PETER V. DANCHEV (*)

Algebraically compactness of Sylow *p*-groups in abelian group rings of characteristic p(**)

1 - Introduction

The study of the algebraic compactness starts by us in [1]. Later on, Mollov and Nachev have argued in [4] some extensions to theorems of [1]. However, in [2], we proved more general results than [4]. The purpose of this paper is to finish the investigation of this theme and to formulate the results in a final form.

As usual, suppose RG is the group ring of an abelian group G over a commutative ring R with identity of prime characteristic p. For any arbitrary subgroup Hof G, we let I(RG; H) denote the relative augmentation ideal of RG with respect to H, and let $I_p(RG; H)$ designate its nil-radical. For simplicity of the exposition, we assume that $1 + I_p(RG; H)$ denotes the p-group S(RG; H). Evidently, S(RG)= S(RG; G) is the normalized Sylow p-subgroup in RG.

As we have above remarked, our main aim here is to find a criterion for S(RG; H) to be algebraically compact only in terms of R and G.

The definitions of algebraically compact groups, divisible groups and bounded groups are the standard ones and follow essentially [3]. The notation and terminology not explicitly defined herein are the same as in [3]. For example, G_p is the *p*component of G, and G_d and G_r are the maximal divisible subgroup (= the divisible part) and the reduced part of G, respectively. Throughout the paper we assume that N(R) is the Baer's nil-ideal of R.

^{(*) 13,} General Kutuzov Street, block 7, floor 2, apartment 4, 4003 Plovdiv, Bulgaria, e-mail: pvdanchev@yahoo.com

^(**) Received May $13^{\rm th}\,2003$ and in revised form November $15^{\rm th}\,2004.$ AMS classification 16 U 60, 16 S 34, 20 K 10, 20 K 20, 20 K 21.

PETER V. DANCHEV

2 - Algebraic compact p-components of modular abelian group rings

Following [3], the abelian *p*-group *A* is said to be algebraically compact if there exists a non-negative integer *n* such that $A^{p^n} = A^{p^{n+1}}$, i.e. if A^{p^n} is divisible for some $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. An arbitrary abelian group *B* with such a property that $B^{p^n} = B^{p^{n+1}}$ for any fixed $n \in \mathbb{N}$ is called weakly *p*-divisible.

Before proving the main attainment, we first need a useful technical lemma.

Lemma 1. Let G be an abelian group with subgroups C and H, and let R be a commutative unitary ring with prime characteristic p and with subrings P and K which contain the same identity. If

(a) N(P) = 0, then $I_p(PG; H) = 0 \Leftrightarrow G_p = 1$ or H = 1.

(b) $N(P) \neq 0$, then $I_p(PG; H) = 0 \Leftrightarrow H = 1$.

(a') N(P) = 0, then $S(PG; H) = 1 \Leftrightarrow G_p = 1$ or H = 1.

(b') $N(P) \neq 0$, then $S(PG; H) = 1 \Leftrightarrow H = 1$.

(c) $G_p \neq 1$, then $I_p(PG; H) = I_p(KG; C) \Leftrightarrow P = K$ and H = C, when $H_p \neq G_p$ and $C_p \neq G_p$ or when H = C = G or when $H = H_p$ and $C = C_p$ or when $N(P) \neq 0$ and $N(K) \neq 0$, but $I_p(PG; H) = I_p(KG; C) \Leftrightarrow P = K$ and $H \in C$ when $H = G_p$, $C \neq G_p$ and N(P) = 0; or P = K and $H \neq C$ when $G_p = H_p = C_p$ and N(P) = 0. In the remaining case when $G_p = H_p \neq C_p$, we have $I_p(PG; H) \neq I_p(KG; C) = 0$.

(d) $G_p = 1$ and N(P) = N(K) = 0, then $I_p(PG; H) = I_p(KG; C)$.

(e) $G_p = 1$, $H \neq 1$, $C \neq 1$ and $N(P) \neq 0$, $N(K) \neq 0$, then $I_p(PG; H) = I_p(KG; C) \Leftrightarrow N(P) = N(K)$ and H = C.

