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1 - Introduction

Statistical mechanics is an inherently probabilistic subject, as the name sugge-
sts. Yet, in many areas of non equilibrium statistical mechanics, and kinetic theory
in particular, probabilistic reasoning does not usually play much of a role in the
analysis of bulk behavior.
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This is not altogether surprising. A great deal of the power of the methodolo-
gy developed by the founders of statistical mechanics lies in the exploitation of the
law of large numbers to eliminate a complicated stochastic description in favor of
a description in terms of simple local averages that obey deterministic evolution
equations. Thus, while randomness of some sort enters on the microscopic scale,
on larger scales it has been eliminated.

In the kinetic theory of gases, the evolution is described on the mesoscopic
scales by the Boltzmann equation, while on the macroscopic it is described by the
Euler or Navier-Stokes equations.

Although these are deterministic equations, one might hope that their probabi-
listic origins make them amenable to analysis by probabilistic means. Indeed, con-
sider the case of the Schrödinger equation. There is no underlying stochastic
model here, yet the mere presence of the Laplacian opens the way to a very effec-
tive analysis in terms of Wiener integrals. Might it also be possible to use probabi-
listic methods to analyze the Boltzmann equation, which does, after all, describe a
physical phenomenon that is probabilistic at the microscopic level?

This question is not new, and much work has been done to validate the answer
«yes», particularly by Kac and McKean. In what follows, we will describe some of
their ideas and results, along with more recent results, and some open pro-
blems.

The problems examined here in detail concern the spatially homogeneous Bol-
tzmann equation. Probabilistic methods are particularly effective for studying the
effects of collisions on the the distribution of velocities. There is a large literature
in which probabilistic methods are applied to study the spatially inhomogeneous
Boltzmann equation, particularly by Méléard and her collaborators, who have
used a Malliavin calculus for jump processes to prove mild regularity results for
quite singular (non cutoff – see below) Boltzmann equations, and Rezakahnlou,
who has obtained results on propagation of chaos (see below) in the spatially inho-
mogeneous setting. The methods and goals of these authors are rather different
than the ones discussed here, where our focus is on quantitative questions pertai-
ning to the rate of relaxation to equilibrium.

2 - The central limit theorem and the Wild sum

2.1 - Maxwellian molecules and the Wild sum

The spatially homogeneous Boltzmann equation governs the time evolution of
the probability density function f (v , t) for the velocities of the molecules in a dilu-
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te gas. Thus f (Q , v) is a time dependent probability measure on R 3 , and the equa-
tion takes the form

¯

¯t
f (v , t) 4Q( f (Q , v), f (Q , v) ) ,(2.1)

where Q is given by

Q( f , g)(v) 4 ��
R 33S 2

B go v2v*
Nv2v*N

, sp, Nv2v*Nh [ f (v 8 ) g(v*8 )2 f (v) g(v*) ] ds dv*.

and aQ , Qb denotes the inner product in R 3 . This describes the effect of a binary
collision between two identical molecules with pre-collisional velocities v and v*,
and post-collisional velocities v 8 and v*8 . It is assumed that the collisions conser-
ve momentum and kinetic energy, so that

v 81v*84v1v*, Nv 8N2 1Nv*8 N2 4NvN2 1Nv* N2 .(2.2)

All possible pairs of post collisional velocities – that is, pairs satisfying these con-
straints – may be parameterized by a vector in S 2 .

One such parametrization is

v 84
v1v*

2
1

Nv2v*N

2
s , v*84

v1v*
2

2
Nv2v* N

2
s , s�S 2 ,(2.3)

and another is

v 84v1 (av*2v , sb) s v*84v*2 (av*2v , sb) s s�S 2 .(2.4)

The function B specifies the rate at which collisions with parameter s occur
when the incoming velocities are v and v*, and as indicated, it depends only on
the magnitude of v2v* and the angle between v2v* and s . It is called the colli-
sion kernel, and it is a non negative Borel function of its arguments. The speci-
fic form depends on which of the two parameterizations are being employed.

In what follows we shall impose two conditions on B . First, we specialize to
the case of so-called Maxwellian molecules; i.e., we assume that the kernel B
does not depend on Nv2v*N:

B go v2v*
Nv2v*N

, sp, Nv2v*Nh4B go v2v*
Nv2v*N

, sph .(2.5)

The condition (2.5) holds if there is a 1 /r 5 force law between the molecules. Ma-
xwell guessed that nature would opt for a special simple force law as it often does,
and posited such an interaction between the molecules. In retrospect, this may
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look overly bold. On the other hand, there is a lot of wisdom to the old maxim sa-
ying that if one drops ones keys at night, one should look for them first under the
street lamp. It is easier to see things through to the end with Maxwellian molecu-
les, and it is still useful, even today, to look first at the Maxwellian case when in-
vestigating any new problem. For more background, see [18], [35].

Second, we impose the angular cutoff condition, which is

�
0

p

B( cos (u) ) sin (u) duEQ .(2.6)

Under the angular cutoff condition, the collision integral operator Q( f , g) can be
split into its so-called gain and loss terms:

Q( f , g)(v) 4Q 1 ( f , g)(v)2Q 2 ( f , g)(v)(2.7)

where

Q 1 ( f , g)(v) 4 ��
R 33S 2

B go v2v*
Nv2v*N

, sph f (v 8 ) g(v*8 ) ds dv*,

Q 2 ( f , g)(v) 4 f (v)�
R 3

y �
S 2

Bgo v2v*
Nv2v*N

, sphdszg(v*)dv*.

Without the cutoff condition, the cancellations in Q( f , g) are crucial, and sol-
utions to (2.1) have only been shown to exist and studied in a certain weak form
[4], [22], [40], [3] and [2]. With the cutoff condition, it is possible to produce strong
solutions that can be studied in greater detail.

Having both the cut-off and Maxwellian molecules, one can actually give a con-
struction of the solutions that permits one to analyze them in detail. This con-
struction has an interesting probabilistic interpretation, discovered by McKean,
and we shall now explain what it is, and how it may be used.

The story begins with a paper of Wild [39]. Let the Wild convolution f i g of
two integrable functions f and g on R 3 be defined by

f i g4Q 1 ( f , g) .(2.8)

From what has been said above, under the condition that B is even, the Wild
convolution is commutative. However, it is not associative under any natural
condition on B . Therefore, we make the blanket assumption, unless otherwise
stated, that the kernel B(Q) is a nonnegative, even function in L 1 (R) with
supp B% [21, 1 ].
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We make a further blanket assumption – normalizing out units of time –
that

�
S 2

B(aQ , sb) ds42p�
0

p

B( cos (u) ) sin (u) du42pVBVL 1 [21, 1] 41 .(2.9)

In this case,

Q 2 ( f , g) 4 g �
R 3

f (w) dwh g(v) .(2.10)

Using (2.7), (2.8) and (2.10), we can rewrite (2.1) in the form

¯

¯t
f (Q , v)(v) 4 ( f (Q , v) i f (Q , v) )(v)2 f (Q , v)(v) .(2.11)

Let F denote the initial data so that

ft Nt40 4F .(2.12)

Then the Cauchy problem specified by (2.11) and (2.12) is equivalent to

f (v , t) 4e 2t F(v)1�
0

t

e 2(t2s) f i f (v , s) ds .

We therefore fix the initial data F and define a function F from C(R , L 1 (R 3 ) )
to itself by

F( f ) 4e 2t F(Q)1�
0

t

e 2(t2s) f i f (Q , s) ds .

Then f� C(R , L 1 (R 3 ) ) is a solution of our Cauchy problem if and only if

F( f ) 4 f .

As Wild pointed out, this fixed point problem may be solved by iteration: put
f(0) 40, and then define

f( j11) 4F( f( j) ) for all jF1 .(2.13)



106 E. A. CARLEN and M. C. CARVALHO [6]

This yields:

f(1) (t) 4

f(2) (t) 4

f(3) (t) 4

e 2t F

e 2t F1e 2t (12e 2t ) F i F

e 2t F1e 2t (12e 2t ) F i F1

e 2t (12e 2t )2 ((1 /2) F i (F i F)1 (1 /2)(F i F) i F )

(2.14)

and so on.
As one sees in these examples, f(n) (t)2 f(n21) (t) is positive, so that f(n) (t)

F f(n21) (t). To see this more generally, introduce the sequence of probability den-
sities Q1

1 (F), nF1, defined recursively by

Q1
1 (F) 4F

and

Q 1
n (F) 4

1

n21
!

k41

n21

Q 1
k (F) i Q 1

n2k (F) , nF2 .(2.15)

Then one easily checks that

Q2
1 (F) 4F i F

Q3
1 (F) 4

1

2
(F i (F i F)1 (F i F) i F ) .

We can then rewrite (2.14) as

f(1) (t) 4e 2t Q1
1 (F)

f(2) (t) 4e 2t Q1
1 (F)1e 2t (12e 2t ) Q2

1 (F)

f(3) (t) 4e 2t Q1
1 (F)1e 2t (12e 2t ) Q2

1 (F)1e 2t (12e 2t )2 Q3
1 (F) .

