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CLAUDIO MA C C I (*)

Discrete time uniformly recurrent Markov additive processes:

two simplified models and large deviations (**)

1 - Introduction

The literature on Markov additive processes is extensive and a source of refe-
rences can be found in [1] (chapter 2, section 5, page 47).

The aim of this paper is to present a discrete time version of some results pre-
sented for the continuous time case in [7], even if in this paper the environment
state space could be not finite.

In [7] (subsection 4.2) the inequalities between rate functions are an immediate
consequence of a result with a cumbersome proof (Theorem 3.1 in [7]) while in this
paper we use a different and simpler procedure. In order to explain the procedure
used here, let us point out that the rate functions in this paper are the Legendre tran-
sforms k*, k*F and k*A of suitable functions k , k F and k A respectively (see (5), (9) and
(12)). Then the proofs of the inequalities between rate functions in this paper are an
immediate consequence of some other inequalities which are easy to check, namely
the opposite inequalities between the functions k, k F and k A .

In [7] the author defined the fluid model and the averaged parameters model
as two simplified Markov additive processes derived in a suitable way from a ge-
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neral continuous time Markov additive process with a finite environment state
space and a real valued additive part (see [7], subsection 4.1). In particular, when
the environment is an irreducible Markov chain, the author proved some inequali-
ties between rate functions having a common unique zero; the interest of such ine-
qualities consists to say that, in some sense, a convergence is not faster than ano-
ther one (see [7], subsection 4.2). Furthermore the inequalities between rate fun-
ctions can also allow to compare some decay rate for level crossing probabilities
(see [7], section 5).

The definition and some results in [7] concerning averaged parameters model
are inspired by the content of [2]. Anyway we point out that, when we deal with a
discrete Markov additive process, the additive part is a generalization of two kin-
ds of sequences of random variables: a sequence which evolves as a deterministic
function of the environment; a random walk independent of the environment.
Then, for a given discrete time Markov additive process, it is natural to study
fluid model and averaged parameters model as sequences of the first kind and the
second kind respectively. Indeed, under suitable hypotheses, the additive part of
the Markov additive process (with suitable normalization) converges; moreover
the analogous limits for the simplified models exist and are equal.

The paper is organized as follows. Section 2 is devoted to recall some prelimi-
naries. In particular we present the uniformly recurrence hypothesis in [5] (sec-
tion 3) which plays a crucial role in large deviations results. Furthermore in sec-
tion 2 we also recall a known characterization presented in [4]; such a characteri-
zation (see Proposition 2.2 in this paper) provides a concrete presentation of di-
screte time Markov additive processes which can be seen as a natural extension of
the description in [1] (page 40) for the discrete time case with a finite environment
state space.

Section 3 in this paper is devoted to define fluid model and averaged parame-
ters model in discrete time case together with the proof of the same inequalities
proved for the continuous time case in [7]. This will be done even if the environ-
ment state space is not finite and the additive part is Rd-valued (for some dF1).
Thus we have the same consequences in terms of comparison between convergen-
ces of Markov additive processes and, when d41, between decay rates of the cor-
responding level crossing probabilities.

At the end of this section we point out what follows. All the Markov processes
in this paper are homogeneous; we denote the scalar product in some Rd by aQ , Qb
and the environment state space by E (as we shall see in the next Definition 2.1),
so that it will be useful to consider the notation

E h 4 E3 Q Q Q3E
���

h times

.
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2 - Preliminaries

Let us recall the definition of Markov additive process and let us consider the
discrete time case.

D e f i n i t i o n 2.1. Let (E , E) be a measurable space and let (Fn ) be a filtra-
tion. Then a sequence of E3Rd-valued random variables ( (Jn , Sn ) ) adapted to
(Fn ) is a Markov additive process if

(1) P(Jn�B, Sn2Sn21�GNFn21)4P(Jn�B, Sn2Sn21�GNJn21)4: P(Jn21 , B3G)

for each B� E, G� B(Rd ) and nF1. In such a case (Jn ) is called environment,
(Sn ) is called additive part and the kernel (P(y , Q3 Q) : y�E) is called MA
kernel.

In order to have a simpler presentation, the additive parts of all Markov addi-
tive processes in this paper start at the origin 0 �Rd. Moreover we refer to the
following characterization which can be extended to Markov additive processes
with additive part taking values in a Hilbert space (see e.g. [4], section 2, Corol-
lary 1).

