Elisabetta Barletta (*)

Subelliptic F-harmonic maps (**)

1- Introduction and statement of results

Let $\left(M, T_{1,0}(M)\right)$) be a strictly pseudoconvex CR manifold, of CR dimension n, and θ a contact form on M such that the Levi form

$$
G_{\theta}(X, Y):=(d \theta)(X, J Y)
$$

is positive-definite, $X, Y \in H(M):=\operatorname{Re}\left\{T_{1,0}(M) \oplus T_{0,1}(M)\right\}$, where $J: H(M)$ $\rightarrow H(M), J(Z+\bar{Z})=i(Z-\bar{Z}), Z \in T_{1,0}(M), i=\sqrt{-1}$, and $T_{0,1}(M):=\overline{T_{1,0}(M)}$ (an overbar indicates complex conjugation). Let $F:[0, \infty) \rightarrow[0, \infty)$ a C^{2} function, such that $F^{\prime}(t)>0$. For a smooth map $\phi:(M, \theta) \rightarrow(N, h)$ and a compact domain $D \subseteq M$ we consider the energy function

$$
\begin{equation*}
E_{F}(\phi ; D)=\int_{D} F\left(\frac{1}{2} \operatorname{trace}_{G_{\theta}}\left(\pi_{H} \phi^{*} h\right)\right) \theta \wedge(d \theta)^{n} . \tag{1}
\end{equation*}
$$

Here (N, h) is a Riemannian manifold. Then ϕ is F-pseudoharmonic if, for any compact domain $D \subseteq M$, it is an extremal of the energy $E_{F}(\cdot ; D)$ with respect to all variations of ϕ supported in D.

For $F(t)=t$, (1) is the energy function in [3] (and extremals were referred to as pseudoharmonic maps). If $\phi:(M, \theta) \rightarrow(N, h)$ is pseudoharmonic then for any point $x \in M$ there is a coordinate system $\left(U, \varphi=\left(x^{1}, \ldots, x^{2 n+1}\right)\right.$) on M at x

[^0]such that $\phi \circ \varphi^{-1}: \Omega \rightarrow(N, h)$ is a subelliptic harmonic map on $\Omega:=\varphi(U)$ $\subseteq \boldsymbol{R}^{2 n+1}$ in the sense of J. Jost \& C.-J. Xu, [12], or Z.-R. Zhou, [20].

The cases $F(t)=(2 t)^{p / 2}(p \geqslant 4)$ and $F(t)=\exp (t)$ (familiar in the theory of harmonic maps of Riemannian manifolds, cf. e.g. P. Baird \& S. Gudmundson, [2], L.F. Cheung \& P.F. Leung, [4], and M.C. Hong, [10], S.E. Koh, [13]) have not been studied from the point of view of CR and pseudohermitian geometry. However, if $F(t)=(2 t)^{p / 2}$ and $\phi:(M, \theta) \rightarrow\left(S^{m}, h_{0}\right)$ is F-pseudoharmonic [where S^{m} is the unit sphere in \boldsymbol{R}^{m+1} and h_{0} the standard Riemannian metric on $\left.S^{m}\right]$ then at any point $x \in M$ there is a local coordinate system (U, φ) such that $\phi \circ \varphi^{-1}$: $\Omega \rightarrow S^{m}$ is subelliptic p-harmonic in the sense of P. Hajlasz \& P. Strzelecki, [9].

We obtain the following first variation formula [stated for simplicity in the case M is compact (and then one writes $E_{F}(\phi):=E_{F}(\phi ; M)$)]

Theorem 1. Let M be a compact strictly pseudoconvex $C R$ manifold, of $C R$ dimension n, and θ a contact form on M such that the Levi form G_{θ} is positive definite. Let (N, h) be a Riemannian manifold. Let $F:[0, \infty) \rightarrow[0, \infty)$ be a C^{2} map such that $F^{\prime}(s)>0$ and set $\varrho(s):=F^{\prime}(s / 2)$. Let $\left\{\phi_{t}\right\}_{|t|<\varepsilon}$ be a 1-parameter variation of a smooth map $\phi=\phi_{0}: M \rightarrow N$. Then

$$
\frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\}_{t=0}=-\int_{M} \tilde{h}\left(V, \tau_{F}(\phi ; \theta, h)\right) \theta \wedge(d \theta)^{n},
$$

where

$$
\tau_{F}(\phi ; \theta, h):=\sum_{a=1}^{2 n}\left[\left(\phi^{-1} \nabla^{N}\right)_{X_{a}}\left(\varrho(Q) \phi_{*} X_{a}\right)-\varrho(Q) \phi_{*} \nabla_{X_{a}} X_{a}\right]
$$

and $Q:=\operatorname{trace}_{G_{\theta}}\left(\pi_{H} \phi^{*} h\right)$. Here $\left\{X_{a}\right\}$ is a local G_{θ}-orthonormal frame of $H(M)$. Also we set $\widetilde{M}:=(-\varepsilon, \varepsilon) \times M$ and

$$
\begin{gathered}
\Phi: \widetilde{M} \rightarrow N, \quad \Phi(t, x):=\phi_{t}(x), \quad x \in M, \quad|t|<\varepsilon, \\
V_{x}:=\left.\left(d_{(0, x)} \Phi\right) \frac{\partial}{\partial t}\right|_{(0, x)} \in T_{\phi(x)}(N), \quad x \in M .
\end{gathered}
$$

Then ϕ is F-pseudoharmonic if

$$
\begin{equation*}
\tau_{F}(\phi ; \theta, h)=0 . \tag{2}
\end{equation*}
$$

Moreover, for each smooth map $\phi: M \rightarrow N$ the tension field $\tau_{F}(\phi ; \theta, h)$
$\in \Gamma^{\infty}\left(\phi^{-1} T N\right)$ is also given by

$$
\tau_{F}(\phi ; \theta, h)=\left\{\operatorname{div}\left(\varrho(Q) \nabla^{H} \phi^{i}\right)+\sum_{a=1}^{2 n} \varrho(Q)\left(\left|\begin{array}{c}
i \tag{3}\\
j k
\end{array}\right| \circ \phi\right) X_{a}\left(\phi^{j}\right) X_{a}\left(\phi^{k}\right)\right\} Y_{i} .
$$

on $U:=\phi^{-1}(V)$, where $\left(V, y^{i}\right)$ is a local coordinate system on $N, \phi^{j}:=y^{j} \circ \phi$, and $Y_{j}(x):=\left(\partial / \partial y^{j}\right)(x), x \in U, 1 \leqslant j \leqslant m$.