(2.16)

From here you guess the pattern:

f(n) (t) 4 !
k41

n

e 2t (12e 2t )k21 Q 1
k (F) .(2.17)

Notice that

!
k41

Q

e 2t (12e 2t )k21 41 .(2.18)

Therefore, an easy application of the monotone convergence theorem leads to
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Wild’s result [39] that

lim
nKQ

f(n) (t) 4 f (t)(2.19)

exists and is a solution of (1.8). This gives us the explicit formula

f (Q , v) 4 !
n41

Q

e 2t (12e 2t )n21 Q 1
n (F)(2.20)

for the unique solution of our Cauchy problem.
This formula reduces the study of the time evolution t O f (Q , t) to the study of

the sequence n O Qn
1 (F). As we shall show, one can obtain fairly precise informa-

tion on how the large n behavior of n O Qn
1 (F) depends on F , and this is a very

effective route to information on how the large t behavior of t O f (Q , t) depends on
f . Moreover, probabilistic tools are natural for analyzing the large n behavior of
n O Qn

1 (F).
For example, let MF denote the Maxwellian density with the same mean and

variance as F . We recall that the Maxwellian densities are those Gaussian densi-
ties that have isotropic covariance. We henceforth assume, without loss of genera-
lity, that F has zero mean and unit variance, so that

MF (v) 4 g 1

2p
h3/2

e 2NvN2 /2 .

Where convenient, we simply write M in place of MF .

2.2 - Maxwellian molecules and the Central Limit Theorem

McKean conjectured [28] an analog of the Central Limit Theorem for Maxwel-
lian molecules. More specifically, he conjectured that

lim
nKQ

Qn
1 (F) 4MF .(2.21)

To clearly see the connection with the Central Limit Theorem, let ]Vj ( be a se-
quence of independent identically distributed random variables with values on R 3 .
Suppose that they are zero mean with unit variance, and suppose that for each j
and each Borel set A%R 3 ,

Pr (Vj ) 4�
A

F(v) dv .

Define the normalized convolution F x G of two probability densities F and G on
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R 3 by

F x G(v) 4�
R 3

F g v1w

k2
h G g v2w

k2
h dw .

This is simply the normal convolution of F and G after rescaling to preserve the

variance. In particular F x F is the probability density of
V1 1V2

k2
, and

(F x F) x (F x F) is the probability density of

V1 1V2 1V3 1V4

k4

and so on. If one defines a sequence of probability densities F(n) recursively by
F(1) 4F and

F(n11) 4F(n) x F(n) ,(2.22)

then F(n11) is the probability density of

!
k41

2n

Vk

2n/2
.

Therefore, the Central Limit Theorem tells us that

lim
nKQ

F(n) 4MF .

The Wild convolution F i F is somewhat more complicated than the normalized
convolution F x F . Nonetheless, there is a strong resemblance. Also, the recursion
(2.15) is more complicated than the recursion (2.22). Still, it is tempting to conjec-
ture that (2.21) holds, for then we would have from (2.20) that

lim
tKQ

f (Q , t) 4MF (Q) ,

and moreover, we can relate the rates at which Qn
1 (F) tends to MF and at which

f (Q , t) tends to MF .
The following demonstration of this is taken from [13], [14]. We have from

(2.18) that

MF 4 !
k41

Q

e 2t (12e 2t )k21 MF
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so that in any norm V QV , and any positive integer N ,

V f (Q , t)2MF VG !
k41

Q

e 2t (12e 2t )k21
VQk

1 (F)2MF V

G !
k41

N21

e 2t (12e 2t )k21
VQk

1 (F)2MF V

1 !
k4N

Q

e 2t (12e 2t )k21
VQk

1 (F)2MF V .

Suppose that lim
nKQ

VQk
1 (F)2MF V40, and that in fact,

VQk
1 (F)2MF VGAk 2p(2.23)

for some 1 DpD0 and AEQ .
Then

!
k41

N21

e 2t (12e 2t )k21
VQk

1 (F)2MF VGe 2t A !
k41

N21

k 2p

Ge 2t A

12p
N 12p .

Also,

!
k4N

Q

e 2t (12e 2t )k21
VQk

1 (F)2MF VGe 2t !
k4N

Q

e 2t Ak 2p

GAN 2p .

We therefore have that for all N ,

V f (Q , t)2MF VGA( (12p)21 e 2t N 12p 1N 2p ) .

Choosing N4e t we see that for all tD0,

V f (Q , t)2MF VGA
22p

12p
e 2pt .(2.24)

We record this as a theorem:

T h e o r e m 2.1 ([13]). Let V QV be any norm such that for all initial data F ,

VQk
1 (F)2MF VGAk 2p

for some 1 DpD0 and AEQ. Then for the same A and p ,

V f (Q , t)2MF VGA
22p

12p
e 2pt .
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That is, algebraic decay of VQk
1 (F)2MF V at rate k 2p implies exponential de-

cay of V f (Q , t)2MF V at rate e 2pt for the same p . Since exponential decay in t of
V f (Q , t)2MF V is the best that we can hope for, algebraic decay in n of VQk

1 (F)
2MF V is the best we can hope for. This is reasonable, as in general the distribu-
tion of

!
k41

n

Vk

kN

only approaches the normal distribution at an algebraic rate; see [20].
The question now is: how can one prove an estimate of the type (2.23) – that is,

a quantitative version of the Central Limit Theorem for Maxwellian mole-
cules?

The proof given in [13] uses explicit representation for Qn
1 (F) in terms of a

random walk on certain tree graphs that was invented by McKean [29] that we
now explain.

2.3 - McKean’s walk on tree graphs

Observe that Qn
1 (F) will be a weighted sum of n-fold Wild convolutions of F .

Since the Wild convolution is not associative [28], and so there are many different
n-fold Wild convolutions in general. To see this, consider two such convolutions
for n48:

( ( (F i F) i (F i F) ) i ( (F i F) i (F i F) ) )(2.25)

and

( ( ( ( ( ( (F i F) i F) i F) i F) i F) i F) i F) .(2.26)

The arrangement of the parentheses matters because the Wild convolution is not
associative.

We can enumerate the different n-fold Wild convolutions easily by identifying
them with certain graphs. Let G(n) denote the set of all binary tree graphs with n
leaves and n21 nodes in which each node has either two «children» or no «chil-

dren». Single «children» are not allowed. We refer to G4 0
n42

Q

G(n) as the set of

McKean graphs. Drawing the graph so that the two «children» of any node can
be identified, respectively, as the «left child» and the «right child» provides a na-
tural left to right order on the nodes and leaves in any given «generation». The
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particular McKean graphs corresponding to the two convolutions in (2.25) and
(2.26) are

where the graph on the left corresponds to (2.25). Both graphs have 8 leaves and
7 nodes. The key difference lies in the number of generations separating the lea-
ves from the node at the top – the root; i.e. in the depth of the leaves.

The correspondence between graphs g and convolutions of F is the following:
Pick any g�G(n), and write «F» in each of the leaves. Now find the left-most pair
of leaves in the deepest row. Erase this pair of leaves, which makes the former
parent node a leaf, and write down (F i F) in the new leaf, producing a graph in
G(n21). Then repeat the procedure, working our way back to the root, but with
the difference that at the later steps, we will be erasing pairs of leaves that have
various iterated convolutions of F written in them. If the left leaf we are erasing
has Gl written in it, and the right leaf has Gr written in it, put (Gl i Gr ) in the
new leaf created upon erasure. Once one has done this until only the root is left, it
has written in it some n-fold iterated convolution of F , and that is the convolution
Cg (F) corresponding to the graph g�G(n) that we started with. It is easy to
check the two graphs in the diagram above do in fact lead to (2.25) and (2.26) as
claimed. Henceforth, we shall write Cg (F) to denote the convolution correspon-
ding to g .

We now introduce the McKean walk which is a random walk on G that passes
through G(n) at the n-th step. The McKean walk starts at the unique element g 0

in G(2).
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Pick a leaf at random – uniformly – and attach another copy of g 0 . This produces
three leaves, and we get one of the two graphs in G(3).

Clearly, each one is equally likely.
Next, pick one of the three leaves at random, and again attach a copy of g 0 .

There are 5 elements in G(4), and this time they are not all equally likely: the
graph

is produced with probability 1 /3 , while each of the others is produced with proba-
bility 1 /6 . This process is repeated until n leaves are produced. We call this ran-
dom walk on McKean graphs the McKean process.

Let g n denote the state of the McKean walk at time n , nF2. For any g

�G(n), let

pn (g) 4Pr (g n 4g) .

McKean’s expression for Qn
1 (F) is

Qn
1 (F) 4e 2t (12e 2t )n21k !

g�G(n)
pn (g) Cg (F)l(2.27)

where the pn (g) are probabilities

!
g�G(n)

pn (g) 41(2.28)

expressing the relative frequency with which any particular convolution Cg (F)
contributes to Qn

1 (F). McKean proved the following:
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M c K e a n ’ s L e m m a [29]. Let g be any member of G(n). Then pn (g) in
(2.27) is the probability that the McKean process passes through g at time
n22.

