Peter V. Danchev (*)

Algebraically compactness of Sylow p-groups in abelian group rings of characteristic $p\left({ }^{(* *)}\right.$

1-Introduction

The study of the algebraic compactness starts by us in [1]. Later on, Mollov and Nachev have argued in [4] some extensions to theorems of [1]. However, in [2], we proved more general results than [4]. The purpose of this paper is to finish the investigation of this theme and to formulate the results in a final form.

As usual, suppose $R G$ is the group ring of an abelian group G over a commutative ring R with identity of prime characteristic p. For any arbitrary subgroup H of G, we let $I(R G ; H)$ denote the relative augmentation ideal of $R G$ with respect to H, and let $I_{p}(R G ; H)$ designate its nil-radical. For simplicity of the exposition, we assume that $1+I_{p}(R G ; H)$ denotes the p-group $S(R G ; H)$. Evidently, $S(R G)$ $=S(R G ; G)$ is the normalized Sylow p-subgroup in $R G$.

As we have above remarked, our main aim here is to find a criterion for $S(R G ; H)$ to be algebraically compact only in terms of R and G.

The definitions of algebraically compact groups, divisible groups and bounded groups are the standard ones and follow essentially [3]. The notation and terminology not explicitly defined herein are the same as in [3]. For example, G_{p} is the p component of G, and G_{d} and G_{r} are the maximal divisible subgroup (= the divisible part) and the reduced part of G, respectively. Throughout the paper we assume that $N(R)$ is the Baer's nil-ideal of R.

[^0]
2 - Algebraic compact p-components of modular abelian group rings

Following [3], the abelian p-group A is said to be algebraically compact if there exists a non-negative integer n such that $A^{p^{n}}=A^{p^{n+1}}$, i.e. if $A^{p^{n}}$ is divisible for some $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. An arbitrary abelian group B with such a property that $B^{p^{n}}=B^{p^{n+1}}$ for any fixed $n \in \mathbb{N}$ is called weakly p-divisible.

Before proving the main attainment, we first need a useful technical lemma.
Lemma 1. Let G be an abelian group with subgroups C and H, and let R be a commutative unitary ring with prime characteristic p and with subrings P and K which contain the same identity. If
(a) $N(P)=0$, then $I_{p}(P G ; H)=0 \Leftrightarrow G_{p}=1$ or $H=1$.
(b) $N(P) \neq 0$, then $I_{p}(P G ; H)=0 \Leftrightarrow H=1$.
(a') $N(P)=0$, then $S(P G ; H)=1 \Leftrightarrow G_{p}=1$ or $H=1$.
(b') $N(P) \neq 0$, then $S(P G ; H)=1 \Leftrightarrow H=1$.
(c) $G_{p} \neq 1$, then $I_{p}(P G ; H)=I_{p}(K G ; C) \Leftrightarrow P=K$ and $H=C$, when $H_{p} \neq G_{p}$ and $C_{p} \neq G_{p}$ or when $H=C=G$ or when $H=H_{p}$ and $C=C_{p}$ or when $N(P) \neq 0$ and $N(K) \neq 0$, but $I_{p}(P G ; H)=I_{p}(K G ; C) \Leftrightarrow P=K$ and $H \subset C$ when $H=G_{p}$, $C \neq G_{p}$ and $N(P)=0$; or $P=K$ and $H \neq C$ when $G_{p}=H_{p}=C_{p}$ and $N(P)=0$. In the remaining case when $G_{p}=H_{p} \neq C_{p}$, we have $I_{p}(P G ; H) \neq I_{p}(K G ; C)=0$.
(d) $G_{p}=1$ and $N(P)=N(K)=0$, then $I_{p}(P G ; H)=I_{p}(K G ; C)$.
(e) $G_{p}=1, \quad H \neq 1, \quad C \neq 1$ and $N(P) \neq 0, \quad N(K) \neq 0$, then $I_{p}(P G ; H)$ $=I_{p}(K G ; C) \Leftrightarrow N(P)=N(K)$ and $H=C$.

