dimension

Let V be a subvariety of Gm
n of codimension k and let us assume that V is not

contained in any torsion subvariety (arithmetic case) or that V is not contained in
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any proper translate of a subgroup (geometric case). Let, as before,

K4
.
/
´

Q ( arithmetic case );

Q ( geometric case )

and v4v K (V). We also define, as for hypersurfaces, the exceptional set of a sub-
variety Z of Gm

n as the set of primes p such that

pN[Stab (Z) : Stab (Z)0 ]

or (7) [p] Z4s [p] Z for some s�Gal (Q /K) such that sZcZ . As for hypersurfa-
ces

Card (E(Z) ) b log deg (ZK)

(c.f. (12) and (14)).
To simplify the arguments we make for the moment the following additional

assumption on V:

H y p o t h e s i s 4.3. There exists an hypersurface Z0 containing V such
that

v K ( [l]V) 4 deg ([l] Z0
K)

for all positive integer l .

Let l�N and assume that its prime factors do not belong to the exceptional
set E(Z0 ). Then,

v Q ( [l]V) 4 deg ([l] Z0
Q) F deg (Z0

Q) 4v Q (V)(15)

in the arithmetic case (see the discussion at the beginning of section 4.1.3),
and

v Q ( [l]V) 4

4

deg ( [l]Z0 )

l dim (Z0 )2dim (Stab (Z0 ) ) deg (Z0 ) F l deg (Z0 ) 4 lv Q (V) ,

(16)

in the geometric case (see (5) and (6)), since Z0 is not a translate of a
subgroup.

Let N1 , R , Nk be some parameters such that (log v)11ebNj and

(7) The following condition is empty in the geometric case.
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log Nj B log log v . Let also

TB

.
`
/
`
´

g log v

log log v
hk

N1 RNkg log v

log log v
hk

( arithmetic case );

( geometric case )

and

LBT 2 v .

To simplify the notations, we denote by [j the set of primes p�E(Z0 ) such
that Nj /2 GpGNj and we let [8j 4[j N ]1(. The cardinality of E(Z0 ) is b log v

and therefore it is negligible (since (log v)11ebNj); we have:

Card ([j ) B
Nj

log Nj

B
Nj

log log v
.(17)

We finally suppose by contradiction, that the essential minimum of V is
small:

m×ess (V) b

.
`
/
`
´

log v

N1 R Nk L

log v

L

( arithmetic case );

( geometric case ).

(18)

4.2.1 - I n t e r p o l a t i o n

As in section 4.1, we construct a non-zero polynomial in n variables having ra-
tional integer coefficients (arithmetic case) or algebraic integer coefficients (geo-
metric case), of degree at most L , vanishing on V with multiplicity at least T and
of height

h(F) b log v .

4.2.2 - E x t r a p o l a t i o n

We repeat the extrapolation process k times: we show that F must vanish on

[p1 Rpk ]V
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for (p1 , R , pk ) �[81 3R3[8k (arithmetic case) or on

z1 Rzk V

for (z1 , R , zk ) �Ker [p1 ]3R3Ker [pk ] and for (p1 , R , pk ) �[1 3R3[k

(geometric case).

4.2.3 - Z e r o e s t i m a t e a n d c o n c l u s i o n

Let us consider the arithmetic case first.
A variant of Philippon’s zero estimate shows that there exist two integers r

and k 8 with k 8GrGk and a variety Z of codimension k 8 , containing
[pr11 R pk 811 ]V for some (pr11 , R , pk 811 ) �[8r11 3R3[8k 811 , such that

deg g 0
p�[r

[p] ZQhG (N1 R Nr21 L)k 8 .

As in (13),

deg g 0
p�[r 0E(Z)

[p] ZQhF g !
p�[r 0E(Z)

1h deg (ZQ) cCard ([r ) deg (ZQ) ,

since the cardinality of E(Z) is negligible.
Let l4pr11 R pk 811 ; since [l]V’Z , using (10), the two last displayed inequa-

lities and the estimate (17) we obtain:

v Q ( [l]V) G

b

b

n deg (Z Q)1/k 8

Card ([r )21/k 8 N1 R Nr21 L

g log log v

Nr
h1/k 8

N1 R Nr21g log v

log log v
h2k

v .