We refer to the number of generations separating a leaf from the root as the
depth of the leaf. In the graph corresponding to (2.25), all of the leaves have the
same depth, namely 3 . In the graph corresponding to (2.26) there are two leaves
of depth 7 , and one each of every depth from 1 to 6 . The depths of the leaves will
be crucial in our analysis.

The point is that the depth of a leaf represents the number of collisions that
the particle corresponding to the leaf experiences before it contributes to the pro-
bability distribution for the velocity of the observed particle. If all of the contribu-
ting leaves have undergone many collisions, then they are all almost at equili-
brium, and we will expect Cg (F) BMF .

On the other hand if there is a leaf that contributes directly to Cg (F), as is the
case in (2.26), then there is no reason to expect Cg (F) BMF . That is, if we try to
prove that Qh

1 (F) BMF , there will be «good» and «bad» graphs in the sum (2.27).
The good graphs in G(n) will be those in which all of the leaves have a depth that
is not too far from log2 (n), and the bad ones will be those in which there are lea-
ves of low depth. (Notice that if n42k , and each leaf has the same depth, as in
(2.26), then the depth is k , which is where the log2 (n) comes from).

We now introduce a quantitative measure of how good (or bad) a particular
graph g�G(n) is: the following function is small when all of the leaves are deep,
and is large when any one is shallow:

D e f i n i t i o n . Fix any constant 0 EcE1. Then for all n and all g�G(n)
define

W(g) 4 !
j41

n g c

2
hd( j)

where d( j) denotes the depth of the j-th leaf of g from the left and define

T(n) 4 !
g�G(n)

pn (g) W(g) .

If n42k , and g best is the «best possible» graph, each of the leaves of g has
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depth k , then

W(g best ) 42kg c

2
hk

4c k

which is small for k large since cE1.
On the other hand, let g worst has even a single leaf of depth 2 for example,

then W(g worst ) D (c/2 )2 no matter how big k is.
The quantity T(n) is the expected value of W:

T(n) 4EW(g(n) ) .

The closer T(n) is to c k , the more typical good graphs are, and the closer T(n)
(c/2 )2 , the more typical bad graphs are. The following theorem says that good
graphs are fairly typical.

T h e o r e m 2.2 ([13]). There is a finite constant A such that

T(n) GAb ln n for all nF2

where b is any number satisfying bDe c21. Furthermore, the constant A depends
only on the choice of b , and is explicitly computable.

The identification of pn (g) as the probability that a random walk on McKean
graphs hits the particular graph g�G(n) – McKean’s Lemma – allows us to use
(2.27) and Theorem 2.2 to estimate VQ1

n (F)2MF V in appropriate norms, as we
now explain.

First, note that it follows from (2.27) that for any convex function f on
L 1 (R 3 ),

f(Q1
n (F) )4f g !

g�G(n)
pn (g)(Cg (F) )h

4 !
g�G(n)

pn f(Cg (F) ) .
(2.29)

Now suppose that we can find a convex function f on L 1 (R 3 ) such that for so-
me constant cE1

f(F i G) G
c

2
(f(F)1f(G) ) .(2.30)

Then taking apart any McKean graph from the «top down»; i.e., starting at the
root, one obtains:
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T h e o r e m 2.3 ([13]). Let f be any convex function on L 1 (R 3 ) such that for
some constant cE1,

f(F i G) G
c

2
(f(F)1f(G) )(2.31)

for all probability densities F and G with mean zero and unit variance.
Then

f (Cg (F) ) GW(g) f(F) .

P r o o f o f t h e L e m m a . Consider the example f (F i (F i F) ). Using (2.30)
twice we have

f (F i (F i F) ) G

c

2
f(F)1

c

2
f(F i F) G

c

2
f(F)1

c

2
g c

2
f(F)1

c

2
f(F)h .

The general case follows by a simple induction argument based on this pat-
tern. r

Combining the lemma, (2.29) and Theorem 2.2, we have that

f(Q1
n (F) ) GAb ln (n) f(F) .

Therefore, if we can a norm V QV and a convex function f such that (2.31) holds,
and also

VF2MF VGf(F) ,

then we have

VQ1
n (F)2MF VGAb ln (n) f(F) .

2.4 - A convolution-convex functional f .

D e f i n i t i o n . We say that a functional f on L 1 (R 3 ) is strictly convolution-
convex in case (2.30) holds with some cE1 for all probability densities F and G of
the same mean and variance.
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We now see how to find such functionals. It would have been nice if we could
use f(F) 4VF2MVL 1 but unfortunately, while this is convex in the usual sense,
which we also require, it is not convolution-convex.

To devise an appropriate functional, we recall some norms recently introduced
by Gabetta, Toscani and Wennberg [21].

D e f i n i t i o n . Let aD0, and then for any integrable function H on R 3

define

NNNHNNNa4 sup
j�R 3

NH×(j)N

NjN21a

where H×(j) denotes the Fourier transform of H(v).

If F and G are two probability densities with the same first and second mo-
ments, then by a simple Taylor expansion,

NF×(k)2G×(k)N

NkN2

is bounded. If furthermore, for some dD0, both

�
R 3

NvN21d F(v) dvEQ and �
R 3

NvN21d F(v) dvEQ .

Then estimating the remainder in the Taylor expansion, we have that with
a4d/(11d),

NF×(k)2G×(k)N

NkN21a

is bounded.
Therefore, if F is an isotropic probability density such that �

R 3

NvN21d F(v) dv
EQ , then NNNF2MF NNNaEQ .

In this case, we define the functional

f(F) 4NNNF2MF NNNa .

It is clear that f is convex. We now show that is also convolution-convex. In
fact, the following lemma shows something more:
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L e m m a ([13]). Consider any four integrable functions F1 , F2 , G1 and G2

such that their Fourier transforms F×1 F×2 , G×1 and G×2 satisfy

VF×i VQ , VG×i VQG11e for i41, 2

where (11e) ca4cE1 and

ca4�Ncos (u/2 )N21a B(u) cos (u) du .

Then

NNNF1 i G1 2F2 i G2 NNNaG
ca

2
(NNNF1 2F2 NNNa1NNNG1 2G2 NNNa ).(2.32)

Before giving the proof, we note that if we choose F1 4F , G1 4G and F2 4G2

4M , then since M i M4M for any Maxwellian, the inequality (2.32) reduces to

NNNF i G2MNNNaG
ca

2
(NNNF2MNNNa1NNNG2MNNNa )(2.33)

and this is the desired convolution convexity.

P r o o f . We start with the formula for the Fourier transform of F i G , first
worked out by Bobylev [7]:

F i G×(j) 4 �
S 2

F×(j 1 ) G×(j 2 ) B(n Qj/NjN) dn(2.34)

where

j 64
j6NjNn

2
.

Defining the angle u by cos (u) 4n Qj/NjN , we have from e.g., [16], that

Nj 1N4cos (u/2 )NjN and Nj 2N4sin (u/2 )NjN .

Next,

F1 i G1 2F2 i G2 4 (F1 2F2 ) i G1 1F2 i (G1 2G2 ) .(2.35)
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Fourier transforming (F1 2F2 ) i G1 ,

�
S 2

(F×1 (j 1 )2F×2 (j 1 ) ) G×1 (j 2 ) B(n Qj/NjN) dn .

Next,

N(F×1 (j 1 )2F×2 (j 1 ) ) G×1 (j 2 )N

NjN21a
4

N(F×1 (j 1 )2F×2 (j 1 ) ) G×1 (j 2 )N

Nj 1N21a cos (u/2 )222a
G

NNNF1 2F2 NNNa cos (u/2 )21a
VG1 VQG

NNNF1 2F2 NNNa cos (u/2 )21a (11e) .

Therefore, the contribution of (F1 2F2 ) i G1 to

NNNF1 i G1 2F2 i G2 NNNa

is bounded by

NNNF1 2F2 NNNa (11e) �
S 2

cos (u/2 )21a B(n Qj/NjN) dn .

Likewise, the contribution of F2 i (G1 2G2 ) to

NNNF1 i G1 2F2 i G2 NNNa

is bounded by

NNNF1 2F2 NNNa (11e) �
S 2

sin (u/2 )21a B(n Qj/NjN) dn .

Therefore, we have the inequality with ca given by

ca4 �
S 2

(sin (u/2 )21a1cos (u/2 )21a ) B(n Qj/NjN) dn .

This is strictly less than 1 since

�
S 2

B(n Qj/NjN) dn41 . r
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This provides us with the desired convex and convolution-convex functional for
isotropic densities F . When the densities are not isotropic, a modification must be
made, for then NNNF2MF NNNa is not finite for aD0, and caE1 only if aD0.

However, the non-isotropic component of the covariance of the velocities
decays very rapidly to zero, and using this, one may modify the functional f so
that it works without restriction on the covariance. See [13] for details.

We also note that these methods may be used to estimate the rate of relaxa-
tion to equilibrium in stronger, more physically meaningful norms, such as the
L 1 (R 3 ) norm. The following lemma is proved in [13]. In this lemma H k denotes
the Sobolev space of functions on R 3 with k-fold square integrable derivatives.

L e m m a ([13]). Let f be any integrable function on R 3 such that

�
R 3

Nf (v)N(11NvN21d ) dvGBEQ

and

V f VH 21d GCEQ

for some dD0. Then there is a constant DEQ depending only on B , C and d so
that

V f VL 1
q

GDNNNf NNNd/(11d) .