P r o p o s i t i o n 2.2. Let (E , E) be a measurable space and let ( (Jn , Sn ) ) be a
sequence of E3Rd-valued random variables adapted to a filtration (Fn ). Moreo-
ver let F Q

J 4s (Jn : nF0) be the s-field generated by J4 (Jn ). Then the two follo-
wing statements are equivalent:

(i) ( (Jn , Sn ) ) is a Markov additive process with MA kernel (P(y , Q3 Q) :
y�E);

(ii) there exist kernels (H(y , y 8 , Q) : y , y 8�E) and (Q(y , Q) : y�E) such
that

P(Sn 2Sn21 �GN Fn21 S F J
Q ) fH(Jn21 , Jn , G ) ;

P(Jn �BN Fn21 ) fQ(Jn21 , B) ;

P(y , B3G) f�
B

H(y , y 8 , G) Q(y , dy 8 ) .

Thus, roughly speaking, we can say what follows:
J4 (Jn ) is a E-valued Markov process with kernel (Q(y , Q) : y�E);
for each nF1 the conditional distribution of Sn 2Sn21 given J depends on
(Jn21 , Jn ) only and it is H(Jn21 , Jn , Q).

Now let us introduce the k-th power of the MA kernel (P(y , Q3 Q) : y�E) defi-
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ned by

P k (y , B3G)f �
E k213B

H(y , y1 , Q)* Q Q Q* H(yk21 , yk , Q) ](G) Q(y , dy1 ) Q Q QQ(yk21 , dyk )

(where ˜ denotes convolution); in other words we are considering a generaliza-
tion of (1):

P(Jn�B, Sn2Sn2k�GNFn2k)4P(Jn�B, Sn2Sn2k�GNJn2k)4: P k (Jn2k , B3G)

for each B� E, G� B(Rd ) and nFkF1.
In view of the large deviations results presented below, throughout this paper

we always deal with Markov additive processes satisfying the following hypothe-
ses presented in [5] (section 3).

H y p o t h e s i s (INN). Let (Jn ) be an irreducible and aperiodic Markov
process with respect to some maximal irreducibility measure. Assume that there
exist a probability measure n on E3Rd , an integer m0 F1 and some numbers
0 EaEbEQ such that

an(B3G) GP m0 (y , B3G) Gbn(B3G)

for each y�E , B� E and G� B(Rd ). Moreover let

D 4 {u�Rd : �
E3Rd

e au , sb n(dy , ds) EQ}

and let S be the convex hull of the support of n(E3 Q); then we assume that D is
open and S 7c¯.

Furthermore it is useful to consider the moment generating functions
(H×(y , y 8 , Q) : y , y 8�E) defined as follows (for u�Rd )

H×(y , y 8 , u) f �
Rd

e au , sb H(y , y 8 , ds)

and the function P× defined by

P×(y , B , u) f�
B

H×(y , y 8 , u) Q(y , dy 8 ) .
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It is also useful to consider the k-th power of P× defined by

P× k (y , B , u)f �
E k213B

H×(y , y1 , u) Q Q QH×(yk21 , yk , u) Q(y , dy1 ) Q Q QQ(yk21 , dyk )(2)

and, in other words, we are considering the following equalities:

E[e au , Sn2Sn2k b 1B (Jn )N Fn2k ] fE[e au , Sn2Sn2k b 1B (Jn )NJn2k ]fP× k (Jn2k , B , u)(3)

for each B� E, u�Rd and nFkF1.

The next Proposition 2.5 provides the LDP for g Sn

n
h with a rate function

which does not depend on the initial distribution p of J (namely the distribution of
J0 ). Thus, in view of what follows, we use the notation E(p) [Q] when the initial di-
stribution of J is p. Before presenting the LDP, the next Lemma is needed (see
[5]: section 3 for (i) and (ii); section 4 for (iii)).

L e m m a 2.3. Assume (INN) holds. Then:
(i) for each fixed u� D, P×(u) has a simple, maximal and positive eigenvalue

e k(u) with associated right eigenfunction r (Q , u) which is uniformly positive and
bounded;

(ii) the function k is analytic, strictly convex and essentially smooth on D;
(iii) there exists a stationary distribution p (J) for J.

R e m a r k 2.4. We could have D cRd and, in such a case, we think to
extend the definition of k on all Rd by setting k(u) 4Q for u� D.