Here $\left|\begin{array}{c}i \\ j k\end{array}\right|$ are the Christoffel symbols of (N, h). As a consequence of (3) the Euler-Lagrange equations (2) (the F-pseudoharmonic map equation) for $\phi:(M, \theta) \rightarrow\left(\boldsymbol{R}^{m}, h_{0}\right)$ may be written

$$
\begin{equation*}
\operatorname{div}\left(\varrho(Q) \nabla^{H} \phi^{j}\right)=0, \quad 1 \leqslant j \leqslant m . \tag{4}
\end{equation*}
$$

Compare to (0.1) in [16]. Here h_{0} is the natural flat metric on \boldsymbol{R}^{m}. J. Jost \& C-J. Xu study (cf. op. cit.) the existence of weak solutions to the pseudoharmonic map equation [i.e. (2) with $F(t)=t$] on $\Omega \subset \boldsymbol{R}^{2 n+1}$. Precisely, they solve the Dirichlet problem on a domain $\omega \subset \subset \Omega$ whose boundary $\partial \omega$ is smooth and noncharacteristic for the system of vector fields $\left\{X_{a}\right\}$, when the given boundary values have values in regular balls of (N, h). Moreover, they prove continuity up to the boundary of bounded weak solutions $\phi: \bar{\omega} \rightarrow(N, h)$, a result which, together with a result of C.-J. Xu \& C. Zuily, [19] (showing that continuous solutions to a class of quasilinar subelliptic systems covering the pseudoharmonic map system on Ω are actually smooth) proves the local existence of pseudoharmonic maps (whose boundary values have values in regular balls of (N, h)). We emphasize that the hypothesis adopted in [12] are that $\left\{X_{a}\right\}$ is a Hörmander system on Ω (and this is always satisfied, as a consequence of the fact that ($M, T_{1,0}(M)$) is nondegenerate) and that the boundary $\partial \omega$ is noncharacteristic for $\left\{X_{a}\right\}$ (this holds if and only if $T_{x}(\partial \omega)$ $\neq H(M)_{x}$, for any $\left.x \in \partial \omega\right)$. The local result of J. Jost \& C.-J. Xu is slightly more general than needed here (it holds for $\Omega \subset \boldsymbol{R}^{N}$ with N not necessarily odd, and a Hörmander system $\left\{X_{a}\right\}$ on Ω with $\left\{X_{a}\right\}$ not necessarily linearly independent at the points of Ω).

The apparently more general concept of a subelliptic harmonic map considered by Z.-R. Zhou, [20] (involving a positive-definite matrix of smooth functions $\gamma_{i j}(x)$ on Ω, which is the unit matrix in [12]) is but another local manifestation of our pseudoharmonic maps (corresponding to the case where the local frame $\left\{X_{a}\right\}$ on $U \subseteq M$ is not necessarily G_{θ}-orthonormal). Z-R. Zhou proves (cf. op. cit.) a local uniqueness result for pseudoharmonic maps on Ω [two pseudoharmonic maps $\phi_{1}, \phi_{2}: \bar{\omega} \rightarrow N$, having the same boundary values $\left.\phi_{1}\right|_{\partial \omega}=\left.\phi_{2}\right|_{\partial \omega}$ (lying in regular balls of N), coincide ($\phi_{1}=\phi_{2}$ in ω)].

The relationship among F-pseudoharmonicity and pseudoharmonicity is clarified in the following

Theorem 2. Let (M, θ) be a CR manifold, (N, h) a Riemannian manifold, and $F:[0, \infty) \rightarrow[0, \infty)$ a C^{2} function, be as in Theorem 1. Then

$$
\tau_{F}(\phi ; \theta, h)=F^{\prime}\left(\frac{Q}{2}\right)^{1+1 / n} \tau\left(\phi ; F^{\prime}\left(\frac{Q}{2}\right)^{1 / n} \theta, h\right) .
$$

Thus $\phi:(M, \theta) \rightarrow(N, h)$ is a F-pseudoharmonic map if and only if $\phi:\left(M, F^{\prime}(Q / 2)^{1 / n} \theta\right) \rightarrow(N, h)$ is a pseudoharmonic (with respect to the data $\left.F^{\prime}(Q / 2)^{1 / n} \theta, h\right)$ map.

The tension field $\tau(\phi ; \theta, h)$ in Theorem 2 is obtained from $\tau_{F}(\phi ; \theta, h)$ for $F(t)=t$.

Pseudohermitian maps, that is CR maps $\phi: M \rightarrow N$ of two strictly pseudoconvex CR manifolds M and N, preserving - up to a multiplicative constant - the given contact forms θ and θ_{N}, on M and N respectively, are examples of pseudoharmonic maps $\phi:(M, \theta) \rightarrow\left(N, g_{\theta_{N}}\right)$, where $g_{\theta_{N}}$ is the Webster metric of (N, θ_{N}) (and these are also the only CR maps which are pseudoharmonic, cf. Theor. 1.1, p. 724, in [3]). New examples, as obtained in this paper, are the pseudoharmonic morphisms. Let M be a nondegenerate CR manifold and θ a contact form on M. The sublaplacian $\Delta_{b}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is the second order differential operator

$$
\Delta_{b} u:=-\operatorname{div}\left(\nabla^{H} u\right), \quad u \in C^{\infty}(M) .
$$

Let $\phi: M \rightarrow N$ be a smooth map into a Riemannian manifold (N, h). We say ϕ is a pseudoharmonic morphism if for each local harmonic function $v: V \rightarrow \boldsymbol{R}(V \subseteq N$ open, $\Delta_{N} v=0$, where Δ_{N} is the Laplace-Beltrami operator of (N, h)) one has $\Delta_{b}(v \circ \phi)=0$ in $U:=\phi^{-1}(V)$. We shall prove the following