Moreover, for any kD0, if F is a probability density of zero mean and unit va-
riance such that

VFVH k GBEQ

then there is a constant BA EQ depending only on B so that

VCg (F)VH k G BA EQ

for all g�G(n) and all n.

The second part of the Lemma is what makes the first part uniformly appli-
cable to all of the terms in the Wild sum at least for initial data F belonging to
H 21d .

There are two directions to go from here: one can maintain smoothness and
moment assumptions on the initial data, and then try to obtain the best possible
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results on the rate of algebraic decay in the Central Limit Theorem for Maxwel-
lian molecules.

The second is that one can try to remove the extra smoothness and moment
conditions, and obtain more qualitative estimates on the rate of relaxation.

Work in both directions has been carried out, by Carlen, Carvalho and Gabet-
ta in the first case, and by Carlen and Lu in the second case.

Carlen, Carvalho and Gabetta [14] have shown that for nice initial data,

VQ1
n (F)2MF VL 1 (R 3 ) GCe n 2(12e)l

where l is the least negative eigenvalue of the linearized collision operator. By
Theorem 2.1, this is the best possible result one could obtain, because it implies a
bound

V f (Q , t)2MF VL 1 (R 3 ) GCe e 2t(12e) l ,

and apart from the arbitrarily small e , this is the best that one can have. This
shows that nothing essential is given up in the probabilistic methods used to prove
Theorem 2.1.

Carlen and Lu [17] have obtain precise qualitative information on the rates of
relaxation for general initial data. This work shows that the longer the tails, the
slower the decay, and gives the first examples of solutions that decay more slowly
than exponentially.

3 - Kinetic theory from a many body perspective

3.1 - Introduction

Kinetic theory, as it was originally developed by Maxwell and Boltzmann de-
scribes the behavior of a system of many colliding molecules on a mesoscopic sca-
le which permits one, in principle, to calculate the transport of bulk mass, energy
and momentum in the system without directly taking into account all of the detai-
led behavior of the individual molecules. However, this is very much a matter of
«in principle»; the Boltzmann equation is notoriously difficult to analyze.

Over forty years ago, Mark Kac made a radical proposal: instead of working
with the Boltzmann equation, go back to a system of many colliding molecules.
However, do not go back to the complicated underlying model of physical dy-
namics, but instead go back to a simpler stochastic model for the collisions. In-
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deed, the idea is to take the simplest many body system that has the Boltzmann
equation as a scaling limit, and to directly analyze that.

When using a microscopic model to study mesoscopic or macroscopic physics,
it is not necessary that the microscopic dynamics exactly model the actual micro-
scopic physics. Instead, we require only that it correctly capture the physics on
the mesocopic scale.

In other words, for our purposes, all microscopic dynamics having the Bol-
tzmann equation as their mesoscopic limit are equally valid. While they are all
equally valid, they are not equally good. The simpler they are the better. Kac pro-
posed such a microscopic system, and he did show that it had the Boltzmann
equation as its mesoscopic limit. He proposed that a quantitative study of his sto-
chastic model would provide new insight into the Boltzmann equation. In Kac’s
model, the collision mechanism is random. Making the collision mechanism ran-
dom – by fiat – provides a much simpler connection between the microscopic dy-
namics and the irreversible evolution described by the Boltzmann equation, and
therefore a more tractable setting in which to analyze the Boltzmann equation.

For a system of N particles with positions xj and velocities vj , j41, 2 , R , N ,
let (xK, vK) � (R 3 )2N the full microscopic state of the system - the totality of all of
the positions and velocities. Let F(xK, vK, t) denote the probability density for fin-
ding the system in the state (xK, vK) at time t .

The initial results obtained by Kac concerned the spatially homogeneous case
in which F does not depend on the positions xK. He considered a system with one
dimensional velocities, and pair collisions that conserved energy but not momen-
tum. (With only two degree of freedom, two conservation laws would trivialize
matters). In this case, if the total energy is E , the state space for the system is
the sphere S N21 (kE) given by

!
j41

N

vj
2 4E .(3.1)

Let vK 4 (v1 , v2 , R , vN ) denote a point in the state space.
Kac proposed to let vK evolve by undergoing a certain random walk on the sta-

te space in which the steps model pair collisions. Consider a collision of particles i
and j with initial velocities vi and vj , and final velocities vi* and vj*. Then the con-
servation of the total energy implies that vi

2 1vj
2 4 (vi*)2 1 (vj*)2 and hence that

for some angle u ,

vi*4cos (u) vi 2sin (u) vj and vj*4sin (u) vi 1cos (u) vj .
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For iE j define the N3N rotation matrix R(u , i , j) by

R(u , i , j) vK 4 (v1 , R , vi* R , vj*, R , vN ) .

Now let pick a pair of particles iE j uniformly at random, and pick an angle u

with 2pGuGp according to some probability density r on [2p , p]. At each

step, with probability
2

N(N21)
r(u) du , the «collision»

vK K R(u , i , j) vK

occurs. From this description, one easily sees that the Markov transition operator
Q for this process is given by

Qf( vK) 4
2

N(N21)
�

2p

p

f(R(u , i , j) vK) r(u) du .(3.2)

We require that r is symmetric about u40. This makes Q self adjoint on
L 2 (S N21 (kE), dm) where dm denotes the uniform probability measure on
S N21 (kE). We also require that r(0) D0, and that r be continuous near the ori-
gin. This ensures that 1 is a simple eigenvalue of Q . The eigenvector is of course
the constant function 1 .

As one sees from (3.2), Q is an average over isometries on L 2 (S N21 (kE), dm),
and so it is a contraction. Moreover, the spectrum is discrete. In fact, if Y( vK) is
any h-th degree spherical harmonic, so is each Y(R(u , i , j) vK) ), and hence so is
QY( vK). Therefore, for each n , the space of n-th degree spherical harmonics is an
invariant subspace for Q . As Kac observed, this means that the eigenvectors of Q
are spherical harmonics, and the spectrum is discrete.

Kac proposed to run the random walk just described in continuous time with
the collisions arriving in a Poisson stream with rate N . This means that the pro-
bability transition operator at time t is

e 2Nt !
j40

Q (Nt) j

j!
Q j 4e tN(Q2I) .

Let LN denote the self adjoint linear operator N(Q2I):

LN F( vK) 4N u 2

N(N21)
!
iE j

1

2p
�

0

2p

F(R(u , i , j) vK) du2F( vK)v .
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Now let F( vK, t) be the probability density (with respect to the uniform proba-
bility measure m) for finding the system in state vK at time t . Since Q is self ad-
joint, this density satisfies the equation

¯

¯t
F( vK, t) 4 L F( vK, t) .(3.3)

This linear equation is called the Kac Master equation.
Kac then went on to prove that the mesoscopic limit of this stochastic evolu-

tion is governed by a model Boltzmann equation for particles with one dimensio-
nal velocities. To study the limit as N tends to infinity, let F (N) be a sequence of
probability densities on S N21 (kN), that are to be used as initial data for the Kac
master equation (3.3). (We take the total energy to be N so that independent of
N , each particle has on average one unit of energy). Suppose that each is a sym-
metric function of the velocities ]v1 , v2 , R , vn (.

Let f (N) be the probability density on R defined by

�
a

b

f (N) (v) dv4 �
S N21 (kN)

1[a , b] (v1 ) F (N) ( vK) dm .

Suppose that for each fixed k , and any test function f on Rk ,

lim
NKQ

�
S N21

f(v1 , v2 , R , vk ) F (N) ( vK) dm4 �
R k

f(v1 , v2 , R , vk ) »
j41

k

f (N) (vj ) dk v(3.4)

and for any test function c on R ,

lim
NKQ

�c(v) f (N) (v) dv4�
R

c(v) f (v) dv(3.5)

where f is a probability density on R . Then the family of densities ]F (N) ( is said
to be a consistent, chaotic family of initial data for the Kac master equa-
tion.

Kac then proved the following: if F (N) (vK, t) denotes the corresponding solu-
tion; i.e.,

F (N) ( vK, t) 4e tN(Q2I) F (N) ( vK)
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then for any test function c ,

lim
NKQ

�
S N21 (kN)

c(v) F (N) ( vK, t) dm4�
R

c(v) f (v , t) dv

exists and defines f (v , t), which satisfies a model Boltzmann equation, called the
Kac equation.

¯

¯t
f (v , t) 4 Q( f , f )(v , t)(3.6)

where

Q( f , f )(v) 4 f i f2 f(3.7)

and now f i f denotes the modified Wild convolution

f i f (v) 4 �
2p

p

r(u) y �
R

( f ( cos (u) v1sin (u) w) f (2sin (u) v1cos (u) w) ) dwz dr(u) .

There is just one probability density that is an equilibrium solution of this
equation, and which has unit energy; namely

M(v) 4
1

k2p
e 2v 2 /2 .

Kac proposed that one could determine the rate of approach to equilibrium for
solutions f (v , t) of (3.7); that is, the rate at which f (v , t) tends to M(v) by deter-
mining bounds on the rate at which solutions F(v , t) of (3.3) tend toward 1 , the
uniform density, which is the unique equilibrium density for the Master equa-
tion.