We remark that, by (i) in Lemma 2.3, for all nF1 we have

(4) �
E n

H×(y, y1 , u) QQQ H×(yn21 , yn , u) r (yn , u) Q(y, dy1) QQQ Q(yn21 , dyn)fe nk(u)r (y, u) .

P r o p o s i t i o n 2.5. Assume (INN) holds. Then, whatever is the initial distri-

bution p for J , g Sn

n
h satisfies the LDP with rate function k* defined by

k*(s) f sup
u�Rd

[au , sb2k(u) ] .(5)

P r o o f . Let nF1, y�E and u� D be arbitrarily fixed; indeed we can
neglect the case u� D by Remark 2.4 and (5). Moreover let us consider (2) with
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k4n and B4E:

P×n (y , E , u) f �
E n

H×(y , y1 , u) Q Q QH×(yn21 , yn , u) Q(y , dy1 ) Q Q QQ(yn21 , dyn ).

Then, by (i) in Lemma 2.3, we have

�
E n

H×(y , y1 , u) Q Q QH×(yn21 , yn , u)
r (yn , u)

sup
z�E

r (z , u)
Q(y , dy1 ) Q Q QQ(yn21 , dyn )GP×n (y , E , u)

G �
E n

H×(y , y1 , u) Q Q QH×(yn21 , yn , u)
r (yn , u)

inf
z�E

r (z , u)
Q(y , dy1 ) Q Q QQ(yn21 , dyn ) ;

thus, by (4), we obtain

e nk(u) r (y , u)

sup
z�E

r (z , u)
GP×n (y , E , u) Ge nk(u) r (y , u)

inf
z�E

r (z , u)
.(6)

Now let p be any initial distribution for J and, by (3) with k4n and B4E , we
have

E(p) [e au , Sn b ] f�
E

P×n (y , E , u) p(dy) .(7)

In conclusion

e nk(u)
s
E

r (y , u) p(dy)

sup
z�E

r (z , u)
GE(p) [e au , Sn b ] Ge nk(u)

s
E

r (y , u) p(dy)

inf
z�E

r (z , u)
,

follows from (6) and (7), so that we obtain

lim
nKQ

1

n
log E(p) [e au , Sn b ] fk(u) .(8)

Then the proof is complete as a consequence of Gärtner Ellis Theorem (see e.g.
[3], chapter 2, section 3) and by (ii) in Lemma 2.3. r
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R e m a r k 2.6. One can check that
Sn

n
converges to the unique zero l of k*,

where

l 4�
E
k �

E

˜H×(y , y 8 , u)Nu40 Q(y , dy 8 )l p (J) (dy)

and

˜H×(y , y 8 , u)Nu40 f �
Rd

sH(y , y 8 , ds) .

R e m a r k 2.7. Let us consider the case d41 and assume the following con-
dition holds:

(L) : there exists wD0 such that k(w) 40 and k 8 (w) D0 .

Then we can derive the limits below as in [6] (Theorem 3.1 and (3.4) in Theorem
3.2) which are proved in [6] when E is finite and the initial distribution of (Jn )
is deterministic. Indeed, when (INN) holds, we have a conjugate family of ker-
nels with the same structure as in [6] (see [5], section 4); then the proofs can be
easily adapted to our case since we have

sup
y 8�E

s
E

r (y , w) p(dy)

r (y 8 , w)
EQ .

The limits concern the level crossing probabilities c(b) and the second moment
of importance sampling estimator h(b) (here bD0 is the level) and we have:

lim
bKQ

1

b
log c(b) 42w and lim

bKQ
log h(b) 422w .

Finally we point out the equality w4 inf
sD0

k*(s)

s
.

3 - Two simplified models derived from ( (Jn , Sn ) )

In this section we present two Markov additive processes derived in a suitable
way from ((Jn , Sn ) ): the fluid model ((Jn

(F) , Sn
(F) ) ) and the averaged parameters

model ((Jn
(A) , Sn

(A) ) ). In order to have a simpler presentation we assume that
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(Jn
(F) ) 4 (Jn

(A) ) 4 (Jn ); more precisely we could say that (Jn
(F) ) and (Jn

(A) ) have the
same distribution of (Jn ).