Theorem 3. Let M be a nondegenerate $C R$ manifold, of $C R$ dimension n, and θ a contact form on M. Let (N, h) be a m-dimensional Riemannian manifold. If $m>n$ there is no pseudoharmonic morphism of (M, θ) into (N, h), except for the constant maps. If $m \leqslant n$ then any pseudoharmonic morphism $\phi:(M, \theta) \rightarrow(N, h)$ is a pseudoharmonic map and a C^{∞} submersion and there
is a unique C^{∞} function $\lambda: M \rightarrow[0,+\infty)$ such that

$$
\begin{equation*}
g_{\theta}^{*}\left(d_{H} \phi^{i}, d_{H} \phi^{j}\right)_{x}=2 \lambda(x) \delta^{i j}, \quad 1 \leqslant i, j \leqslant m \tag{5}
\end{equation*}
$$

for any $x \in M$ and any normal coordinate system $\left(V, y^{i}\right)$ at $\phi(x) \in N$.
The Riemannian counterpart of Theorem 3 is a result of T. Ishihara, [11] (thought of as foundational for the theory of harmonic morphisms, cf. e.g. J.C. Wood, [18]). The notion of a F-pseudoharmonic map admits the following geometric interpretation

Theorem 4. Let (M, θ) be a compact strictly pseudoconvex $C R$ manifold, with a contact form $\theta,(N, h)$ a Riemannian manifold, and $F:[0,+\infty) \rightarrow[0$, $+\infty)$ a C^{2} function, as in Theorem 1 . Let $S^{1} \rightarrow C(M) \xrightarrow{\pi} M$ be the canonical circle bundle and \mathfrak{F}_{θ} the Fefferman metric of (M, θ). Let $\phi: M \rightarrow N$ be a smooth map. Then $\phi:(M, \theta) \rightarrow(N, h)$ is a F-pseudoharmonic map if and only if its vertical lift $\phi \circ \pi:\left(C(M), \mathscr{F}_{\theta}\right) \rightarrow(N, h)$ is a F-harmonic map in the sense of M. Ara, [1], i.e. a critical point of the energy

$$
\boldsymbol{E}(\Phi)=\int_{C(M)} F\left(\frac{1}{2} \operatorname{trace}_{\mathscr{F}_{\theta}} \Phi^{*} h\right) d \operatorname{vol}\left(\mathfrak{F}_{\theta}\right)
$$

on the class of all smooth functions $\Phi: C(M) \rightarrow N$. Here $d \operatorname{vol}\left(\mathscr{F}_{\theta}\right)$ is the natural volume form on the Lorentzian manifold (C(M), $\left.\mathscr{F}_{\theta}\right)$.

2-Basic objects and formulae

Let M be a $(2 n+1)$-dimensional C^{∞} differentiable manifold. An almost $C R$ structure on M, of $C R$ dimension n, is a complex subbundle $T_{1,0}(M) \subset T(M) \otimes \boldsymbol{C}$, of complex rank n, of the complexified tangent bundle over M, such that

$$
T_{1,0}(M) \cap T_{0,1}(M)=(0)
$$

An almost CR structure is (formally) integrable if

$$
Z, W \in \Gamma^{\infty}\left(T_{1,0}(M)\right) \Rightarrow[Z, W] \in \Gamma^{\infty}\left(T_{1,0}(M)\right)
$$

A CR structure is a formally integrable almost CR structure and a pair ($M, T_{1,0}(M)$), consisting of a manifold M and a CR structure of CR dimension n, is a $C R$ manifold (of hypersurface type).

Let $\left(M, T_{1,0}(M)\right)$ be a CR manifold. The Levi distribution is $H(M)$ $:=R e\left\{T_{1,0}(M) \oplus T_{0,1}(M)\right\}$. It carries the complex structure $J: H(M) \rightarrow H(M)$
given by $J(Z+\bar{Z})=i(Z-\bar{Z}), Z \in T_{1,0}(M)$. Set $H(M)_{x}^{\perp}:=\left\{\omega \in T_{x}^{*}(M): \operatorname{Ker}(\omega)\right.$ $\left.\supseteq H(M)_{x}\right\}, x \in M$. When M is orientable the conormal bundle $H(M)^{\perp}$ is trivial hence admits everywhere nonzero globally defined sections $\theta \in \Gamma^{\infty}\left(H(M)^{\perp}\right)$, each of which is called a pseudohermitian structure on M. Given a pseudohermitian structure θ, the Levi form is

$$
G_{\theta}(X, Y)=(d \theta)(X, J Y), \quad X, Y \in H(M) .
$$

Any other pseudohermitian structure is of the form $\widehat{\theta}=\lambda \theta$, for some C^{∞} function $\lambda: M \rightarrow \boldsymbol{R} \backslash\{0\}$ and $G_{\lambda \theta}=\lambda G_{\theta}$. An orientable CR manifold is nondegenerate (respectively strictly pseudoconvex) if G_{θ} is nondegenerate (respectively positive definite), for some θ. The property of nondegeneracy is a $C R$ invariant, i.e. invariant under a transformation $\widehat{\theta}=\lambda \theta$, while strict pseudoconvexity is not (if G_{θ} is positive definite, $G_{-\theta}$ is negative definite). When $\left(M, T_{1,0}(M)\right)$ is nondegenerate any pseudohermitian structure θ is a contact form, i.e. $\theta \wedge(d \theta)^{n}$ is a volume form on M. Nondegeneracy also implies the existence and uniqueness of a globally defined vector field T on M such that $\theta(T)=1$ and $T\rfloor d \theta=0$ (the characteristic direction of $d \theta$).

The Levi form of a CR manifold may be recast as the complex bilinear form

$$
L_{\theta}(Z, \bar{W})=-i(d \theta)(Z, \bar{W}), \quad Z, W \in T_{1,0}(M),
$$

(and then L_{θ} and (the \boldsymbol{C}-linear extension to $H(M) \otimes \boldsymbol{C}$ of) G_{θ} coincide). On any nongenerate CR manifold on which a contact form θ has been fixed, there is a unique linear connection ∇ satisfying the following axioms 1) $H(M)$ is ∇-parallel, 2) $\left.\nabla g_{\theta}=0, \nabla J=0,3\right)$ the torsion T_{∇} of ∇ is pure, i.e. $T_{\nabla}(Z, W)=0, T_{\nabla}(Z, \bar{W})$ $=2 i L_{\theta}(Z, \bar{W}) T$, for any $Z, W \in T_{1,0}(M)$, and $\tau \circ J+J \circ \tau=0$, where τX $:=T_{\nabla}(T, X), X \in T(M)$ (the pseudohermitian torsion of ∇). This is the TanakaWebster connection of (M, θ) (cf. N. Tanaka, [15] and S. Webster, [17]). Here g_{θ} is the Webster metric i.e.

$$
g_{\theta}=\pi_{H} G_{\theta}+\theta \otimes \theta,
$$

where, in general for a bilinear form B on $T(M)$, we set

$$
\left(\pi_{H} B\right)(X, Y):=B\left(\pi_{H} X, \pi_{H} Y\right), \quad X, Y \in T(M),
$$

and $\pi_{H}: T(M) \rightarrow H(M)$ is the natural projection associated with the direct sum decomposition $T(M)=H(M) \oplus \boldsymbol{R} T$. Also, in the axioms 2)-3) above, J is the endomorphism of $T(M)$ obtained by requesting that $J T=0$.