The equation (3.3) is linear, while (3.7) is non linear. However, rather precise
control on how the rate of approach to equilibrium for the linear equation depends
on N is required to draw any conclusions relevant to the non linear equation.
Thus, it is not a trivial matter to exploit the linearity of the master equation. In-
deed, Kac was unable to carry out his program, and it was many years before his
ideas were vindicated. However, at the time he wrote, there was very little math-
ematical work on the Boltzmann equation. The paper [10] was the most significant
work up to that time, but it provided no means to address the problem of determi-
ning the rate of approach to equilibrium.
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The way in which Kac’s ideas were vindicated, many years later, appears to
set the stage for further progress, as we now explain. Let 2D N denote the nega-
tive eigenvalue closest to zero, so that D N is the spectral gap for LN . That is,

D N 4 sup ]a f , N(I2Q) f bL 2 : a f , 1 bL 2 40 and V f V2 41( .(3.8)

Kac made the following specific conjecture about LN :

lim inf
NKQ

D N 4CD0 .(3.9)

This conjecture would have the following consequence: consider any consistent,
chaotic sequence ]F (N) ( of initial data for the Kac master equation. Let
]F (N) ( vK, t)( denote the corresponding sequence of solutions. Then for any cEC ,
we have that

VF (N) (Q , t)21V2 GVF (N) (Q)21V2 e 2ct .(3.10)

That is, there would be exponentially fast relaxation to equilibrium uniformly in N
-at least as far as the exponential rate is concerned. Kac then hoped to use this to
draw conclusions about the rate at which solutions of the Kac equation (3.6) ap-
proached equilibrium.

Kac’s conjecture was finally recently proved by Janvresse [25] using Yau’s
martingale method [43], [44]. Her method gives no information on what C might
be, and seems difficult to generalize to physically realistic momentum conserving
collisions. However, shortly afterwards, Carlen, Carvalho and Loss [15] found a
very simple relation between D N and D N21 . To explain this, we first introduce a
simple measure of the correlations between the velocities on the sphere.

Let p j be the j-th coordinate projection on the unit sphere so that p j ( vK) 4vj .
Define a quantity k N by

k N 4 sup { s
S N21

g(p 1 ) g(p 2 ) dm

s
S N21

Ng(p 1 )N2 dm
: g� C(R), �

S N21

g(p 1 ) dm40} .(3.11)

Notice that the marginal distribution of (v1 , v2 ) induced by m N is

NS N23N

NNS N21N
g12

v1
2 1v2

2

N
h(N24) /2

dv1 dv2 .



126 E. A. CARLEN and M. C. CARVALHO [26]

As N tends to infinity, this tends to

1

2p
e 2(v1

21v2
2 ) /2 dv1 dv2 ,

and under this limiting measure, the two coordinate functions v1 and v2 are inde-
pendent. Hence for any admissible trial function g in (3.11),

lim
NKQ

�
S N21

g(p 1 ) g(p 2 ) dm4

1

2p
�

R2

g(v1 ) g(v2 ) e 2(v1
21v2

2 ) /2 dv1 dv2 4

1

k2p
�

R

g(v1 ) e 2v1
2 /2 dv1

1

k2p
�

R

g(v2 ) e 2v1
2 /2 dv2 4

lim
NKQ

ag i p 1 , 1 bag i p 2 , 1 b 40

(3.12)

which implies that lim
NKQ

k N 40, without, however, showing how fast.

We can now explain the relation between D N and D N21 :

T h e o r e m 3.1 ([15]). For all NF3.

D N F (12k N ) D N21 .

The variational problems (3.11) and (3.8) are very different. While (3.8) involves
the operator LN and all of the details of the dynamics, (3.11) does not: k N is com-
pletely independent of the details inherent in the master equation; it is a purely
«kinematical» measure of the lack of independence of the coordinate function v1

and v2 under m.
In fact, it is not hard to compute k N :

T h e o r e m 3.2 ([15]). For all NF3,

k N 4
3

N 2 21
.



127PROBABILISTIC METHODS IN KINETIC THEORY[27]

The last two theorems lead to a proof of Kac’s conjecture: we see that

D N 4

4

4

4

4

»
j43

N g12
3

N 2 21
h D 2

»
j43

N g N 2 24

N 2 21
h D 2

»
j43

N g (N22)(N12)

(N21)(N11)
h D 2

»
j43

N g (N12)

(N21)
h g (N11)

(N22)
h21

D 2

(N12)

(N21)

1

4
D 2 .

Moreover, the computation of D 2 is very simple. For two particles, Q is an
operator on functions on S 1 :

a f , Qf bL 2 4
1

2p
�

2p

p

�
2p

p

f (c) f (c2u) r(u) du dc ,(3.13)

and writing this in terms of Fourier series leads to the following formula for l 2 ,
the second largest eigenvalue of Q for N42:

l 2 4 sup
kc0

{ �
2p

p

r(u) cos (ku) du} .(3.14)

By the Riemann-Lebesgue lemma, l 2 E1, and hence D 2 42(12l 2 ) D0. This
leads to the following result the first part of the following result:

T h e o r e m 3.3 ([15]). For all NF2,

D N F
12l 2

2

N12

N21
.(3.15)

Moreover, this bound is actually an exact value for the constant density r , in
which case l 2 40, and more generally whenever

�
2p

p

r(u) cos (ku) duG �
2p

p

r(u) cos (4u) du(3.16)
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for all kc0. In all of these cases

!
k41

N

(vk
4 2 avk

4 , 1 b )(3.17)

is an eigenfunction of LN with

LN fN 42D N fN .

P r o o f . Apart from the theorems whose proof has been postponed, it remains
only to check that the bound is sharp, and that the multiplicity of the eigenvalue is
one. For

fN ( vK) 4 !
j41

N

(vj
4 2 a1, vj

4 b ) ,(3.18)

QfN 4 g12
2g(N12)

N(N21)
h fN(3.19)

where

g4
1

4
u12 �

2p

p

cos (4u) r(u) duv .(3.20)

This explicitly computed eigenvalue leads to the upper bound

D N G2g
N12

N21
.(3.21)

Clearly, in the Kac model with r uniform – as in Kac’s original paper, g41/4 ,
and so (3.21) implies that D N is no larger than (N12) /(2(N21) ). Since for the
original Kac model l 2 40, this upper bound on D N coincides with the lower
bound (3.15), and hence this lower bound is sharp.

In fact, the upper bound on D N provided by the trial function (3.18) coincides
with the lower bound obtained above whenever f2 (v1 , v2 ) 4v1

4 1v2
4 2 (3 /4) is such

that

Qf2 4l 2 f2 .(3.22)
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Writing v1 4cos (u) and v2 4sin (u), we have

f ( cos (u), sin (u) ) 4
cos (4u)

4
.

Hence (3.22) certainly holds whenever (3.16) holds. r

It is shown in [15] that actually in a wide range of circumstances, 2D N is a
simple eigenvalue of LN , and that

LN fN 42D N fN

for all N sufficiently large, even if this is false for, say, N42. Thus in a great ma-
ny cases we have the exact computation that

D N 42g
N12

N21
(3.23)

for large N .

3.2 - From N particles to N11

We will now explain how to prove Theorems 3.1 and 3.2. The argument turns
on several very simple features of the Kac model that occurs in many other mo-
dels as well. Thus, it is worthwhile to develop the argument in an abstract setting
permitting wide application.

The abstract setting is that of a family if continuous time Markov process with
a state with state spaces XN , n42, 3 , 4 R . We think of XN as the «N particle
state space». For each N , we let Q denote the Markov transition operator. We do
not subscript it with an N; the number of particles will be clear from the context.
Each XN is equipped with a probability measure m N .

In the case of the Kac model XN is the sphere S N21 and m N is the uniform
probability measure on the sphere. There is a natural action of P N , the symme-
tric group on N letters, on S N21 : if p�P N , let

p( vK) 4 (vp(1) , vp(2) , R , vp(N) ) .

Clearly, this is a measure preserving transformation. This is the first of four key
features of the Kac model that are crucial to the proofs of Theorem 3.1 and 3.2.

F e a t u r e 1. For each ND1 there is measure space (XN , SN , m N ), with m N a
probability measure, on which there is a measure preserving action of P N , the
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symmetric group on N letters. We denote

HN 4L 2 (XN , m N ) .(3.24)

We think of the action of P N as representing «exchange of particles».

F e a t u r e 2. There is another measure space (YN , RN , n N ) and there are
measurable maps p j : XN KYN for j41, 2 , R , N such that for all s�P N , and
each j ,

p j i s4p s( j) .(3.25)

Moreover, for each j , and all A�RN ,

n N (A) 4m N (p j
21 (A) ) .(3.26)

We denote

KN 4L 2 (YN , n N ) .(3.27)

Think of p j (x) as specifying the «state of the j-th particle given that the N
particle system is in state x». For example, in the Kac model on the unit sphere,
YN 4 [21, 1 ] and

p j (v1 , v2 , R , vN ) 4vj � [21, 1 ] .(3.28)

Here YN does not depend on N , and it may appear odd for the single particle
state space to depend on N . However, the methods permit this generality, and it
turns out to be useful.