3.1 - Fluid model

In order to define fluid model we introduce the kernel (HF (y , y 8 , Q) : y , y 8

�E) which plays the role of (H(y , y 8 , Q) : y , y 8�E) when we have fluid model in
place of ( (Jn , Sn ) ). In general HF (y , y 8 , Q) is the distribution of the constant ran-
dom variable equal to the mean value s

Rd
sH(y , y 8 , ds). Thus the moment genera-

ting functions (H×F (y , y 8 , Q) : y , y 8�E) are defined by

H×F (y , y 8 , u) f exp g»u , �
Rd

sH(y , y 8 , ds)«h .

The large deviations results presented for ((Jn , Sn ) ) can be adapted to fluid
model. Thus let k F be the function which plays the role of k when we have the

fluid model in place of ((Jn , Sn ) ); then g Sn
(F)

n
h satisfies the LDP with rate fun-

ction k*F defined by

k*F (s) f sup
u�Rd

[au , sb2k F (u) ] .(9)

It is easy to check that l is the unique zero of k*F ; indeed we have

˜H×F (y , y 8 , u)Nu40 f �
Rd

sH(y , y 8 , ds) f˜H×(y , y 8 , u)Nu40 .

Thus
Sn

(F)

n
converges to l which is the same limit of

Sn

n
(see Remark 2.6).

P r o p o s i t i o n 3.1. Assume (INN) holds. Then we have k*F (s) Fk*(s) for all
s�Rd.

P r o o f . In general we have

H×(y , y 8 , u) F exp g �
Rd

au , sb H(y , y 8 , ds)h
4 exp g»u , �

Rd

sH(y , y 8 , ds)«h4H×F (y , y 8 , u)
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by Jensen inequality. Then, given any initial distribution p for J, for all u�Rd we
have

E(p) [e au , Sn b ]4�
E
k �

E n

H×(y , y1 , u) Q Q QH×(yn21 , yn , u) Q(y , dy1 ) Q Q QQ(yn21 , dyn )l p(dy)

F�
E
k �

E n

H×F (y , y1 , u) Q Q QH×F (yn21 , yn , u) Q(y , dy1 ) Q Q QQ(yn21 , dyn )l p(dy)

4E(p) [e au , Sn
(F) b ] .

Thus, by (8) in Proposition 2.5 (for ((Jn , Sn ) ) and for fluid model), we obtain

k(u)4 lim
nKQ

1

n
log E(p) [e au , Sn b ]F lim

nKQ

1

n
logE(p) [e u , Sn

(F) b ]4k F (u) ((u�Rd ) .(10)

In conclusion the proof is complete by (5), (9) and (10). r

R e m a r k 3.2. Let us consider the content of Remark 2.7 (thus in particular
d41). Moreover assume that the analogous of (L) for fluid model also holds,
namely:

there exists wF D0 such that k F (wF ) 40 and k 8F (wF ) D0 .

Then, by taking into account the latter statement in Remark 2.7, we have

wF 4 inf
sD0

k*F (s)

s
F inf

sD0

k*(s)

s
4w

by Proposition 3.1; from a different point of view wF Fw also follows from (10).
If we adapt final part of section 5 in [7] to our situation, we have the same con-
sequences of wF Fw concerning level crossing probabilities and second moment
of importance sampling estimator.

3.2 - Averaged parameters model

In order to define averaged parameters model we introduce the kernel
(HA (y , y 8 , Q) : y , y 8�E) which plays the role of (H(y , y 8 , Q) : y , y 8�E) when we
have averaged parameters model in place of ((Jn , Sn ) ). In general HA (y , y 8 , Q) is
a suitable distribution which does not depend on (y , y 8 ); more precisely the mo-
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ment generating functions (H×A (y , y 8 , Q) : y , y 8�E) are all equal to

H×A (u) f exp g �
E
g �

E

log H×(y , y 8 , u) Q(y , dy 8 )h p (J) (dy)h .(11)

R e m a r k 3.3. We are considering an implicit assumption, namely the fun-
ction H×A defined in (11) is a moment generating function. This happens when
all the distributions (H(y , y 8 , Q) : y , y 8�E) are infinitely divisible. This remark
has some analogy with Remark 4.1 in [7].