Proof. (a) $G_p = 1$. We will prove that $I_p(PG; G) = 0$, therefore $0 = I_p(PG; H) \subseteq I_p(PG; G)$. Indeed, given $x \in I_p(PG; G)$. Thus we write $x = \sum_{g \in \Pi} \sum_{h \in G_p} f_{gh}gh$, where $\Pi = \Pi(G/G_p)$ is a complete family of coset representatives of the group G with respect to its subgroup G_p (containing the identity of G), and $\sum_{h \in G_p} f_{gh} = y_g \in N(P) = 0$ for each $g \in \Pi$, where $f_{gh} \in P$. So, $\sum_{g \in \Pi} y_g = 0$ and x can be represented in the form $x = \sum_{g \in \Pi} \sum_{h \in G_p} f_{gh}g(h-1)$. Finally, we obviously detect that x = 0 since $G_p = 1$, which proves the first half.

Let now $I_p(PG; H) = 0$ and $G_p \neq 1, H \neq 1$. Thus, $1 \neq g_p \in G_p, 1 \neq h \in H$ and $x_{gh} = (1 - g_p)(1 - h) \in I_p(PG; H)$. But $(1 - g_p)(1 - h) = 1 - g_p - h + g_p h$ is a canonical element (because $g_p \notin H$ otherwise; $g_p \in H \cap G_p = H_p \subseteq 1 + I_p(PG; H) = 1$, hence $1 = g_p \in H_p = 1$). It is elementarily to see that $x_{gh} \neq 0$ ($x_{gh} = 0$ only when $g_p = 1$ or h = 1), which completes (a).

(b) If H = 1, we derive $I_p(PG; H) \subseteq I(PG; H) = 0$. For the reverse, assume now that $I_p(PG; H) = 0$ and $0 \neq \delta \in N(P)$. Consequently $\delta(1 - h) \in I_p(PG; H)$ and $\delta(1 - h) = \delta - \delta h = 0$, i.e. h = 1 for every $h \in H$. That is why H = 1.

62

(c) First of all, we presume at this point that $0 \neq \gamma \in P$, $1 \neq h \in H$ and $1 \neq g_p \in G_p \setminus (H \cup C)$ (if $G_p \subseteq H \cup C$, then $G_p = H_p$ or $G_p = C_p$; for example, the reader can see cf. [3], p. 14). Clearly $0 \neq \gamma$ $(1 - g_p)(1 - h) \in I_p(KG; C)$. Furthermore, we obtain $\gamma \in K$ and $h \in C$, whence $P \subseteq K$ and $H \subseteq C$. Similarly for $K \subseteq P$ and $C \subseteq H$, i.e. P = K and H = C.

Now, suppose $H_p = G_p$, $C_p = G_p$ (analogically for the cases $H_p \neq G_p$, $C_p \neq G_p$ or $H_p = G_p$, $C_p \neq G_p$) as well as suppose $N(P) \neq 0$ and $N(K) \neq 0$. If $0 \neq \gamma \in P$, we deduce that $\gamma(1 - g_p) \in I_p(PG; H) = I_p(KG; C)$, hence $\gamma \in K$ and $P \subseteq K$. Analogous to the preceding situation we yield $K \subseteq P$, i.e. P = K. For $1 \neq h \in H$, we conclude $r(1 - h) \in I_p(KG; C)$, where $r \in N(P)$. Thus $h \in C$, i.e. $H \subseteq C$. Similarly for $C \subseteq H$, i.e. H = C.

Let now $H = G_p$, $C \neq G_p$ (respective $G_p = C_p$ or $G_p \neq C_p$) and N(P) = 0. Certainly, $I(PG; G_p) = I_p(PG; G)$ since $S(PG) = 1 + I(PG; G_p) = 1 + I_p(PG; G)$, whence $I(PG; G_p) = I_p(KG; C)$ only when P = K and $G_p \in C$ (notice that $1 - g_p \in I_p(PG; C)$). Besides, we note that P = K, $I_p(PG; H) \subseteq I_p(PG; G) = I(PG; G_p)$ and $I_p(KG; C) \subseteq I_p(KG; G) = I(KG; G_p)$, since N(P) = N(K) = 0, that verifies (c) in all generality.

(d) Referring to (a), it is trivial.

(e) Let $0 \neq \beta \in N(P)$ and $h \in H$. Therefore, $\beta(1-h) \in I_p(PG; H) = I_p(KG; C)$ and therefore $\beta \in K$, $h \in C$. Thus $\beta \in N(P) \cap K = N(P) \cap N(K)$, i.e. $\beta \in N(K)$ and $N(P) \subseteq N(K)$. Moreover $H \subseteq C$. Similarly $C \subseteq H$ and $N(K) \subseteq N(P)$.