Notice that once YN and the p j are given, n N is specified through (3.26). In the
Kac model we therefore have

n N 4
NS N22N

NS N21N
(12v 2 )(N23) /2 dv .(3.29)

F e a t u r e 3. For each NF3 and each j41, 2 , R , N , there is a map

f j : (XN21 3YN) KXN(3.30)
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so that

p j (f j (x , y) ) 4y(3.31)

for all j41, R , N and all (x , y) �XN21 3YN . Moreover, f j has the property
that for all A� SN ,

[m N21 7n N ](f j
21 (A) ) 4m N (A) ,(3.32)

or equivalently, for all bounded measurable functions f on XN ,

�
XN

f dm N 4 �
YN

y �
XN21

f (f j (x , y) ) dm N21 (x)z dn N (y) .(3.33)

In the Kac model, for any vA �XN21 4S N22 and any v�YN 4 [21, 1 ] we
put

f N (vA, v) 4 (k12v 2 vA, v) .(3.34)

Finally we come to the dynamics; i.e., the Markov transition operator

F e a t u r e 4. For each NF2, there is a self-adjoint and positivity preser-
ving operator Q on HN such that Q1 41. These operators are related to one ano-
ther by: for each NF3, each j41, 2 , R , N , and each square integrable fun-
ction f on XN ,

a f , Qf bHN
4

1

N
!
j41

N

�
YN

(a fj , y , Qfj , y bHN21
) dn N (y)(3.35)

where for each j and each y�YN ,

fj , y (Q) 4 f (f j (Q , y) ) .(3.36)

This feature is easily verified for the Kac model.

D e f i n i t i o n . A Kac System is a system of probability spaces (XN , SN , m N )
and (YN , RN , n N ) for N�N , NF2, together with, for each N , maps p j and f j , j
41, 2 , R , N , a measure preserving action of P N on (XN , SN , m N ), and a Mar-
kov transition operator Q on H 4L 2 (XN , m N ), related to one another in such a
way that they possess all of the properties specified in Features 1 through 4
above.
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In our analysis of the spectral gaps of the Markov transition operators Q in
Kac systems, certain other operators related to conditional expectations will be
important:

Suppose that (XN , SN , m N ), (YN , RN , n N ), p j , and f j , are defined and related
as specified above. For each j41, 2 , R , N , let Pj be the orthogonal projection
onto the subspace of HN consisting of functions of the form g i p j for some g
� KN . Then, with y4p j (x) and fj , y given by (3.36),

Pj f (x) 4g(p j (x) ) where g(y) 4 �
XN21

fj , y (xA) dm N21 (xA) .(3.37)

Next, define

P4
1

N
!
j41

N

Pj(3.38)

which is clearly a positive contraction on HN . Define a contraction K on KN by

(Kg) i p N 4PN ( g i p N21 ) .(3.39)

Evidently, K is a self adjoint contraction, and K1 41.
There is nothing special here about N21 and N: by the permutation symme-

try, Pi ( g i p j ) 4 (Kg) i p i for all ic j . It follows from the definition of P
that

agKgbKN
4 �

XN

g(p 1 ) g(p 2 ) dm N

and so in the Kac model, the quantity k N defined in (3.11) is evidently the second
largest eigenvalue of K . That is, 12k N is the spectral gap of K .

Combining (3.36), (3.37) and (3.39), we obtain

Kg(y) 4 �
XN21

g(p N21 (f N (xA, y) ) ) dm N21 (xA)(3.40)

which provides an explicit form for the operator K . In the case of the Kac model,
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we obtain

Kg(v) )4 �
XN21

g(k12v 2wN21 ) dm N21 (w)

4 �
21

1

g(k12v 2w) dn N21 (w)

4
NS N23N

NS N22N
�

21

1

g(k12v 2w)(12w 2 )(N24) /2 dw

(3.41)

from (3.29) and (3.40).

T h e o r e m 3.4. For any Kac system, let P and K be defined by (3.38) and
(3.39). Define m N , k N and b N by

m N 4 sup ]a f , Pf bHN
: V f VHN

41 and a1, f bHN
40(

k N 4 sup ]ag , KgbKN
: VgVKN

41 and a1, gbKN
40(

b N 4
1

N21
N inf ]ag , KgbKN

N : VgVKN
41(N .

(3.42)

Suppose, moreover, that the operator P has pure point spectrum. Then, either m N

40 or

m N 4 max m 1

N
(11 (N21) k N ),

1

N
(11 (N21) b N )n .(3.43)

P r o o f . Let f be an eigenfunction of P with eigenvalue n . Because P commutes
with permutations, either f is invariant under permutations, or else there is some
transposition, that we may as well take to be s 1, 2 , such that f i s 1, 242f .

First suppose that f is symmetric. Then for some h� KN independent of k , Pk f
4h i p k , and so

nf4Pf4
1

N
!

k41

N

Pk f4
1

N
!

k41

N

h i p k ,(3.44)

where n is the eigenvalue, and h is some function on R . Applying P1 to both sides
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of (3.44), nP1 f4
1

N
!

k41

N

P1 (h i p k ), which can be easily simplified to

nh i p 1 4
1

N
(h i p 1 1 (N21) Kh i p 1 ) .

If h40, then by (3.44). n40 Otherwise, h is an eigenfunction of K with eigenva-
lue nA so that

n4
1

N
(11 (N21) nA) .(3.45)

It might happen that n40 without h40 being the case. But then h must be an ei-
genfunction of K with eigenvalue 21/(N21). In any case, n40 or otherwise
equation (3.45) must hold.

Next, consider the remaining case:

f i s 1, 2 42f .

Note that Pk ( f i s 1, 2 ) 4Pk f40 whenever k is different from both 1 and 2, and
hence

1

N
!

k41

N

Pk f4
1

N
(P1 f1P2 f ) .

Again, applying P1 to both sides of the equation and keeping in mind that
when P1 f4h i p 1 then P2 f42h i p 2 we get

nh i p 1 4
1

N
(h i p 1 2Kh i p 1 ) .

In case h vanishes identically, the eigenvalue n must vanish also, otherwise h is an
eigenfunction of K with eigenvalue nA such that

n4
12nA

N
.(3.46)

Since by the definition (3.42), 2(N21) b N is the most negative eigenvalue of K .
The formula (3.43) of m N now follows from (3.45) and (3.46). r

A stronger version which determined the multiplicities is proved in [15]. We
now come to the key inductive argument that leads directly to the proof of Theo-
rem 3.1.
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T h e o r e m 3.5. For any Kac system, let P and m N be defined by (3.38) and
(3.42). Define l N by

l N 4 sup ]a f , Qf bHN
NV f VHN

41, a f , 1 bHN
40( .(3.47)

Then

l N G (l N21 1 (12l N21 ) m N ) .(3.48)

P r o o f . We start from (3.35), taking any function f� HN satisfying the condi-
tions imposed in (3.47).

a f, Qf bHN
4

4

4

1

1

N
!
j41

N

�
YN

a fj, y, Qfj, ybHN21
dn N (y)

1

N
!
j41

N

�
YN

a[ fj, y2Pj f (y)]1Pj f (y), Q([ fj, y2Pj f (y)]1Pj f (y))bHN21
dn N (y)

1

N
!
j41

N

�
YN

a[ fj, y2Pj f (y)], Q[ fj, y2Pj f (y)]bHN21
dn N (y)

1

N
!
j41

N

�
YN

NPj f (y)N2dn N (y) ,

since each Pj f (y) is constant on XN21 and so on HN21 , QPj f (y) 4Pj f (y),
and

a[ fj , y 2Pj f (y) ], Pj f (y)bHN21
40 .

But

1

N
!
j41

N

�
YN

NPj f (y)N2 dn N (y) 4 a f , Pf bHN
,

and hence

a f , Qf bHN
4

1

1

N
!
j41

N

�
YN

a[ fj , y 2Pj f (y) ], Q[ fj , y 2Pj f (y) ]bHN21
dn N (y)

a f , Pf bHN
.

(3.49)
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Now since a[ fj , y 2Pj f (y) ], 1 bHN21
40 for each y and j ,

a[ fj , y 2Pj f (y) ], Q[ fj , y 2Pj f (y) ]bHN21
G

f

l N21 V fj , y 2Pj f (y)V

2
HN21

l N21 (V fj , y V

2
HN21

2NPj f (y)N2
HN21

) .

Averaging over j and integrating over y ,

1

N
!
j41

N

�
YN

a[ fj , y2Pj f (y) ], Q[ fj , y2Pj f (y) ]bHN21
dn N (y)Gl N21 (V f V

2
HN

2 a f , Pf bHN
).

From this and (3.49), (3.48) follows, since f itself is an admissible trial function for
m N . r

We have the following immediate corollary:

C o r o l l a r y . With k N and b N defined as in (3.42), define D N 4N(12l N ).
Then

D N F (12max ]k N , b N () D N21(3.50)

for all NF3, and hence for all ND2,

D N F »
j43

N

(12max ]k j , b j () D 2 .(3.51)

We see that a sufficient condition for lim inf
NKQ

D N D0 is D 2 D0 and

»
N43

Q

(12max ]k N , b N () D0 .