Let $\left(M, T_{1,0}(M)\right)$ be a nondegenerate CR manifold, of CR dimension n, and θ a contact form. The divergence of a smooth vector field X is given by

$$
\mathfrak{L}_{X}\left(\theta \wedge(d \theta)^{n}\right)=\operatorname{div}(X) \theta \wedge(d \theta)^{n},
$$

where \mathfrak{L} is the Lie derivative. We set

$$
\nabla^{H} u:=\pi_{H} \nabla u, \quad u \in C^{\infty}(M),
$$

where ∇ is the gradient with respect to the Webster metric, i.e. $g_{\theta}(X, \nabla u)=X(u)$. The sublaplacian is the (second order) differential operator

$$
\Delta_{b} u:=-\operatorname{div}\left(\nabla^{H} u\right), \quad u \in C^{\infty}(M) .
$$

It is formally self adjoint

$$
\left\langle\Delta_{b} u, v\right\rangle_{L^{2}}=\left\langle u, \Delta_{b} v\right\rangle_{L^{2}},
$$

(with one of the functions u, v of compact support), where the L^{2} inner product is

$$
\langle u, v\rangle_{L^{2}}=\int_{M} u v \theta \wedge(d \theta)^{n} .
$$

Δ_{b} is actually subelliptic of order $\varepsilon=1 / 2$ (cf. e.g. [7]).

3 - The first variation formula

Let $\left\{Z_{1}, \ldots, Z_{n}\right\}$ be a local frame of $T_{1,0}(M)$, defined on an open set $U \subseteq M$, such that $L_{\theta}\left(Z_{\alpha}, Z_{\beta}\right)=\delta_{\alpha \beta}$ (with $Z_{\beta}=\bar{Z}_{\beta}$). Then, for any bilinear form B on $T(M)$

$$
\operatorname{trace}_{G_{\theta}}\left(\pi_{H} B\right)=\sum_{\alpha=1}^{n}\left\{B\left(X_{\alpha}, X_{\alpha}\right)+B\left(J X_{\alpha}, J X_{\alpha}\right)\right\}
$$

where

$$
X_{\alpha}:=\frac{1}{\sqrt{2}}\left(Z_{\alpha}+Z_{\bar{\alpha}}\right),
$$

(hence $G_{\theta}\left(X_{\alpha}, X_{\beta}\right)=\delta_{\alpha \beta}$. If X is a tangent vector field on $M, \phi_{*} X$ denotes the section in $\phi^{-1} T N \rightarrow M$ given by $\left(\phi_{*} X\right)(x):=\left(d_{x} \phi\right) X_{x} \in T_{\phi(x)}(N)=\left(\phi^{-1} T N\right)_{x}$,
$x \in M$. Note that

$$
\operatorname{trace}_{G_{\theta}}\left(\pi_{H} \phi^{*} h\right)=\sum_{a=1}^{2 n} \tilde{h}\left(\phi_{*} X_{a}, \phi_{*} X_{a}\right) \geqslant 0,
$$

(hence the definition of $E_{F}(\phi ; D)$ makes sense $(F(t)$ is defined only for $t \geqslant 0)$) where $\left\{X_{a}: 1 \leqslant a \leqslant 2 n\right\}:=\left\{X_{\alpha}, J X_{a}: 1 \leqslant \alpha \leqslant n\right\}$.

Let $\phi: M \rightarrow N$ be a smooth map. Then ϕ is F-pseudoharmonic if

$$
\frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\}_{t=0}=0
$$

for any compactly supported 1-parameter variation $\left\{\phi_{t}\right\}_{|t|<\varepsilon}$ of $\phi_{0}=\phi$. To write the first variation formula we set $\widetilde{M}:=(-\varepsilon, \varepsilon) \times M$ and

$$
\Phi: \widetilde{M} \rightarrow N, \quad \Phi(t, x):=\phi_{t}(x), \quad x \in M,|t|<\varepsilon .
$$

Also

$$
V_{x}:=\left.\left(d_{(0, x)} \Phi\right) \frac{\partial}{\partial t}\right|_{(0, x)} \in T_{\phi(x)}(N), \quad x \in M .
$$

Then $V \in \Gamma^{\infty}\left(\phi^{-1} T N\right)$. Moreover, let

$$
\boldsymbol{V}:=\Phi_{*} \frac{\partial}{\partial t} \in \Gamma^{\infty}\left(\Phi^{-1} T N\right),
$$

(hence $\boldsymbol{V}_{(0, x)}=V_{x}$). Let $\tilde{\nabla}:=\Phi^{-1} \nabla^{N}$ be the connection in $\Phi^{-1} T N \rightarrow \widetilde{M}$ induced by ∇^{N} (the Levi-Civita connection of (N, h)). We have

$$
\begin{gathered}
\frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\}=\frac{d}{d t} \int_{M} F\left(\frac{1}{2} \operatorname{trace}_{G_{\theta}}\left(\pi_{H} \phi_{t}^{*} h\right)\right) \Psi \\
=\int_{M} \frac{d}{d t} F\left(\frac{1}{2} \sum_{a=1}^{2 n}\left(\phi_{t}^{*} h\right)\left(X_{a}, X_{a}\right)\right) \Psi
\end{gathered}
$$

where $\Psi:=\theta \wedge(d \theta)^{n}$. Let $\alpha_{t}: M \rightarrow \widetilde{M}$ be given by $\alpha_{t}(x):=(t, x), x \in M$. If X is a tangent vector field on M we set $\widetilde{X}_{(t, x)}:=\left(d_{x} \alpha_{t}\right) X_{x}$. The symbol \tilde{h} denotes the bundle metric $\Phi^{-1} h$ (induced by h) in $\Phi^{-1} T N \rightarrow \widetilde{M}$, as well. Then

$$
\left(\phi_{\tilde{t}}^{*} h\right)(X, Y)=\tilde{h}\left(\Phi_{*} \tilde{X}, \Phi_{*} \tilde{Y}\right) \circ \alpha_{t} .
$$