Proof. (a) $G_{p}=1$. We will prove that $I_{p}(P G ; G)=0$, therefore 0 $=I_{p}(P G ; H) \subseteq I_{p}(P G ; G)$. Indeed, given $x \in I_{p}(P G ; G)$. Thus we write x $=\sum_{g \in \Pi} \sum_{h \in G_{p}} f_{g h} g h$, where $\Pi=\Pi\left(G / G_{p}\right)$ is a complete family of coset representatives of the group G with respect to its subgroup G_{p} (containing the identity of G), and $\sum_{h \in G_{p}} f_{g h}=y_{g} \in N(P)=0$ for each $g \in \Pi$, where $f_{g h} \in P$. So, $\sum_{g \in \Pi} y_{g}=0$ and x can be represented in the form $x=\sum_{g \in \Pi} \sum_{h \in G_{p}} f_{g h} g(h-1)$. Finally, we obviously detect that $x=0$ since $G_{p}=1$, which proves the first half.

Let now $I_{p}(P G ; H)=0$ and $G_{p} \neq 1, H \neq 1$. Thus, $1 \neq g_{p} \in G_{p}, 1 \neq h \in H$ and $x_{g h}$ $=\left(1-g_{p}\right)(1-h) \in I_{p}(P G ; H)$. But $\left(1-g_{p}\right)(1-h)=1-g_{p}-h+g_{p} h$ is a canonical element (because $g_{p} \notin H$ otherwise; $g_{p} \in H \cap G_{p}=H_{p} \subseteq 1+I_{p}(P G ; H)=1$, hence $1=g_{p} \in H_{p}=1$). It is elementarily to see that $x_{g h} \neq 0\left(x_{g h}=0\right.$ only when $g_{p}=1$ or $h=1$), which completes (a).
(b) If $H=1$, we derive $I_{p}(P G ; H) \subseteq I(P G ; H)=0$. For the reverse, assume now that $I_{p}(P G ; H)=0$ and $0 \neq \delta \in N(P)$. Consequently $\delta(1-h) \in I_{p}(P G ; H)$ and $\delta(1-h)=\delta-\delta h=0$, i.e. $h=1$ for every $h \in H$. That is why $H=1$.
(c) First of all, we presume at this point that $0 \neq \gamma \in P, 1 \neq h \in H$ and $1 \neq g_{p}$ $\in G_{p} \backslash(H \cup C)$ (if $G_{p} \subseteq H \cup C$, then $G_{p}=H_{p}$ or $G_{p}=C_{p}$; for example, the reader can see cf. [3], p. 14). Clearly $0 \neq \gamma\left(1-g_{p}\right)(1-h) \in I_{p}(K G ; C)$. Furthermore, we obtain $\gamma \in K$ and $h \in C$, whence $P \subseteq K$ and $H \subseteq C$. Similarly for $K \subseteq P$ and $C \subseteq H$, i.e. $P=K$ and $H=C$.

Now, suppose $H_{p}=G_{p}, C_{p}=G_{p}$ (analogically for the cases $H_{p} \neq G_{p}, C_{p} \neq G_{p}$ or $H_{p}=G_{p}, C_{p} \neq G_{p}$) as well as suppose $N(P) \neq 0$ and $N(K) \neq 0$. If $0 \neq \gamma \in P$, we deduce that $\gamma\left(1-g_{p}\right) \in I_{p}(P G ; H)=I_{p}(K G ; C)$, hence $\gamma \in K$ and $P \subseteq K$. Analogous to the preceding situation we yield $K \subseteq P$, i.e. $P=K$. For $1 \neq h \in H$, we conclude $r(1-h) \in I_{p}(K G ; C)$, where $r \in N(P)$. Thus $h \in C$, i.e. $H \subseteq C$. Similarly for $C \subseteq H$, i.e. $H=C$.

Let now $H=G_{p}, C \neq G_{p}$ (respective $G_{p}=C_{p}$ or $G_{p} \neq C_{p}$) and $N(P)=0$. Certainly, $I\left(P G ; G_{p}\right)=I_{p}(P G ; G)$ since $S(P G)=1+I\left(P G ; G_{p}\right)=1+I_{p}(P G ; G)$, whence $I\left(P G ; G_{p}\right)=I_{p}(K G ; C)$ only when $P=K$ and $G_{p} \subset C$ (notice that $1-g_{p}$ $\left.\in I_{p}(P G ; C)\right)$. Besides, we note that $P=K, I_{p}(P G ; H) \subseteq I_{p}(P G ; G)=I\left(P G ; G_{p}\right)$ and $I_{p}(K G ; C) \subseteq I_{p}(K G ; G)=I\left(K G ; G_{p}\right)$, since $N(P)=N(K)=0$, that verifies (c) in all generality.
(d) Referring to (a), it is trivial.
(e) Let $0 \neq \beta \in N(P)$ and $h \in H$. Therefore, $\beta(1-h) \in I_{p}(P G ; H)=I_{p}(K G ; C)$ and therefore $\beta \in K, h \in C$. Thus $\beta \in N(P) \cap K=N(P) \cap N(K)$, i.e. $\beta \in N(K)$ and $N(P) \subseteq N(K)$. Moreover $H \subseteq C$. Similarly $C \subseteq H$ and $N(K) \subseteq N(P)$.