To prove Theorem 3.1 and Theorem 3.2, we just need to show that for the Kac
model, k N Db N , and that k N is given by the formula in Theorem 3.2.

T h e o r e m 3.6. For the Kac model, the operator K possesses a complete or-
thonormal set ]gn (, nF0, of eigenfunctions where gn is a polynomial of degree
n and the corresponding eigenvalue a n is zero if n is odd, and if n42k , a n is
given by

a 2k 4 (21)k NS N23N

NS N22N
�

0

p

(12sin2 u)k sinN23 u du .
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Before proving the theorem, we remark that it is clear from this formula
that

Na 2(k11)NENa 2kN

for all k . Since a 2 is negative, the second largest eigenvalue is

a 4 4
3

N 2 21
,

hence k N 43/(N 2 21), and this proves Theorem 3.2.
The smallest is

a 2 42
1

N21
.

Hence b N 41/(N(N21) ), and this proves b N Ea N for all NF3, and Theorem
3.1 is proved.

P r o o f o f T h e o r e m 3.6. We start from the explicit form (3.41) for K . By a
simple change of variables, we rewrite it as

Kg(v) 4
NS N23N

NS N22N
�

0

p

g(k12v 2cos u) sinN23 u du .

The right hand side is an even function of v . Since the operator K preserves pari-
ty, K must annihilate odd functions. Hence we may assume that g is even.

Because gk12v 2h2k
4 (12v 2 )k is a polynomial of degree 2k in v , the space of

polynomials of degree 2n or less is an invariant subspace of K . This implies that
the eigenvectors are even polynomials, and that there is exactly one such eigen-
vector for each degree 2k .

Next, suppose that g2k is the degree 2k eigenvector of K , and let a 2k be the
corresponding eigenvalue. We may normalize g2k so that the leading coefficient is
1 , and we then have

g2k 4v 2k 1h(v)

where h(v) is an even polynomial in v of degree no more than 2k22. Thus

a 2k v 2k 1a 2k h(v) 4a 2k g2k 4Kg2k 4Kv 2k 1Kh(v) .
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This implies that

Kv 2k 4a 2k v 2k 1 lower order .

The result now follows directly from the formula for K , the recurrence relation

�
0

p

sinn (u) du4
n21

n
�

0

p

sinn22 (u) du ,(3.52)

and the fact that K1 41. Observe that the leading coefficient of v in (12v 2 )k is
(21)k . r

Having explained how our exact determination of the gap for Kac’s original
model works it is appropriate to compare this approach with Janvresse’s [25] ap-
plication of Yau’s martingale method [43], [44] to the same problem. There are si-
milarities between our analysis and Yau’s method, in that Yau’s martingale
method uses induction on N , correlation estimates, and the same conditional
expectation operators Pj . There are, however, significant differences, as indicated
by the difference between Janvresse’s estimate and our exact calculation.

Yau’s method turns on an analysis of the spectrum of the Pj operators
estimated not in L 2 (S N21 ), but in the Hilbert space whose inner product is
ah , (I2Q) hb, the so-called Dirichlet form space associated to Q . Hence using
Yau’s method, the details of the dynamics enter at each stage of the induction,
while in our approach purely geometric estimates relate D N to D N21 .

However, Yau’s method was designed to handle problems without the permu-
tation symmetry that is present in the class of models considered here. Hence
Yau’s method is more widely applicable. But in the presence of the permutation
symmetry it may be less wide than the method used to obtain the results presen-
ted here.

3.3 - Momentum conserving collisions

We now consider a master equation leading to a Boltzmann equation that de-
scribes physically realistic momentum conserving collisions. Since we may assume
that the total momentum is zero, we take the state space to be given by the
constraints

!
j41

N

NvjN
2 4E and !

j41

N

vj 40 .(3.53)
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This is a sphere of dimension 3N24, however the action of P N is crucial for so
that the particular embedding in R 3N cannot be dispensed with.

Next, consider a pair of identical particles with velocities vi and vj in R 3 . We
require the collisions to conserve momentum as well as energy. As in (2.4) we de-
fine for any unit vector v in S 2 , and any i and j ,

v *i (v) 4vi 1 av , vj 2vi b v(3.54)

v *j (v) 4vj 2 av , vj 2vi b v .(3.55)

These are the post collisional velocities when particles i and j collide with collision
parameter v .

The random collision mechanism is now that we pick a pair i , j , iE j , unifor-
mly at random, and then pick an v in S 2 at random so that

(v1 , v2 , R , vN ) K (v1 , R , v *i (v), R , v *j (v), R , vN ) ,

and put

R(v , i , j) vK 4 (v1 , R , v *i (v), R , v *j (v), R , vN ) .

We then define the one step transition operator Q by

Qf ( vK) 4 uN21

2
v21

!
iE j

N

�
S 2

f (R(v , i , j) vK) B(v Q (vi 2vj ) /Nvj 2vjN) dv ,(3.56)

where B is a non-negative function on [21, 1 ] so that

2p�
0

p

B( cos u) sin (u) du41 .

The function B determines the relative likelihood of the various scattering
angles.

Incorporating momentum conservation has not made too much of a difference
so far; the formula we have deduced for Q still looks very much like the one for
the Kac model. We first check that this Boltzmann collision model is a Kac
system.

By choice of units, we may assume that

!
j41

N

NvjN
2 41 and !

j41

N

vj 40(3.57)
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both hold initially, and hence for all time. Thus our state space XN is the set of all
vectors

vK 4 (v1 , v2 , R , vN ) �R 3N

satisfying the constraints in (3.57). Equip XN with the uniform probability measu-
re inherited from its natural embedding in R 3N . The symmetric group P N acts on
XN as follows: For s�P N ,

s (v1 , v2 , R , vN ) 4 (vs(1) , vs(2) , R , vs(N) ) .

This action is clearly measure preserving. We note that XN is geometrically equi-
valent to the unit sphere S 3N24 in R 3N23 , but apart from identifying normaliza-
tion factors in our probability measures, this identification is not conducive to effi-
cient computation because any embedding in R 3N23 obscures the action of the
symmetric group.

The single particle state space YN can be identified with the unit ball in R 3 as

follows: first note that because of the momentum constraint, !
j41

N21

vj 42vN , to

maximize NvNN , minimize the energy in the first N21 particles. By convexity,

inf m !
j41

N21

Nvj N2 : !
j41

N21

vj 42vNn
is attained at

(v1 , v2 , R , vN21 ) 42
1

N21
(vN , vN , R , vN ) ,

which leads directly to

sup ]NvNNN(v1 , v2 , R , vN ) �XN ( 4
N21

N
.(3.58)

Because the momentum constraint prevents all of the energy from belonging to a

single particle, each vj lies in the ball of radius k(N21) /N in R 3 .

We could take YN to be the ball of radius k(N21) /N in R 3 , for ND3, which
would then depend on N . However, calculations will work out more easily if we
rescale and take YN to be the unit ball in R 3 , independent of N . Therefore, we de-
fine, for NF3,

YN 4 ]v�R 3 NNvNG1(
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and let RN be the corresponding Borel field. We take Y2 to be the unit sphere in
R 3 . We are then led to define p j : XN KYN by

p j (v1 , v2 , R , vN ) 4 g N

N21
h1/2

vj .(3.59)

The measure n N is now determined through (3.26).
Before deducing an explicit formula for it, we introduce the maps f j : XN21

3YN KXN . This is useful in working out the formula for n N .
Consider any fixed NF3, so that XN21 is non empty. Fix a point wK

4 (w1 , w2 , R , wN21 ) �XN21 , and a point v�YN . In order that we have

p N (f N (wK, v) ) 4v ,

the N-th component of f N (wK, v) must be k(N21) /Nv . Now observe that for
any a�R ,

vK4(v1 , v2 , R , vN )4uaw12
1

kN 22N
v , R , awN212

1

kN 22N
v , o N21

N
vv

satisfies !
j41

N

vj 40, and

!
j41

N

NvjN
2 4a 2 1NvN2 ,

since !
j41

N21

NwjN
2 41 and !

j41

N21

vj 40. Therefore, define

a 2 (v) 412NvN2(3.60)

and

f N ( (w1 , w2 , R , wN21 ), v) 4

ua(v) w1 2
1

kN 2 2N
v , R , a(v) wN21 2

1

kN 2 2N
v , o N21

N
vv ,

(3.61)

and we have that f N : XN21 3YN KXN . For j41, R , N21, let s j , N be the pair
permutation exchanging j and N , and define f j 4s j , N i f N . We now show that
with these definitions (3.32) holds, and in the process, obtain an explicit formula
for n N .

The result [15] is contained in the following lemma:
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L e m m a . For NF3, the measure n N induced on YN through (3.26) for the
Boltzmann collision model is

dn N (v) 4
NS 3N27N

NS 3N24N
(12NvN2 )(3N28) /2 dv .(3.62)

In the case N42, n 2 is the uniform probability measure on S 2 4Y2 . Moreover,
for these measures n N , and with f j defined as above, (3.32) holds for the Bol-
tzmann collision model for all NF3.