Set

$$
Q_{t}:=\operatorname{trace}_{G_{\theta}}\left(\pi_{H} \phi_{\tilde{t}}^{*} h\right) \in C^{\infty}(M), \quad|t|<\varepsilon .
$$

Then

$$
\begin{gathered}
\frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\}=\frac{1}{2} \int_{M} F^{\prime}\left(\frac{Q_{t}}{2}\right) \sum_{a=1}^{2 n} \frac{d}{d t}\left\{\tilde{h}\left(\Phi_{*} \widetilde{X}_{a}, \Phi_{*} \tilde{X}_{a}\right) \circ \alpha_{t}\right\} \Psi \\
=\int_{M} F^{\prime}\left(\frac{Q_{t}}{2}\right) \sum_{a=1}^{2 n} \tilde{h}\left(\widetilde{\nabla}_{\partial \partial t} \Phi_{*} \widetilde{X}_{a}, \Phi_{*} \widetilde{X}_{a}\right) \Psi \\
=\int_{M} F^{\prime}\left(\frac{Q_{t}}{2}\right) \sum_{a=1}^{2 n} \tilde{h}\left(\tilde{\nabla}_{\tilde{X}_{a}} \Phi_{*} \frac{\partial}{\partial t}, \Phi_{*} \widetilde{X}_{a}\right) \Psi
\end{gathered}
$$

as $\tilde{\nabla} \tilde{h}=0, \nabla^{N}$ is torsion-free, and $[\tilde{X}, \partial / \partial t]=0$. Next

$$
\frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\}=\int_{M} F^{\prime}\left(\frac{Q_{t}}{2}\right) \sum_{a}\left\{\tilde{X}_{a}\left(\tilde{h}\left(\boldsymbol{V}, \Phi_{*} \tilde{X}_{a}\right)\right)-\tilde{h}\left(\boldsymbol{V}, \tilde{\nabla}_{\tilde{X}_{a}} \Phi_{*} \tilde{X}_{a}\right)\right\} \Psi .
$$

For $|t|<\varepsilon$ fixed, let $X_{t} \in \Gamma^{\infty}(H(M))$ be defined by

$$
G_{\theta}\left(X_{t}, Y\right)=\tilde{h}\left(\boldsymbol{V}, \Phi_{*} \tilde{Y}\right) \circ \alpha_{t}, \quad Y \in \Gamma^{\infty}(H(M)) .
$$

Also, if $f \in C^{\infty}(\widetilde{M})$ and $|t|<\varepsilon$ we set $f_{t}:=f \circ \alpha_{t} \in C^{\infty}(M)$, so that

$$
X\left(f_{t}\right)=\widetilde{X}(f) \circ \alpha_{t}
$$

for any $X \in T(M)$. Therefore

$$
\begin{aligned}
& \frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\}=\int_{M} \varrho\left(Q_{t}\right) \sum_{a}\left\{X_{a}\left(G_{\theta}\left(X_{t}, X_{a}\right)\right)-\tilde{h}\left(\boldsymbol{V}, \tilde{\nabla}_{\tilde{X}_{a}} \Phi_{*} \tilde{X}_{a}\right)\right\} \Psi \\
= & \int_{M} \varrho\left(Q_{t}\right) \sum_{a}\left\{G_{\theta}\left(\nabla_{X_{a}} X_{t}, X_{a}\right)+G_{\theta}\left(X_{t}, \nabla_{X_{a}} X_{a}\right)-\tilde{h}\left(\boldsymbol{V}, \tilde{\nabla}_{\tilde{X}_{a}} \Phi_{*} \widetilde{X}_{a}\right)\right\} \Psi,
\end{aligned}
$$

where $\varrho(s):=F^{\prime}(s / 2)$ and ∇ is the Tanaka-Webster connection of (M, θ) (so that $\nabla G_{\theta}=0$), cf. e.g. [15], p. 29-30. As Ψ is parallel with respect to ∇

$$
\operatorname{div}(X)=\operatorname{trace}\left\{Y \mapsto \nabla_{Y} X\right\} .
$$

Then

$$
\begin{aligned}
& \frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\}=\int_{M} \varrho\left(Q_{t}\right)\left\{\operatorname{div}\left(X_{t}\right)-\sum_{a} \tilde{h}\left(\boldsymbol{V}, \widetilde{\nabla}_{\tilde{X}_{a}} \Phi_{*} \widetilde{X}_{a}-\Phi_{*} \widetilde{\nabla_{X_{a}} X_{a}}\right)\right\} \Psi \\
= & \int_{M}\left\{\operatorname{div}\left(\varrho\left(Q_{t}\right) X_{t}\right)-X_{t}\left(\varrho\left(Q_{t}\right)\right)-\varrho\left(Q_{t}\right) \sum_{a} \tilde{h}\left(\boldsymbol{V}, \widetilde{\nabla}_{\tilde{X}_{a}} \boldsymbol{\Phi}_{*} \widetilde{X}_{a}-\Phi_{*} \widetilde{\nabla_{X_{a}} X_{a}}\right)\right\} \Psi,
\end{aligned}
$$

because of $\operatorname{div}(f X)=f \operatorname{div}(X)+X(f)$. As ϕ_{t} is compactly supported, so does X_{t}. Therefore (by Green's lemma)

$$
\begin{gathered}
\frac{d}{d t}\left\{E_{F}\left(\phi_{t}\right)\right\} \\
=-\int_{M}\left\{G_{\theta}\left(X_{t}, \nabla^{H} \varrho\left(Q_{t}\right)\right)+\tilde{h}\left(\boldsymbol{V}, \varrho\left(Q_{t}\right) \sum_{a}\left(\widetilde{\nabla}_{\widetilde{X}_{a}} \Phi_{*} \widetilde{X}_{a}-\Phi_{*} \widetilde{\nabla_{X_{a}} X_{a}}\right)\right)\right\} \Psi \\
=-\int_{M} \tilde{h}\left(\boldsymbol{V}, \sum_{a}\left(\widetilde{\nabla}_{\widetilde{X}_{a}}\left(\varrho\left(Q_{t}\right) \Phi_{*} \widetilde{X}_{a}\right)-\varrho\left(Q_{t}\right) \Phi_{*} \overline{\nabla_{X_{a}} X_{a}}\right)\right) \Psi
\end{gathered}
$$