Suppose now C = H and N(P) = N(K). We will check that $I_p(PG; H) = I_p(KG; H)$ provided $G_p = 1$. Indeed, for $x \in I_p(PG; H)$, we extract that $x = \sum_{g \in \Pi} \sum_{h \in G_p} \varphi_{gh}gh$, where $\Pi = \Pi(G/G_p)$ is a full system of coset representatives of the group G with respect to its maximal p-subgroup of torsion G_p , and $\sum_{h \in G_p} \varphi_{gh} = \psi_g \in N(P)$ for every $g \in \Pi$, where $\varphi_{gh} \in P$. So, $\sum_{g \in \Pi} \psi_g = 0$ and $x = \sum_{g \in \Pi} \sum_{h \in G_p} \varphi_{gh}g(h-1) + \sum_{g \in \Pi \setminus \{1\}} \psi_g(g-1) = \sum_{g \in \Pi \setminus \{1\}} \psi_g(g-1)$, where $\psi_g \in N(P) = N(K)$. Hence clearly $x \in I_p(KG; H)$, because $\psi_g = \varphi_{g1} \in N(K)$ and $x \in I_p(PG; H) \cap I_p(KG; G) = I_p((P \cap K) G; H) \subseteq I_p(KG; H)$. We continue by analogy also for the other relation. The proof of the lemma is finished.

We are now ready to formulate the following assertion.

Theorem 2. Suppose G is an abelian group with a non-identity subgroup H and R is a commutative ring with unity of prime characteristic p. Then S(RG; H) is divisible if and only if at least one from the following conditions of the table (*) is fulfilled:

(1) $G_p = 1$, N(R) = 0;

(2) $G_p = 1$, $N(R) = N(R^p) \neq 0$, $G = G^p$, $H = H^p$;

 $\begin{array}{l} (3) \ G_p \neq 1, \ N(R) \neq 0, \ R = R^p, \ G = G^p, \ H = H^p; \\ (*) \ (4) \ G_p \neq 1, \ N(R) = 0, \ R = R^p, \ G = G^p, \ H \neq H^p, \ G_p = H_p = (H_p)^p; \\ (5) \ G_p \neq 1, \ N(R) = 0, \ R = R^p, \ G = G^p, \ H = H^p, \ G_p \neq H_p; \\ (6) \ G_p \neq 1, \ N(R) = 0, \ R = R^p, \ G = G^p, \ H = H^p = H_p; \\ (7) \ G_p \neq 1, \ N(R) = 0, \ R = R^p, \ G = G^p, \ H = H^p = G. \end{array}$

Proof. Since $S^{p}(RG; H) = S(R^{p}G^{p}; H^{p}) = S(RG; H)$, we can employ the previous technical affirmation to complete the proof.

Substituting *G* by G^{p^n} , *H* by H^{p^n} and *R* by R^{p^n} we may obtain a valuable criterion for algebraic compactness, namely:

Central Theorem 3. Suppose G is an abelian group with a non-trivial subgroup H and suppose R is a commutative ring with identity of prime characteristic p. Then S(RG; H) is algebraically compact if and only if for some $n \in N$ at least one from the following conditions of a table (**) holds valid:

Proof. It is straightforward utilizing the foregoing theorem.

The next consequence appeared in [4] and [2] too.

Corollary 4. Under the above circumstances, S(RG) is algebraically compact if and only if for some $n \in \mathbb{N}$ it is fulfilled:

(1) $N^{p^{n}}(R) = 0$, $G_{p}^{p^{n}} = 1$; (2) $G_{p}^{p^{n}} \neq 1$, $G^{p^{n}} = G^{p^{n+1}}$, $R^{p^{n}} = R^{p^{n+1}}$; (3) $N^{p^{n}}(R) \neq 0$, $G_{p}^{p^{n}} = 1$, $G^{p^{n}} \neq 1$, $G^{p^{n}} = G^{p^{n+1}}$, $N^{p^{n}}(R) = N^{p^{n+1}}(R)$; (4) $N^{p^{n}}(R) \neq 0$, $G^{p^{n}} = 1$.

Proof. Putting H = G and taking into account the already mentioned fact that S(RG; G) = S(RG), the major theorem is applicable to complete the proof.