Given these formulas, it is easy to check that we have in fact defined a Kac
system. The proof of the following Lemma may be found in [15].

L e m m a . The Boltzmann collision model, consisting of (XN , SN , m N ),
(YN , RN , n N ), p j , f j , j41, R , N , and Q as specified in this section constitute a
Kac system.

Now to prove the analog of the Kac conjecture for physically realistic momen-
tum conserving collisions, all we have to do is to analyze the spectrum of the cor-
responding K operator, and then to show that D 2 D0.

The explicit form of K for the Boltzmann collision model is easily obtained
from (3.40): for all functions g on YN , the unit ball in R 3 , and all ND3,

(3.63)

Kg(v)4

4

4

�
XN21

g uo N

N21
uk12NvN2wN212

1

kN 22N
vvv dm N21 (w)

�
YN21

g uo N

N21
k12NvN2o N22

N21
y2

1

N21
vv

Q (12NyN2)(3N211)/2dn N21 (y)

NS 3N210N

NS 3N27N
�

NyNG1

g u kN 222N

N21
k12NvN2y2

1

N21
vv

Q (12NyN2)(3N211)/2dy .

Several properties of K are evident from (3.63). First, K commutes with rota-
tions in R 3 . That is, if R : R 3 KR 3 is a rotation, then clearly

K( g i R) 4 (Kg) i R .

For this reason, we may restrict our search for eigenfunctions of K to functions of
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the form

g(v) 4h(NvN)NvNl Yl , m (v/NvN)

where h is a function on R1 , and Yl , m is a spherical harmonic.
Second, the space of polynomials of degree n is, for each n , invariant under K .

Indeed, any monomial in k12NvN2w that is of odd degree is annihilated when in-
tegrated against (12NwN2 )(3N211) /2 dw , and any even monomial in k12NvN2w is
a polynomial in v .

Together, these two observations show that K has a complete basis of eigen-
functions of the form

gn , l , m (v) 4hn , l (NvN2 )NvNl Yl , m (v/NvN)(3.64)

where hn , l is a polynomial of degree n .
A third observation identifies these polynomials and gives us a formula for the

eigenfunctions: suppose that Kg(v) 4lg(v). Let e× be any unit vector in R 3 . Then
since g is a polynomial and hence continuous,

lim
tK1

Kg(te×) 4 lim
tK1

NS 3N210N

NS 3N27N
�

YN21

g u kN 2 22N

N21
k12 t 2w2

1

N21
e×vQ

(12NwN2 )(3N211) /2 dw4g g2 1

N21
e×h ,

since K1 41. Then since Kg(v) 4lg(v), we have

lg(e×) 4g g2 1

N21
e×h .(3.65)

This leads to what is on principle an explicit formula for the eigenvalues of K .
Consider any eigenfunction gn , l , m of the form given in (3.64), and let l n , l be the
corresponding eigenvalue, which will not depend on m . Then taking any e× so that
Yl , m (e×) c0, we have from (3.65) that

l n , l 4
hn , l (1 /(N21)2 )

hn , l (1)
g2 1

N21
hl

.(3.66)

This becomes quite explicit when we identify the polynomials hn , l as Jacobi
polynomials. For all distinct positive integers n and p , the eigenfunctions gn , l , m
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and gp , l , m are orthogonal in KN . Hence for each l , and for ncp ,

�
NvNG1

hn , l (NvN2 ) hp , l (NvN2 )(12NvN2 )(3N28) /2 NvN2 l dv40 .

Taking r4NvN2 as a new variable,

�
0

1

hn , l (r) hp , l (r)(12r)(3N28) /2 r l 11/2 dr40 .

This can be recognized as the orthogonality relation for a family of Jacobi po-
lynomials in one standard form, and this identifies the polynomials hn , l . A more
familiar form is obtained using the change of variable t42r21 with t ranging
over [21, 1 ]. Then for a , bD21, Jn

(a , b) (t) is the orthogonal n-th degree polyno-
mial for the weight (12 t)a (11 t)b . Then with the variables t and NvN2 related as
above; i.e.,

t42NvN2 21 ,(3.67)

hn , l (NvN2 ) 4Jn
(a , b) (t)(3.68)

for

a4
3N28

2
and b4 l 1

1

2
.(3.69)

The particular normalization of the Jacobi polynomials is irrelevant here, as
we shall be concerned with ratios of the form Jn

(a , b) (t) /Jn
(a , b) (1 ). Indeed, notice

that from (3.67) when NvN2 41, t41, and when NvN2 41/(N 2 2N), t421
12/(N 2 2N). Hence from (3.68) and (3.66), we see that

l n , l 4
Jn

(a , b) (2112/(N 2 2N) )

Jn
(a , b) (1 )

g2 1

N21
hl

.(3.70)

This explicit formula leads to a proof of the Kac conjecture for momentum
conserving collisions. For the details, see [15]. As it turns out, the details are mo-
re formidable than one might hope. The point is that it is not obvious from (3.70)
that in general

Nl n , l 11NGNl n , l N
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or that

Nl n11, l NGNl n , l N .

There are explicit formulas for the Jacobi polynomials, so there is no difficulty in
checking these relations for any particular n and l . But the lack of a clear general
monotonicity argument means that one must slog through a lot of details to arrive
at a rigorous estimate of the k N in this case.

Again, for the details, see [15].

3.4 - Entropy production in the Kac model

The fact that the spectral gap of LN is bounded away from zero as N tends to
infinity implies a uniform exponential rate of approach to equilibrium in the L 2

sense. While the L 2 setting is suitable for studying solutions that are already clo-
se to equilibrium, entropy estimates are required to treat the wider class of all
physical solutions, and are required to draw conclusion about the non linear Bol-
tzmann equation.

To explain, let F be a probability density on S N21 . Define the entropy of F ,
S(F), by

S(F) 4 �
S N21

F ln F( vK) dm .

Being a convex functional of F , the entropy decreases along the evolution descri-

bed by the master equation. A calculation gives
d

dt
S(F) 4 �

S N21

lnF LN F dm . Defi-
ne the quantity G N by

G N 4 sup
F

{ 2 s
S N21

ln F LN F dm

S(F)
}

where the supremum is taken over all densities F that are chaotic in the sense of
Kac – that is, the ones leading to solutions of the Master equation that are rele-
vant to the study of the non linear equation (3.6). For the original Kac model as
described above, we make the entropic analog of the Kac conjecture:

lim inf
NKQ

G N 4DD0 .

This would imply that then entropy of chaotic solutions of the master equation de-
cays to zero at a uniform exponential rate. This would have an important conse-
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quence for the non linear equation (3.6): for a probability density f on the real line
with zero mean and unit variance, define its relative entropy with respect to M ,
H( fNM), by

H( fNM) 4�
R

( ln f2 ln M) f (v) dv .

Then the entropic version of the Kac conjecture would imply that for solutions f (t)
of (3.6)

H( f (t)NM) GCe 2Dt .(3.71)

What is presently known, for the Kac’s model equation (3.6) and for the actual
Boltzmann equation as well, is that for every aD0,

H( f (t)NM) GCa t 2a ,(3.72)

where Ca grows rapidly with a .
Estimates of the type (3.72) play an important role in understanding the beha-

vior of the spatially inhomogeneous Boltzmann equation, and a better estimate,
such as (3.71), would be more incisive. For technical reasons, the route from the
master equation to (3.72) must be slightly more complicated in the case of the full
momentum conserving Boltzmann equation than what we have sketched above for
Kac’s model. Nonetheless, we still conjecture that estimates of the type (3.72) can
be proved for the true Boltzmann equation via the analysis of entropy production
for the master equation.

Efforts to prove (3.71) for the Kac model have already led to interesting resul-
ts in analysis, and further work can be expected to yield even more.

In a direct adaptation of the L 2 strategy to the entropic setting, one is led to
seek the best constant in an inequality for subadditivity of the entropy on S N21 .
Specifically, let F be any probability density on S N21 , and let fj be the correspon-
ding marginal density for the j-th velocity. As proved in Carlen, Lieb and
Loss,

!
j41

N

�
S N21

fj ln fj dmG2 �
S N21

F ln F dm .(3.73)

The constant 2 is best possible, and it is remarkable that this is independent of N .
Indeed, viewing m as a measure on R N concentrated on S N21 (kN), recall that m
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Bg N where

g N 4 g 1

2p
hN/2

e 2N vKN2 /2 dN v .

The fact that mBg N ; ie.e, that g N is concentrated more and more S N21 (kN)
with increasing N is known as the equivalence of ensembles in statistical mecha-
nics. If one replaces m by g N , then the coordinate functions vj are independent as
random variables, and the inequality (3.73) holds with the 2 replaced by (1). We
conjecture that for an appropriately defined class of chaotic densities F , there is
less dependence of the coordinate functions and that (3.73) holds with the con-
stant 2 replaced by 11 O(1 /N). This would lead to (3.71).

Very recently, Villani [42] has proved such an inequality for the case of super
hard sphere.
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S u m m a r y

We present a review of probabilistic methods in kinetic theory focusing on problems
concerning the spatially homogeneous Boltzmann equation. The material was presented
by the first author at the Porto Ercole Summer School in June 2002.
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