The last equality holds because of

$$
\begin{gathered}
\sum_{a=1}^{2 n} \tilde{\nabla}_{\tilde{X}_{a}}\left(\varrho\left(Q_{t}\right) \Phi_{*} \tilde{X}_{a}\right)=\sum_{a}\left(\widetilde{X}_{a}\left(\varrho\left(Q_{t}\right)\right) \Phi_{*} \widetilde{X}_{a}+\varrho\left(Q_{t}\right) \tilde{\nabla}_{\tilde{X}_{a}} \Phi_{*} \tilde{X}_{a}\right) \\
=\Phi_{*} \nabla^{H} \varrho\left(Q_{t}\right)+\varrho\left(Q_{t}\right) \sum_{a} \tilde{\nabla}_{\tilde{X}_{a}} \Phi_{*} \widetilde{X}_{a} .
\end{gathered}
$$

Note that

$$
\left(\left(\Phi^{-1} \nabla^{N}\right)_{X} \Phi_{*} Y\right)_{(0, x)}=\left(\left(\phi^{-1} \nabla^{N}\right)_{X} \phi_{*} Y\right)_{x}
$$

We are left with the proof of (3). We have

$$
\begin{gathered}
\operatorname{div}\left(\varrho(Q) \nabla^{H} \phi^{j}\right)=\operatorname{trace}\left\{Y \mapsto \nabla_{Y}\left(\varrho(Q) \nabla^{H} \phi^{j}\right)\right\} \\
=\sum_{a=1}^{2 n} G_{\theta}\left(\nabla_{X_{a}}\left(\varrho(Q) \nabla^{H} \phi^{j}\right), X_{a}\right)+\theta\left(\nabla_{T}\left(\varrho(Q) \nabla^{H} \phi^{j}\right)\right) \\
=\sum_{a=1}^{2 n}\left[X_{a}\left(G_{\theta}\left(\varrho(Q) \nabla^{H} \phi^{j}, X_{a}\right)\right)-G_{\theta}\left(\varrho(Q) \nabla^{H} \phi^{j}, \nabla_{X_{a}} X_{a}\right)\right]+T\left(\theta\left(\varrho(Q) \nabla^{H} \phi^{j}\right)\right),
\end{gathered}
$$

because of $\nabla g_{\theta}=0$ and $\nabla T=0$. Also (as $H(M)$ is ∇-parallel)

$$
G_{\theta}\left(\nabla^{H} \phi^{j}, \nabla_{X_{a}} X_{a}\right) Y_{j}=g_{\theta}\left(\nabla \phi^{j}, \nabla_{X_{a}} X_{a}\right) Y_{j}=\left(\nabla_{X_{a}} X_{a}\right)\left(\phi^{j}\right) Y_{j}=\phi_{*} \nabla_{X_{a}} X_{a},
$$

hence

$$
\operatorname{div}\left(\varrho(Q) \nabla^{H} \phi^{j}\right) Y_{j}=\sum_{a=1}^{2 n}\left\{X_{a}\left(\varrho(Q) X_{a}\left(\phi^{j}\right)\right) Y_{j}-\varrho(Q) \phi_{*} \nabla_{X_{a}} X_{a}\right\}
$$

Consequently (by the very definition of $\tau_{F}(\phi ; \theta, h)$)

$$
\tau_{F}(\phi ; \theta, h)=\operatorname{div}\left(\varrho(Q) \nabla^{H} \phi^{j}\right) Y_{j}+\varrho(Q) \sum_{a}\left\{\tilde{\nabla}_{X_{a}} \phi_{*} X_{a}-\left(X_{a}^{2} \phi^{j}\right) Y_{j}\right\}
$$

and the following calculation leads to (3)

$$
\begin{gathered}
\tilde{\nabla}_{X_{a}} \phi_{*} X_{a}-\left(X_{a}^{2} \phi^{j}\right) Y_{j}=\tilde{\nabla}_{X_{a}}\left(X_{a}\left(\phi^{j}\right) Y_{j}\right)-\left(X_{a}^{2} \phi^{j}\right) Y_{j} \\
=X_{a}\left(\phi^{j}\right) X_{a}\left(\phi^{k}\right)\left(\nabla_{\partial / \partial y^{k}}^{N} \frac{\partial}{\partial y^{j}}\right) \circ \phi=\left(\left|\begin{array}{c}
i \\
j k
\end{array}\right| \circ \phi\right) X_{a}\left(\phi^{j}\right) X_{a}\left(\phi^{k}\right) Y_{i} .
\end{gathered}
$$

Theorem 1 is proved.
To prove Theorem 2 we need to derive the transformation law for $\tau(\phi ; \theta, h)$ under a change of contact form $\widehat{\theta}=e^{2 u} \theta, u \in C^{\infty}(M)$. Set

$$
\beta_{\phi}(X, Y):=\left(\phi^{-1} \nabla^{N}\right)_{X} \phi_{*} Y-\phi_{*} \nabla_{X} Y,
$$

for any $X, Y \in T(M)$, so that

$$
\tau(\phi ; \theta, h)=\operatorname{trace}_{G_{\theta}}\left(\pi_{H} \beta_{\phi}\right) .
$$

Consequently

$$
\begin{equation*}
\tau_{F}(\phi ; \theta, h)=F^{\prime}\left(\frac{Q}{2}\right) \tau(\phi ; \theta, h)+\phi_{*} \nabla^{H} F^{\prime}\left(\frac{Q}{2}\right) \tag{6}
\end{equation*}
$$

If $\left\{Z_{\alpha}\right\}$ is a local orthonormal frame of $T_{1,0}(M)$ we set $\widehat{Z}_{\alpha}:=e^{-u} Z_{\alpha}$. Note that

$$
\tau(\phi ; \theta, h)=\sum_{\alpha=1}^{n}\left\{\beta_{\phi}\left(Z_{\alpha}, Z_{\bar{\alpha}}\right)+\beta_{\phi}\left(Z_{\bar{\alpha}}, Z_{\alpha}\right)\right\} .
$$