In some particular cases, we are in a position to find certain more explicit cri-

teria (see cf. [1], [2] as well). Foremost, we state one more definition, above listed too.

Definition. An abelian group *G* is termed weakly *p*-divisible if $G^{p^i} = G^{p^{i+1}}$ for an arbitrary fixed $i \in \mathbb{N}$, i.e. if G^{p^i} is *p*-divisible for this $i \in \mathbb{N}$. Evidently, in such a case, for the maximal *p*-divisible subgroup G^* of *G*, we have $G^* = G^{p^i}$ for that $i \in \mathbb{N}$.

Proposition 5. Suppose R is without nilpotents.

(i) If G_p is not reduced, then S(RG) is algebraically compact if and only if G is weakly p-divisible and R is perfect.

(ii) If G_p is reduced, then S(RG) is algebraically compact if and only if G_p is bounded.

Proof. Follows immediately from Corollary 4. The proof is over.

The following is a direct consequence of the foregoing one, but for the sake of completeness we include a new independent proof.

Corollary 6. Let G be torsion and R be without nilpotents.

(j) If G_p is reduced, then S(RG) is algebraically compact if and only if G_p is algebraically compact.

(jj) If G_p is not reduced, then S(RG) is algebraically compact if and only if G_p is algebraically compact and R is perfect.

Proof. (j) We know that, applying [2], the subgroup G_p being reduced implies that S(RG) is reduced. And so, S(RG) is reduced algebraically compact, i.e. S(RG) is bounded via [3]. This is equivalent to G_p is bounded, i.e. G_p is algebraically compact again by [3].

(jj) Suppose $G = G_p \times M$ where $M = \coprod G_q$. Thus, (see [1]), S(RG) $\cong S((RM) G_p)$, where RM is an abelian ring with 1 and prime characteristic p without nilpotent elements. In fact, to verify the latter, choose $w = \sum_i v_i f_i \in RM(v_i \in R, f_i \in M)$ and $w^p = 0$, i.e. $\sum_i v_i^p f_i^p = 0$. But $f_{j-1}^p \neq f_j^p$ $(j = 2, ..., n + 1, f_{n+1} = f_n)$ since otherwise if we assume that $f_{j-1}^p = f_j^p$, then $(f_{j-1}f_j^{-1})^p = 1$, i.e. $f_{j-1}.f_j^{-1} \in M_p = 1$ or equivalently $f_{j-1} = f_j$ — a contradiction. Hence $v_i^p = 0$, i.e. $v_i = 0$. Finally w = 0. Thus S(RG) is algebraically compact if and only if $S((RM) G_p)$ is algebraically compact, that is, from ([1], Theorems 16 or 17), if and only if RM is perfect and G_p is algebraically compact. The last is equivalent to R is perfect, since M is p-divisible (cf. [1]), and G_p is algebraically compact. So, the proof is completed. Corollary 7. Let G be torsion and R be perfect. Then S(RG) is algebraically compact if and only if G_p is algebraically compact.

Proof. Since, invoking to [1], $S(RG) \cong S(RM) \times S((RM) G_p)$ where RM is perfect and since S(RM) is divisible whence algebraically compact, S(RG) is algebraically compact if and only if the same is $S((RM) G_p)$, i.e., if and only if G_p is algebraically compact (cf. [1], Theorem 19). So, the proof is finished.

Corollary 8. Let G be an abelian group whose reduced part is torsion and let R be perfect. Then S(RG) is algebraically compact if and only if G_p is algebraically compact.

Proof. Because $G = G_d \times G_r$, we derive that $S(RG) \cong S(RG_d) \times S((RG_d) G_r)$ by complying with [1]. But $S(RG_d)$ is divisible and hence it is algebraically compact. Besides RG_d is a perfect ring. Consequently, employing Corollary 7, $S((RG_d) G_r)$ is algebraically compact if and only if so is $(G_r)_p$. Finally, S(RG) is algebraically compact (e.g. [3]) if and only if so does G_p since $G_p = (G_d)_p \times (G_r)_p$ and $(G_d)_p$ is divisible. So, the proof is over.

Lemma 9. $(G_p)_d = (G_d)_p$.