Therefore, using 1 /kG1/k 8G1,

v Q ( [l]V) G
CN1 R Nr21 (log v)2k

Nr
1/k

v ,(19)

for some positive constant C4C(n). We choose the parameters N1 , R , Nk in-
creasing rapidly in such a way that

CN1 R Nr21 (log v)2k

Nr
1/k

E1

for r41, R , k . Then, by (19),

v Q ( [l]V) Ev4v Q (V)
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which contradicts inequality (15). Therefore, the inequality (18) is false and we
must have

m×ess (V) c
log v

N1 R Nk L
c

1

v
(log v)2k(k) ,

for some k(k).
We now consider the geometric case.
Another variant of Philippon’s zero estimate shows that there exist two integers r

and k 8 with k 8GrGk and a family of subvarieties ]Zp(p�[r
of codimension k 8 such

that for all p the subvariety Zp contains some translate of V and

deg g 0
z1�Ker [p1 ]

Q Q Q 0
zr21�Ker [pr21 ]

0
p�[r

0
z�Ker [p]

z1 Q Q Qzr21 zZphGL k 8

for some (p1 , R , pr21 ) �[1 3 Q Q Q3[r21 . Let l0 4p1 R pr21 ; we remark that, for
p�[r ,

0
z1�Ker [p1 ]

Q Q Q 0
zr21�Ker [pr21 ]

0
z�Ker [p]

z1 R zr21 zZp 4 [l0 p]21 [l0 p] Zp .

and this last variety has degree (l0 p)k 8 deg ( [l0 p] Zp ) by equation (4). Let pr �[r

such that (l0 pr )k 8 deg ( [l0 pr ] Zpr
) is minimal and define l4 l0 pr and Z4Zpr

. If the
varieties ([l0 p]21 [l0 p]Zp )p�[r

had only «few» common components, then we
would have

L k 8c !
p�[r

(l0 p)k 8 deg ( [l0 p]Zp ) FCard ([r ) l k 8 deg ( [l] Z),

and

deg ( [l]Z) b
(L/l)k 8

Card ([r )
.(20)

We prove a bound which is very close to the heuristic estimate (20), namely

deg ( [l] Z) b
(L/l)k 8 log v

Card ([r )
.(21)

If p , q�[r define pAq if there exist a�ker [l0 p] and b�ker [l0 q] such that aZp

4bZq . Let C1 , R , Cs be the equivalence classes of this relation. Then

!
j41

s

deg g 0
p�Cj

[l0 p]21 [l0 p] ZphGL k 8 .(22)

Let j� ]1, R , s(; we remark that the varieties Zp (p�Cj) are translates of each
other. Therefore Sj 4 Stab (Zp ) and dj 4 deg (Zp ) only depend on the equivalence
classe Cj of p . We denote by CAj the set of primes p�Cj dividing [Sj : Sj

0 ]. Then (see



23SMALL POINTS ON SUBVARIETIES...[23]

the proof of Corollary 4.4 of [Amo-Dav 2001] at page 366 for details),

deg g 0
p�Cj

[l0 p]21 [l0 p] Zphc max ]Card (Cj 0Cj
A), 1( l k 8 deg ( [l] Z) .(23)

By the obvious inequality max ]x2y , 1( Fx/(2y), which holds for xF0 and
yF1, we have (8)

max ]Card (Cj 0Cj
A), 1( F

Card (Cj )

2 max ]Card (C
A

j ), 1(
.(24)

Since (22) implies in particular dj GL k 8 , the number of exceptional primes inside
Cj s bounded by

Card (Cj
A) G

log [Sj : Sj
0 ]

log 2
G

n log deg Sj

log 2
G

n log dj

log 2
b log v .(25)

From (23), (24) and (25) we obtain:

deg g 0
p�Cj

[l0 p]21 [l0 p] Zphc
Card (Cj )

log v
l k 8 deg ( [l] Z) .

Therefore, using (22),

L k 8c !
j41

s Card (Cj )

log v
l k 8 deg ( [l] Z) 4

Card ([r )

log v
l k 8 deg ( [l] Z) .

This conclude the proof of (21).
Now, using (10), (21), (17) and 1 /kG1/k 8G1, we obtain

v Q ( [l]V) Gndeg ( [l] Z)1/k 8b
L

l

(log v)(log log v)

Nr
1/k

.

By our choice of the parameters,

L

l
4

Ll

l 2
B

T 2 lv

(N1 R Nr )2
B

(N1 R Nk )2 (log v)2k lv

(N1 R Nr )2 (log log v)2k

B (Nr11 R Nk )2g log v

log log v
h2k

lv .

(8) Although this lower bound looks crude, it is essentially optimal when CAj4Cj .
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Hence,

v Q ( [l]V) G
C(Nr11 R Nk )2 (log v)2k11

Nr
1/k 8

lv(26)

for some positive constant C4C(n). We choose the parameters N1 , R , Nk de-
creasing rapidly in such a way that

C(Nr11 R Nk )2 (log v)2k11

Nr
1/k

E1

for r41, R , k . Then, by (26),

v Q ( [l]V) E lv4 lv Q (V)

which contradicts inequality (16). Therefore (18) is false and we have

m×ess (V) c
log v

L
c

1

v
(log v)2l(k) ,

for some l(k).