Therefore

$$
\tau(\phi ; \widehat{\theta}, h)=\sum_{\alpha=1}^{n}\left\{\tilde{\nabla}_{\widehat{Z}_{\alpha}} \phi_{*} \widehat{Z}_{\bar{\alpha}}-\phi_{*} \widehat{\nabla}_{\widehat{Z}_{\alpha}} \widehat{Z}_{\bar{a}}+\tilde{\nabla}_{\widehat{Z}_{\bar{\alpha}}} \phi_{*} \widehat{Z}_{\alpha}-\phi_{*} \widehat{\nabla}_{\widehat{Z}_{\bar{\alpha}}} \widehat{Z}_{\alpha}\right\},
$$

where $\tilde{\nabla}=\phi^{-1} \nabla^{N}$ and $\widehat{\nabla}$ is the Tanaka-Webster connection of $(M, \widehat{\theta})$. Set $\nabla_{Z_{A}} Z_{B}$ $=\Gamma_{A B}^{C} Z_{C}$, where $A, B, \ldots \in\{1, \ldots, n, \overline{1}, \ldots, \bar{n}, 0\}$ and $Z_{0}:=T$. Then

$$
\widehat{\nabla}_{Z} \bar{W}=\nabla_{Z} \bar{W}-2 L_{\theta}(Z, \bar{W}) \nabla^{0,1} u, \quad Z, W \in T_{1,0}(M),
$$

(where $\nabla^{0,1} u:=\pi_{0,1} \nabla u$ and $\pi_{0,1}: T(M) \otimes \boldsymbol{C} \rightarrow T_{0,1}(M)$ is the projection (associated to $\left.T(M) \otimes \boldsymbol{C}=T_{1,0}(M) \oplus T_{0,1}(M) \oplus \boldsymbol{C} T\right)$) leads to

$$
e^{2 u} \tau(\phi ; \widehat{\theta}, h)=\tau(\phi ; \theta, h)+2 n \phi * \nabla^{H} u .
$$

Set $\lambda:=e^{u}$. Then

$$
\begin{equation*}
\tau\left(\phi ; \lambda^{2} \theta, h\right)=\lambda^{-2(n+1)}\left\{\lambda^{2 n} \tau(\phi ; \theta, h)+\phi_{*} \nabla^{H}\left(\lambda^{2 n}\right)\right\} . \tag{7}
\end{equation*}
$$

This is the transformation law we looked for. Setting $\lambda:=\varrho(Q)^{1 /(2 n)}$, the formulae (6)-(7) lead to the identity in Theorem 2. Q.e.d.

4-Pseudoharmonic morphisms

To prove Theorem 3 we shall need the following
Lemma 1 (T. Ishihara, [11]). Let (N, h) be a m-dimensional Riemannian manifold and $p \in N$. Let $C_{i}, C_{i j} \in \boldsymbol{R}$ be constants such that $C_{i j}=C_{j i}$ and $\sum_{i=1}^{m} C_{i i}=0$. Let $\left(V, y^{i}\right)$ be a normal coordinate system on N at p such that $y^{i}(p)=0,1 \leqslant i$ $\leqslant m$. There is a harmonic function $v: V \rightarrow \boldsymbol{R}$ such that

$$
\frac{\partial v}{\partial y^{i}}(p)=C_{i}, \quad v_{i, j}(p)=C_{i j} .
$$

Here $v_{i, j}$ are second order covariant derivatives with respect to the Levi-Civita connection ∇^{N} of (N, h), i.e.

$$
\left.v_{i, j}=\frac{\partial^{2} v}{\partial y^{i} \partial y^{j}}-\left.\right|_{i j} ^{k} \right\rvert\, \frac{\partial v}{\partial y^{k}} .
$$

Let $\phi:(M, \theta) \rightarrow(N, h)$ be a pseudoharmonic morphism. Let $x \in M$ be an arbitrary point and set $p:=\phi(x) \in N$. Let $i_{0} \in\{1, \ldots, m\}$ be a fixed index and set
$C_{i}:=\delta_{i i_{0}}$ and $C_{i j}:=0,1 \leqslant i, j \leqslant m$. By Ishihara's lemma (cf. Lemma 1 above), given normal coordinates $\left(V, y^{i}\right)$ at p, there is a harmonic function $v: V \rightarrow \boldsymbol{R}$. Then $\Delta_{b}(v \circ \phi)=0$ in $U:=\phi^{-1}(V)$, by the very definition of pseudoharmonic morphisms. Let $\left\{Z_{\alpha}\right\}$ be an orthonormal frame of $T_{1,0}(M)$ on U. Note that

$$
\begin{gathered}
(v \circ \phi)_{\alpha, \bar{\beta}}=\left(v_{j} \circ \phi\right) \phi_{\alpha, \bar{\beta}}^{j}+\phi_{\alpha}^{i} \phi \frac{i}{\beta}\left(v_{i, j}+\left|\begin{array}{c}
k \\
i j
\end{array}\right| v_{k}\right) \circ \phi, \quad v_{i}:=\frac{\partial v}{\partial y^{i}}, \\
\Delta_{b}(v \circ \phi)=-\sum_{\alpha}\left\{(v \circ \phi)_{\bar{\alpha}, \alpha}+(v \circ \phi)_{\alpha, \bar{a}}\right\},
\end{gathered}
$$

yield

$$
\Delta_{b}(v \circ \phi)=\left(\Delta_{b} \phi^{j}\right)\left(v_{j} \circ \phi\right)-2 \sum_{a} \phi_{a}^{j} \phi_{\bar{\alpha}}^{\frac{k}{\alpha}}\left(v_{j, k}+\left|\begin{array}{c}
i \tag{8}\\
j k
\end{array}\right| v_{i}\right) \circ \phi .
$$

Let us apply (8) at the preferred point x

$$
0=\left(\Delta_{b} \phi^{i_{0}}\right)(x)-2 \sum_{a} \phi_{a}^{j}(x) \phi_{\bar{\alpha}}^{k}(x)\left|\begin{array}{c}
i_{0} \\
j k
\end{array}\right|(p)=\tau(\phi ; \theta, h)_{x}^{i_{0}}
$$

i.e. ϕ is a pseudoharmonic map.