Suppose now $C=H$ and $N(P)=N(K)$. We will check that $I_{p}(P G ; H)$ $=I_{p}(K G ; H)$ provided $G_{p}=1$. Indeed, for $x \in I_{p}(P G ; H)$, we extract that x $=\sum_{g \in \Pi} \sum_{h \in G_{p}} \varphi_{g h} g h$, where $\Pi=\Pi\left(G / G_{p}\right)$ is a full system of coset representatives of the group G with respect to its maximal p-subgroup of torsion G_{p}, and $\sum_{h \in G_{p}} \varphi_{g h}$ $=\psi_{g} \in N(P)$ for every $g \in \Pi$, where $\varphi_{g h} \in P$. So, $\sum_{g \in \Pi} \psi_{g}=0$ and x $=\sum_{g \in \Pi} \sum_{h \in G_{p}} \varphi_{g h} g(h-1)+\sum_{g \in \Pi \backslash\{1\}} \psi_{g}(g-1)=\sum_{g \in \Pi \backslash\{1\}} \psi_{g}(g-1)$, where $\psi_{g} \in N(P)$ $=N(K)$. Hence clearly $x \in I_{p}(K G ; H)$, because $\psi_{g}=\varphi_{g 1} \in N(K)$ and x $\in I_{p}(P G ; H) \cap I_{p}(K G ; G)=I_{p}((P \cap K) G ; H) \subseteq I_{p}(K G ; H)$. We continue by analogy also for the other relation. The proof of the lemma is finished.

We are now ready to formulate the following assertion.
Theorem 2. Suppose G is an abelian group with a non-identity subgroup H and R is a commutative ring with unity of prime characteristic p. Then $S(R G ; H)$ is divisible if and only if at least one from the following conditions of the table (*) is fulfilled:
(1) $G_{p}=1, N(R)=0$;
(2) $G_{p}=1, N(R)=N\left(R^{p}\right) \neq 0, G=G^{p}, H=H^{p}$;
(3) $G_{p} \neq 1, N(R) \neq 0, R=R^{p}, G=G^{p}, H=H^{p}$;
(*) (4) $G_{p} \neq 1, N(R)=0, R=R^{p}, G=G^{p}, H \neq H^{p}, G_{p}=H_{p}=\left(H_{p}\right)^{p}$;
(5) $G_{p} \neq 1, N(R)=0, R=R^{p}, G=G^{p}, H=H^{p}, G_{p} \neq H_{p}$;
(6) $G_{p} \neq 1, N(R)=0, R=R^{p}, G=G^{p}, H=H^{p}=H_{p}$;
(7) $G_{p} \neq 1, N(R)=0, R=R^{p}, G=G^{p}, H=H^{p}=G$.

Proof. Since $S^{p}(R G ; H)=S\left(R^{p} G^{p} ; H^{p}\right)=S(R G ; H)$, we can employ the previous technical affirmation to complete the proof.

Substituting G by $G^{p^{n}}, H$ by $H^{p^{n}}$ and R by $R^{p^{n}}$ we may obtain a valuable criterion for algebraic compactness, namely:

Central Theorem 3. Suppose G is an abelian group with a non-trivial subgroup H and suppose R is a commutative ring with identity of prime characteristic p. Then $S(R G ; H)$ is algebraically compact if and only if for some $n \in N$ at least one from the following conditions of a table (**) holds valid:
(1) $G_{p}^{p^{n}}=1, N\left(R^{p^{n}}\right)=0$;
(2) $G_{p}^{p^{n}}=1, N\left(R^{p^{n}}\right)=N\left(R^{p^{n+1}}\right) \neq 0, G^{p^{n}}=G^{p^{n+1}}, H^{p^{n}}=H^{p^{n+1}}$;
(**) (3) $G_{p}^{p^{n}} \neq 1, N\left(R^{p^{n}}\right) \neq 0, R^{p^{n}}=R^{p^{n+1}}, G^{p^{n}}=G^{p^{n+1}}, H^{p^{n}}=H^{p^{n+1}}$;
(4) $G_{p}^{p^{n}} \neq 1, \quad N\left(R^{p^{n}}\right)=0, \quad R^{p^{n}}=R^{p^{n+1}}, \quad G^{p^{n}}=G^{p^{n+1}}, \quad H^{p^{n}} \neq H^{p^{n+1}}, \quad G_{p}^{p^{n}}$ $=H_{p}^{p^{n}}=H_{p}^{p^{n+1}}$;
(5) $G_{p}^{p^{n}} \neq 1, \quad N\left(R^{p^{n}}\right)=0, \quad R^{p^{n}}=R^{p^{n+1}}, \quad G^{p^{n}}=G^{p^{n+1}}, \quad H^{p^{n}}=H^{p^{n+1}}, ~ G_{p}^{p^{n}}$ $\neq H_{p}^{p^{n}}$;
(6) $G_{p}^{p^{n}} \neq 1, N\left(R^{p^{n}}\right)=0, R^{p^{n}}=R^{p^{n+1}}, G^{p^{n}}=G^{p^{n+1}}, H^{p^{n}}=H^{p^{n+1}}=H_{p}^{p^{n}}$;
(7) $G_{p}^{p^{n}} \neq 1, N\left(R^{p^{n}}\right)=0, R^{p^{n}}=R^{p^{n+1}}, G p^{p^{n}}=G^{p^{n+1}}, H^{p^{n}}=H^{p^{n+1}}=G^{p^{n}}$.

Proof. It is straightforward utilizing the foregoing theorem.
The next consequence appeared in [4] and [2] too.
Corollary 4. Under the above circumstances, $S(R G)$ is algebraically compact if and only if for some $n \in \mathbb{N}$ it is fulfilled:
(1) $N^{p^{n}}(R)=0, G_{p}^{p^{n}}=1$;
(2) $G_{p}^{p^{n}} \neq 1, G^{p^{n}}=G^{p^{n+1}}, R^{p^{n}}=R^{p^{n+1}}$;
(3) $N^{p^{n}}(R) \neq 0, G_{p}^{p^{n}}=1, G^{p^{n}} \neq 1, G^{p^{n}}=G^{p^{n+1}}, N^{p^{n}}(R)=N^{p^{n+1}}(R)$;
(4) $N^{p^{n}}(R) \neq 0, G^{p^{n}}=1$.

Proof. Putting $H=G$ and taking into account the already mentioned fact that $S(R G ; G)=S(R G)$, the major theorem is applicable to complete the proof.

In some particular cases, we are in a position to find certain more explicit cri-
teria (see cf. [1], [2] as well). Foremost, we state one more definition, above listed too.

Definition. An abelian group G is termed weakly p-divisible if $G^{p^{i}}=G^{p^{i+1}}$ for an arbitrary fixed $i \in \mathbb{N}$, i.e. if $G^{p^{i}}$ is p-divisible for this $i \in \mathbb{N}$. Evidently, in such a case, for the maximal p-divisible subgroup G^{*} of G, we have $G^{*}=G^{p^{i}}$ for that $i \in \mathbb{N}$.

Proposition 5. Suppose R is without nilpotents.
(i) If G_{p} is not reduced, then $S(R G)$ is algebraically compact if and only if G is weakly p-divisible and R is perfect.
(ii) If G_{p} is reduced, then $S(R G)$ is algebraically compact if and only if G_{p} is bounded.

Proof. Follows immediately from Corollary 4. The proof is over.
The following is a direct consequence of the foregoing one, but for the sake of completeness we include a new independent proof.

Corollary 6. Let G be torsion and R be without nilpotents.
(j) If G_{p} is reduced, then $S(R G)$ is algebraically compact if and only if G_{p} is algebraically compact.
(jj) If G_{p} is not reduced, then $S(R G)$ is algebraically compact if and only if G_{p} is algebraically compact and R is perfect.