4.3 - Descent

We now remove the assumption 4.3. Without it, we need an extra step to con-
clude the proofs of theorems 3.3 and 3.5, which we briefly sketch in the arithmetic
case (see [Amo-Dav 1999], §5.2 and [Amo-Dav 2004a], §3 for details when
dim (V) 40).

Let us assume by contradiction that (18) holds. Then, the argument of the pre-
vious section shows that there exists a positive integer l such that

v Q ( [l] V) Ev Q (V) .

Moreover, we can assume that the prime factors of l are not in a fixed exceptional
set of cardinality b log v .

Let Zl be an hypersurfaces containing [l] V such that

deg (Zl
Q) 4v Q ( [l] V) .

Let also Zl8 be any component containing V of the algebraic set [l]21 Zl . Hence,
v Q (V) G deg (Z 8l

Q) and

deg ([l] Z 8l
Q) G deg (Zl

Q) 4v Q ( [l] V) .
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Moreover, if we could choose l with no prime factors in E(Zl8 ), we would
have

deg ([l] Z 8l
Q) F deg (Z 8l

Q)

(see the discussion at the beginning of section 4.1.3) and therefore

v Q (V) Gv Q ( [l] V) ,

a contradiction.
In practice, we cannot guarantee the existence of such an integer l , since the

obstruction variety Z 8l is given at the end of the construction and we do not have
any control a priori on its exceptional set.

To avoid this problem, we repeat several times the transcendence construc-
tion, assuming that the essential minimum of V is sufficiently small. By a rather
complicated induction we obtain a variety V 84 [l0 ] V and a positive integer l
with

v Q ( [l] V 8 ) Gev Q (V 8 )(27)

for some e4e(k) � (0 , 1 ], such that the following assertion holds. There exist two
subvarieties Z 8 , Z of Gm

n of the same codimension k 8 (eventually D1) such
that

V 8’Z 8 , [l] Z 8’Z and pNl ¨ p�E(Z 8 )(28)

and

n deg (ZQ)1/k 8
Ee21 v Q ( [l] V 8 ) .(29)

From (28) we have (using (10))

v Q (V 8 ) Gn deg (Z 8Q)1/k 8
, deg ([l] Z 8Q) G deg (ZQ)

and

deg ([l] Z 8Q) F deg (Z 8Q) .

From the last three displayed inequalities and from (29) and (27) we
obtain

v Q (V 8 ) Gn deg (ZQ)1/k 8
Ee21 v Q ( [l] V 8 ) Gv Q (V 8 ) .
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This contradiction shows that the essential minimum of V cannot be too small, and
concludes the proof of the arithmetic theorem 3.3.

The proof of the geometric Theorem 3.5 also needs a descent step, which is ve-
ry similar to the previous one (see [Amo-Dav 2003], §5.2 for details).

5 - Further quantitative results: small points.

5.1 - Arithmetic case

Let V be a non-torsion subvariety of Gm
n and define

V *4V0 0
B’V

B torsion

B .

By the former Manin-Mumford conjecture, V * is a Zariski-open set, since V0V *
is a finite union of translates of subgroups.

As mentioned in the introduction, an equivalent version of theorem 1.2 says
that the height on V *(Q) is bounded from below by a positive quantity:

m×*(V) 4 inf
a�V *

h×(a) D0 .

More precisely, let us assume that V is the intersection of hypersurfaces
Z1 , R , Zr such that deg Zj

QGd and h(Zj ) Gh . Let also D4 deg VQ . Then, we
have the following lower bounds:

m×*(V) Fexpn (2D)

m×*(V) Fexp (2cde h )

m×*(V) F (2D log D)4dim (V)11

[ Bom-Zan 1995]

[ Sch 1996]

[ Dav-Phi 1999]

remark that obviously m×*(V) G m×ess (V). Hence one could hope, in analogy to con-
jecture 3.2, that

m×*(V) F
c(n)

v Q (V)

for some constant c(n) D0. This lower bound is false, as the following example
shows. Let a k be a sequence of algebraic numbers whose height is positive and
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tends to zero as kK1Q . Let us consider

Vk 4 ](a k , x2 , x3 ) �Gm
3 such that a k

2 1a k
3 2x2 2x3 40( .

One checks that Vk is not torsion, the height of ak 4 (a k , a k
2 , a k

3 ) �Vk 0Vk* tends
to zero and v Q (V) G3, since Vk ’ ]x1

2 1x1
3 2x2 2x23 40(.