We point out that, since the distributions (HA (y , y 8 , Q) : y , y 8�E) do not de-
pend on (y , y 8 ), (Jn ) and (Sn

(A) ) are independent.
The large deviations results presented for ((Jn , Sn ) ) can be adapted to avera-

ged parameters model. Thus let k A be the function which plays the role of k when

we have the averaged parameters model in place of ((Jn , Sn ) ); then g Sn
(A)

n
h sati-

sfies the LDP with rate function k A* defined by

k A* (s) f sup
u�Rd

[au , sb2k A (u) ] .(12)

It is easy to check that k A coincides with log H×A and the unique zero of k A* is

˜k A (u)Nu40 which coincides with l . Thus
Sn

(A)

n
converges to l which is the same

limit of
Sn

n
(see Remark 2.6).

P r o p o s i t i o n 3.4. Assume (INN) holds. Then we have k A* (s) Fk*(s) for all
s�Rd.

P r o o f . In general we have

E(p (J) ) [e au , Sn b ]

4�
E
k �

E n

H×(y , y1 , u) Q Q QH×(yn21 , yn , u) Q(y , dy1 ) Q Q QQ(yn21 , dyn )l p (J) (dy)

F exp g�
E
k�
E n

]log H×(y , y1 , u)1 Q Q Q1

log H×(yn21 , yn , u)( Q(y , dy1 ) Q Q QQ(yn21 , dyn )l p (J) (dy)h
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by Jensen inequality. Then, since p (J) is stationary for J, by (11) we have

E(p (J) ) [e au , Sn b ] F exp gn�
E
g�

E

log H×(y , y 8 , u) Q(y , dy 8 )h p (J) (dy)h4 (H×A (u) )n .

Thus, since k A coincides with log H×A , by (8) in Proposition 2.5 with p4p (J) and
by the latter inequality we have

k(u) 4 lim
nKQ

1

n
log E(p (J) ) [e au , Sn b ] F log H×A (u) 4k A (u) ((u�Rd ) .(13)

In conclusion the proof is complete by (5), (12) and (13). r

R e m a r k 3.5. Let us consider the content of Remark 2.7 (thus in particular
d41). Moreover assume that the analogous of (L) for averaged parameters
model also holds, namely:

there exists wA D0 such that k A (wA ) 40 and k 8A (wA ) D0 .

Then, by taking into account the latter statement in Remark 2.7, we have

wA 4 inf
sD0

k*A (s)

s
F inf

sD0

k*(s)

s
4w

by Proposition 3.4; from a different point of view wA Fw also follows from (13).
If we adapt final part of section 5 in [7] to our situation, we have the same con-
sequences of wA Fw concerning level crossing probabilities and second moment
of importance sampling estimator.

Acknowledgements. I thank Professor B. Grigelionis for sending me a copy of
his paper [4] cited in the references.

References

[1] S. ASMUSSEN, Ruin probabilities, World Scientific Publishing Co., Inc., River Ed-
ge, NJ 2000.

[2] S. ASMUSSEN and C. O’CINNEIDE, On the tail of the waiting time in a Markov-
modulated M/G/1 queue, Oper. Res. 50 (2002), 559-565.

[3] A. DEMBO and O. ZEITOUNI, Large deviations techniques and applications, Jones
and Bartlett, London 1993.



62 CLAUDIO MACCI [12]

[4] B. GRIGELIONIS, Conditionally exponential families and Lundberg exponents of
Markov additive processes. In: «Probability Theory and Mathematical Stati-
stics», B. Grigelionis et al. Eds., VSP, Utrecht 1994, pp. 337-350.

[5] I. ISCOE, P. NEY and E. NUMMELIN, Large deviations of uniformly recurrent
Markov additive processes, Adv. in Appl. Math. 6 (1985), 373-412.

[6] T. LEHTONEN and H. NYRHINEN, On asymptotically efficient simulation of ruin
probabilities in a Markovian environment, Scand. Actuar. J. (1992), 60-75.

[7] C. MACCI, Continuous time Markov additive processes: composition of large de-
viations principles and comparison between exponential rates of convergence,
J. Appl. Prob. 38 (2001), 917-931.

S u m m a r y

In this paper we consider a discrete time uniformly recurrent Markov additive pro-
cess ( (Jn , Sn ) ) according to the presentation in [5]. As in [7] (which deals with continuous
time Markov additive processes with finite state space environment) we define the fluid
model and the averaged parameters model as two simplified Markov additive processes
derived from ( (Jn , Sn ) ) in a suitable way. In this paper we prove some inequalities be-
tween rate functions which coincide with the analogous inequalities in [7].

* * *