Proof. (j) We know that, applying [2], the subgroup G_{p} being reduced implies that $S(R G)$ is reduced. And so, $S(R G)$ is reduced algebraically compact, i.e. $S(R G)$ is bounded via [3]. This is equivalent to G_{p} is bounded, i.e. G_{p} is algebraically compact again by [3].
(jj) Suppose $G=G_{p} \times \mathrm{M}$ where $M=\coprod_{q \neq p} G_{q}$. Thus, (see [1]), $S(R G)$ $\cong S\left((R M) G_{p}\right)$, where $R M$ is an abelian ring with 1 and prime characteristic p without nilpotent elements. In fact, to verify the latter, choose $w=\sum_{i} v_{i} f_{i} \in R M\left(v_{i}\right.$ $\left.\in R, f_{i} \in M\right)$ and $w^{p}=0$, i.e. $\sum_{i} v_{i}^{p} f_{i}^{p}=0$. But $f_{j-1}^{p} \neq f_{j}^{p}\left(j=2, \ldots, n+1, f_{n+1}\right.$ $=f_{n}$) since otherwise if we assume that $f_{j-1}^{p}=f_{j}^{p}$, then $\left(f_{j-1} f_{j}^{-1}\right)^{p}=1$, i.e. $f_{j-1} \cdot f_{j}^{-1} \in M_{p}=1$ or equivalently $f_{j-1}=f_{j}-$ a contradiction. Hence $v_{i}^{p}=0$, i.e. $v_{i}=0$. Finally $w=0$. Thus $S(R G)$ is algebraically compact if and only if $S\left((R M) G_{p}\right)$ is algebraically compact, that is, from ([1], Theorems 16 or 17), if and only if $R M$ is perfect and G_{p} is algebraically compact. The last is equivalent to R is perfect, since M is p-divisible (cf. [1]), and G_{p} is algebraically compact. So, the proof is completed.

Corollary 7. Let G be torsion and R be perfect. Then $S(R G)$ is algebraically compact if and only if G_{p} is algebraically compact.

Proof. Since, invoking to [1], $S(R G) \cong S(R M) \times S\left((R M) G_{p}\right)$ where $R M$ is perfect and since $S(R M)$ is divisible whence algebraically compact, $S(R G)$ is algebraically compact if and only if the same is $S\left((R M) G_{p}\right)$, i.e., if and only if G_{p} is algebraically compact (cf. [1], Theorem 19). So, the proof is finished.

Corollary 8. Let G be an abelian group whose reduced part is torsion and let R be perfect. Then $S(R G)$ is algebraically compact if and only if G_{p} is algebraically compact.

Proof. Because $G=G_{d} \times G_{r}$, we derive that $S(R G) \cong S\left(R G_{d}\right) \times S\left(\left(R G_{d}\right) G_{r}\right)$ by complying with [1]. But $S\left(R G_{d}\right)$ is divisible and hence it is algebraically compact. Besides $R G_{d}$ is a perfect ring. Consequently, employing Corollary 7, $S\left(\left(R G_{d}\right) G_{r}\right)$ is algebraically compact if and only if so is $\left(G_{r}\right)_{p}$. Finally, $S(R G)$ is algebraically compact (e.g. [3]) if and only if so does G_{p} since $G_{p}=\left(G_{d}\right)_{p} \times\left(G_{r}\right)_{p}$ and $\left(G_{d}\right)_{p}$ is divisible. So, the proof is over.

Lemma 9. $\left(G_{p}\right)_{d}=\left(G_{d}\right)_{p}$.
Proof. It is easy to verify that $\left(G_{p}\right)_{d} \subseteq G_{d}$ and $\left(G_{p}\right)_{d} \subseteq G_{p}$. Thus $\left(G_{p}\right)_{d} \subseteq\left(G_{d}\right)_{p}$. Certainly $\left(G_{p}\right)_{d}=\left(G^{*}\right)_{p}$, where as above G^{*} is the maximal p-divisible subgroup of G. But $G_{d} \subseteq G^{*}$ since $G_{d}=G_{d}^{p^{\tau}} \subseteq G^{p^{\tau}}=G^{*}$ for some ordinal τ (the first ordinal with $\left.G^{p^{\tau}}=G^{p^{\tau+1}}\right)$. Hence, $\left(G_{d}\right)_{p} \subseteq\left(G^{*}\right)_{p}=\left(G_{p}\right)_{d}$. Finally, $\left(G_{p}\right)_{d}=\left(G_{d}\right)_{p}$. So, the lemma is true.

Let now we write $G=G_{d} \times G_{r}$ and $G_{p}=\left(G_{p}\right)_{d} \times\left(G_{p}\right)_{r}$. Therefore, the first equality assures that $G_{p}=\left(G_{d}\right)_{p} \times\left(G_{r}\right)_{p}$. We see that Lemma 9 implies $\left(G_{p}\right)_{r} \cong\left(G_{r}\right)_{p}$.

Proposition 10. Let R be perfect. Then if
(k) G_{p} is not reduced, or
(kk) G_{p} is reduced and R has nilpotent elements,
$S(R G)$ is algebraically compact if and only if G is weakly p-divisible.
(kkk) G_{p} is reduced and R has no nilpotent elements, $S(R G)$ is algebraically compact if and only if G_{p} is bounded.