Proof. It is easy to verify that $(G_p)_d \subseteq G_d$ and $(G_p)_d \subseteq G_p$. Thus $(G_p)_d \subseteq (G_d)_p$. Certainly $(G_p)_d = (G^*)_p$, where as above G^* is the maximal *p*-divisible subgroup of *G*. But $G_d \subseteq G^*$ since $G_d = G_d^{p^{\tau}} \subseteq G^{p^{\tau}} = G^*$ for some ordinal τ (the first ordinal with $G^{p^{\tau}} = G^{p^{\tau+1}}$). Hence, $(G_d)_p \subseteq (G^*)_p = (G_p)_d$. Finally, $(G_p)_d = (G_d)_p$. So, the lemma is true.

Let now we write $G = G_d \times G_r$ and $G_p = (G_p)_d \times (G_p)_r$. Therefore, the first equality assures that $G_p = (G_d)_p \times (G_r)_p$. We see that Lemma 9 implies $(G_p)_r \cong (G_r)_p$.

Proposition 10. Let R be perfect. Then if

(k) G_p is not reduced, or

(kk) G_p is reduced and R has nilpotent elements,

S(RG) is algebraically compact if and only if G is weakly p-divisible.

(kkk) G_p is reduced and R has no nilpotent elements, S(RG) is algebraically compact if and only if G_p is bounded.

Proof. In virtue of Lemma 9, $(G_d)_p = (G_p)_d$.

(k), (kk) If $(G_d)_p \neq 1$, or $(G_d)_p = 1$ and R is a ring with nilpotent elements, then the group ring RG_d possesses nilpotent elements — for instance these are the elements $0 \neq \alpha = 1 - x_{dp}$, where $x_{dp} \in (G_d)_p$ or $0 \neq \beta \in R$ with $\beta^p = 0$, respectively. Moreover, $S(RG_d)$ is divisible and hence it is algebraically compact. Furthermore, S(RG) is algebraically compact $\Leftrightarrow S((RG_d) \ G_r)$ is algebraically compact, i.e. $\Leftrightarrow S((RG_d) \ G_r)_r$ is bounded where $S((RG_d) \ G_r) = S((RG_d) D) \times S((RG_d) \ G_r)_r$ and D is the maximal p-divisible subgroup of the group G_r . Consequently, $S((RG_d) \ G_r)_r$ is bounded if and only if $S((RG_d) \ G_r)/S((RG_d) D)$ is bounded, that is $S((RG_d) \ G_r^{p^i}) = S((RG_d) D)$ for some $i \in \mathbb{N}$, which is equivalent to $G_r^{p^i} = D$ for this $i \in \mathbb{N}$. Thereby G_r is weakly p-divisible, i.e. G is a weakly p-divisible group. This holds because $G^{p^i} = G_d \times G_r^{p^i} = G_d \times G_r^{p^{i+1}} = G^{p^{i+1}}$ for some $i \in \mathbb{N}$ iff $G_r^{p^i} = G_r^{p^i}$.

(kkk) Apparently $S(RG_d) = 1$ and RG_d is a ring with no nilpotent elements. Hence $S(RG) \cong S((RG_d) G_r)$ is reduced since $G_p = (G_p)_r = (G_r)_p$ is reduced. Therefore S(RG) is algebraically compact only if it is bounded by using [3], i.e. only if G_p is bounded.

Henceforth, the proposition is proved.

[7]

Acknowledgment. The author would like to express his grateful thanks to the referee for the expert comments and suggestions made.

References

- P. DANCHEV, Normed unit groups and direct factor problem for commutative modular group algebras, Math. Balkanica 10 (1996), 161-173.
- P. DANCHEV, Topologically pure and basis subgroups in commutative group rings, C. R. Acad. Bulgare Sci. 48 (1995), 7-10.
- [3] L. FUCHS, Infinite abelian groups, I and II, Mir, Moscow 1974 and Moscow 1977.
- [4] N. NACHEV and T. MOLLOV, Algebraic compact p-components of unit groups of commutative group rings, C. R. Acad. Bulgare Sci. 47 (1994), 11-14.

Abstract

Let G be an abelian group, let H be a non-identity subgroup of G and let R be a commutative ring with 1 of prime characteristic p. Necessary and sufficient conditions are established for the p-group S(RG; H) in the group algebra RG to be algebraically compact. These claims supersede a statement due to Mollov-Nachev (Compt. Rend. Acad. Bulg. Sci., 1994) and completely exhaust the problem (see also the author's paper in Compt. Rend. Acad. Bulg. Sci., 1995) as well.