We therefore introduce another quantity depending on the ideal of definition
of V and on its field of definition. Let K be any subfield of Q; we let vAK (V) be the
minimum integer d such that V is the intersection of hypersurfaces Z1 , R , Zr

with degZj
K Gd . Then

(deg VK)1/codim (V)
G vAK (V) G deg VK .

and both lower and upper bounds can be attained: therefore vAK (V) is still more
precise than deg VK .

We formulate the following conjecture:

C o n j e c t u r e 5.1. Let V be a non-torsion subvariety of Gm
n ; then there exists

a constant c(n) D0 such that

m×*(V) F
c(n)

vAQ (V)
.(30)

A more optimistic version of this conjecture (see [Amo-Dav 2004a], conjecture
1.3) predicts that inequality (30) still holds if we replace vAQ (V) by vAQab (V), where
Qab is the union of all the cyclotomic fields. In the direction of conjecture 5.1, we
obtain the following result (see op. cit., Théorème 1.4).

T h e o r e m 5.2. Let V be a non-torsion subvariety of Gm
n ; then there exist

two positive constants c(n) and k(n) such that

m×*(V) F
c(n)

vAQ (V)
(log 3 vAQ (V) )2k(n) .

In the case n42 the proof of theorem 5.2 can be considerably simplified and
the result can be improved; Pontreau ([Pon 2004]) obtains:

T h e o r e m 5.3. Let V be a non-torsion curve of Gm
2 and let a�V be a non-

torsion point. Let also D4 deg VQ . Then

h×(a) F
1.2310216

D
3

(log log (D115) )11

(log (D115) )13
.
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Theorem 5.2 follows by an inductive argument from a «semi-relative» version
of theorem 3.3: a quite simple generalization of the method of the proof of theo-
rem 3.3 shows that:

T h e o r e m 5.4. Let a�Gm
n et let K be a cyclotomic extension. Let also

a�Gm
n . Then there exist three positive constants c(n), k(n) and l(n) such that

if

h×(a) E
c(n)

v K (a)
(log (3[K : Q] v K (a) ))2k(n) ,

then a belongs to a torsion subvariety B4zH such that

deg (BK)1/codim (B)
Gc(n)21 v K (a)(log (3[K : Q] v K (a) ))m(n) .

Hopefully, the factors [K : Q] in the previous formulas can be removed. This
would allow to obtain a generalization in several variables of the main theorem of
[Amo-Zan 2000]. This would also imply a proof «up to an eD0» of the full conjec-
ture 1.3 of [Amo-Dav 2004a] (Conjecture 5.1 with vAQab instead of vAQ).

5.2 - Geometric case

Let V be a subvariety of Gm
n which is not contained in a union of translates of

subgroups and define, as in [Bom-Zan 1995],

V 0 4V0 0
B’V

B ,

where the union is now on the set of translates B of subgroups of dimension 1.
Again V0V 0 is an open set (see [Bom-Zan 1995] and [Sch 1996]); Bombieri and
Zannier prove that, outside a finite set, the height on V 0 is bounded from below
by a positive quantity depending only on the ideal of definition of V and not on its
field of definition. More precisely, Schmidt [Sch 1996] proves that the set of points
a�V 0 such that h×(a) Eq(V)21 is finite, of cardinality Gq(V), where

q(V) 4exp (n vAQ (V)n) .

David and Philippon (see [Dav-Phi 1999]) improve this result, finding a polyno-
mial bound:

q(V) 4 (deg (V) log deg (V) )4dim (V)
.
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Let, for uD0,

V 0 (u) 4 ]a�V 0 such that h(a) Eu(

and

m×0 (V) 4 inf ]uD0 such that Card (V 0 (u) ) 4Q( .

Again, m×0 (V) G m×ess (V) and, as a consequence of the previous results, m×0 (V)
Fq(V)21 .

As in the arithmetic case, we can conjecture a very precise lower bound for
m×0 (V) and we can prove it «up to an eD0» (see [Amo-Dav 2004b]).

C o n j e c t u r e 5.5. Let V be a subvariety of Gm
n which is not contained in a

union of translates of subgroups; then there exists a constant c(n) D0 such
that

m×0 (V) F
c(n)

vAQ (V)
.

This conjecture can be proved «up to an e»:

T h e o r e m 5.6. Let V be as before. Then there exist two positive constants
c(n) and l(n) such that

m×0 (V) F
c(n)

vAQ (V)
(log 3 vAQ (V) )2l(n) .
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A b s t r a c t

This paper is a survey on some quantitative versions of Bogomolov’s conjecture for a
torus obtained by the author together with Sinnou David. The proofs are partially
sketched, starting with the simplest case of hypersurfaces.

* * *