Proof. In virtue of Lemma 9, $\left(G_{d}\right)_{p}=\left(G_{p}\right)_{d}$.
(k), (kk) If $\left(G_{d}\right)_{p} \neq 1$, or $\left(G_{d}\right)_{p}=1$ and R is a ring with nilpotent elements, then the group ring $R G_{d}$ possesses nilpotent elements - for instance these are the elements $0 \neq \alpha=1-x_{d p}$, where $x_{d p} \in\left(G_{d}\right)_{p}$ or $0 \neq \beta \in R$ with $\beta^{p}=0$, respectively. Moreover, $S\left(R G_{d}\right)$ is divisible and hence it is algebraically compact. Furthermore,
$S(R G)$ is algebraically compact $\Leftrightarrow S\left(\left(R G_{d}\right) G_{r}\right)$ is algebraically compact, i.e. \Leftrightarrow $S\left(\left(R G_{d}\right) G_{r}\right)_{r}$ is bounded where $S\left(\left(R G_{d}\right) G_{r}\right)=S\left(\left(R G_{d}\right) D\right) \times S\left(\left(R G_{d}\right) G_{r}\right)_{r}$ and D is the maximal p-divisible subgroup of the group G_{r}. Consequently, $S\left(\left(R G_{d}\right) G_{r}\right)_{r}$ is bounded if and only if $S\left(\left(R G_{d}\right) G_{r}\right) / S\left(\left(R G_{d}\right) D\right)$ is bounded, that is $S\left(\left(R G_{d}\right) G_{r}^{p^{i}}\right)=S\left(\left(R G_{d}\right) D\right)$ for some $i \in \mathbb{N}$, which is equivalent to $G_{r}^{p^{i}}=D$ for this $i \in \mathbb{N}$. Thereby G_{r} is weakly p-divisible, i.e. G is a weakly p-divisible group. This holds because $G^{p^{i}}=G_{d} \times G_{r}^{p^{i}}=G_{d} \times G_{r}^{p^{i+1}}=G^{p^{i+1}}$ for some $i \in \mathbb{N}$ iff $G_{r}^{p^{i}}$ $=G_{r}^{p^{i+1}}$ since $G_{r}^{p^{i+1}} \subseteq G_{r}^{p^{i}}$.
(kkk) Apparently $S\left(R G_{d}\right)=1$ and $R G_{d}$ is a ring with no nilpotent elements. Hence $S(R G) \cong S\left(\left(R G_{d}\right) G_{r}\right)$ is reduced since $G_{p}=\left(G_{p}\right)_{r}=\left(G_{r}\right)_{p}$ is reduced. Therefore $S(R G)$ is algebraically compact only if it is bounded by using [3], i.e. only if G_{p} is bounded.

Henceforth, the proposition is proved.
Acknowledgment. The author would like to express his grateful thanks to the referee for the expert comments and suggestions made.

References

[1] P. Danchev, Normed unit groups and direct factor problem for commutative modular group algebras, Math. Balkanica 10 (1996), 161-173.
[2] P. Danchev, Topologically pure and basis subgroups in commutative group rings, C. R. Acad. Bulgare Sci. 48 (1995), 7-10.
[3] L. Fuchs, Infinite abelian groups, I and II, Mir, Moscow 1974 and Moscow 1977.
[4] N. Nachev and T. Mollov, Algebraic compact p-components of unit groups of commutative group rings, C. R. Acad. Bulgare Sci. 47 (1994), 11-14.

Abstract

Let G be an abelian group, let H be a non-identity subgroup of G and let R be a commutative ring with 1 of prime characteristic p. Necessary and sufficient conditions are established for the p-group $S(R G ; H)$ in the group algebra $R G$ to be algebraically compact. These claims supersede a statement due to Mollov-Nachev (Compt. Rend. Acad. Bulg. Sci., 1994) and completely exhaust the problem (see also the author's paper in Compt. Rend. Acad. Bulg. Sci., 1995) as well.

[^0]: (*) 13, General Kutuzov Street, block 7, floor 2, apartment 4, 4003 Plovdiv, Bulgaria, e-mail: pvdanchev@yahoo.com
 ${ }^{(* *)}$ Received May $13^{\text {th }} 2003$ and in revised form November 15 ${ }^{\text {th }} 2004$. AMS classification $16 \mathrm{U} 60,16 \mathrm{~S} 34,20 \mathrm{~K} 10,20 \mathrm{~K} 20,20 \mathrm{~K} 21$.