Let us consider now $C_{i j} \in \boldsymbol{R}$ such that $C_{i j}=C_{j i}$ and $\sum_{i=1}^{m} C_{i i}=0$. By Ishihara's lemma there is $v: V \rightarrow \boldsymbol{R}$ such that $\Delta_{N} v=0, v_{i}(p)=0$ and $v_{i, j}(p)=C_{i j}$. As ϕ is a pseudoharmonic morphism (by (8))

$$
0=\Delta_{b}(v \circ \phi)(x)=-\sum_{\alpha} \phi_{\alpha}^{j}(x) \phi_{\bar{\alpha}}^{\frac{k}{\alpha}}(x) C_{j k} .
$$

Set

$$
X^{j k}:=\sum_{\alpha} \phi_{\alpha}^{j} \phi_{\bar{\alpha}}^{k},
$$

so that

$$
C_{j k} X^{j k}(x)=0 .
$$

Thus

$$
\begin{equation*}
\sum_{i \neq j} C_{i j} X^{i j}(x)+\sum_{i}\left(X^{i i}(x)-X^{11}(x)\right) C_{i i}=0 . \tag{9}
\end{equation*}
$$

Let us choose for a moment $C_{i j}=0$ for any $i \neq j$ and

$$
C_{i i}=\left\{\begin{array}{ll}
1, & i=i_{0} \\
-1, & i=1 \\
0, & \text { otherwise }
\end{array},\right.
$$

for $i_{0} \in\{2, \ldots, m\}$ fixed. Then (9) yields

$$
X^{i_{0} i_{0}}(x)-X^{11}(x)=0,
$$

i.e.

$$
X^{11}(x)=\ldots=X^{m m}(x)
$$

and (9) becomes

$$
\sum_{i \neq j} C_{i j} X^{i j}(x)=0 .
$$

Again we may fix $i_{0}, j_{0} \in\{1, \ldots, m\}$ with $i_{0} \neq j_{0}$ and choose

$$
C_{i j}= \begin{cases}1, & i=i_{0}, \quad j=j_{0} \\ 0, & \text { otherwise }\end{cases}
$$

so that to get

$$
X^{i_{0} j_{0}}(x)=0 .
$$

We proved that $X^{i j}(x)=0$ for any $i \neq j$. If we set

$$
\lambda:=X^{11}=\sum_{\alpha=1}^{n} \phi_{a}^{1} \phi_{\bar{\alpha}}^{1} \in C^{\infty}(U),
$$

then

$$
\begin{equation*}
\sum_{a=1}^{n} \phi_{a}^{i}(x) \phi_{\bar{\alpha}}^{j}(x)=\lambda(x) \delta^{i j} . \tag{10}
\end{equation*}
$$

The contraction of i, j now leads to

$$
m \lambda=\sum_{\alpha, i}\left|\phi_{\alpha}^{i}\right|^{2} \geqslant 0,
$$

hence $\lambda: M \rightarrow[0,+\infty)$ is a C^{∞} function. To complete the proof of Theorem 3 as-
sume that there is $x \in M$ such that $\lambda(x) \neq 0$ and set

$$
w^{i}:=\left(\phi_{1}^{i}(x), \ldots, \phi_{n}^{i}(x)\right) \in \boldsymbol{C}^{n} .
$$

Clearly $w^{i} \neq 0$ and (by (10)) $i \neq j \Rightarrow w^{i} \cdot \overline{w^{j}}=0$, that is the rows of $\left[\phi_{\alpha}^{i}(x)\right]$ $=\left(w^{1}, \ldots, w^{m}\right)^{t}$ are mutually orthogonal nonzero vectors in \boldsymbol{C}^{n}. Hence $\operatorname{rank}\left[\phi_{a}^{i}(x)\right]=m$ and then $m \leqslant n$. Therefore $m>n$ implies $\lambda=0$ hence $\phi_{\alpha}^{i}=0$. Thus $\phi_{\bar{a}}^{i}=0$ (by complex conjugation) or $\bar{b}_{b} \phi^{i}=0$, i.e. ϕ^{i} is a \boldsymbol{R}-valued CR function on a nondegenerate CR manifold, hence $\phi^{i}=$ const., $1 \leqslant i \leqslant m$, i.e. ϕ is a constant map. Q.e.d.

5-The Fefferman metric and F-pseudoharmonicity

Let $\left(M, T_{1,0}(M)\right)$ be a strictly pseudoconvex CR manifold, of CR dimension n, and θ a contact form on M with G_{θ} positive definite. Let T be the characteristic direction of $d \theta$. A complex valued p-form ω on M is a $(p, 0)$-form if $\left.T_{0,1}(M)\right\rfloor \omega=0$. Let $\Lambda^{p, 0}(M)$ $\rightarrow M$ be the bundle of all $(p, 0)$-forms. The multiplicative group of positive real numbers $G L^{+}(1, \boldsymbol{R})=(0,+\infty)$ acts on $K_{0}(M):=\Lambda^{n+1,0}(M) \backslash\{$ zero section $\}$ and the quotient space $C(M):=K_{0}(M) / G L^{+}(1, \boldsymbol{R})$ is (the total space of) a principle circle bundle $S^{1} \rightarrow C(M) \xrightarrow{\pi} M$. Let us extend G_{θ} to the whole of $T(M)$ by requesting that $G_{\theta}(X, T)=0$, for all $X \in T(M)$. Consider the 1-form $\sigma \in \Omega^{1}(C(M))$

$$
\begin{equation*}
\sigma=\frac{1}{n+2}\left\{d \gamma+\pi^{*}\left(i \omega_{\alpha}^{\alpha}-\frac{i}{2} g^{\alpha \bar{\beta}} d g_{\alpha \bar{\beta}}-\frac{R}{4(n+1)} \theta\right)\right\}, \tag{11}
\end{equation*}
$$

and set

$$
\begin{equation*}
\mathfrak{I}_{\theta}=\pi^{*} G_{\theta}+2\left(\pi^{*} \theta\right) \odot \sigma, \tag{12}
\end{equation*}
$$

(the Fefferman metric of (M, θ)). Here γ is a local fibre coordinate on $C(M), \omega_{\beta}^{\alpha}$ are the connection 1-forms of the Tanaka-Webster connection $\left(\nabla T_{\beta}=\omega_{\beta}^{\alpha} \otimes T_{\alpha}\right)$, and $R=g^{\alpha \bar{\beta}} R_{\alpha \bar{\beta}}$ is the pseudohermitian scalar curvature (cf. [5], p. 103). \mathscr{F}_{θ} is a Lorentz metric on $C(M)$ and $\mathscr{F}_{e^{u} \theta}=e^{u \circ} \boldsymbol{J}_{\mathcal{F}_{\theta}}$, for any $u \in C^{\infty}(M)$ (in particular

Let $F(t) \geqslant 0$ be a C^{2} map defined for $t \geqslant 0$, such that $F^{\prime}(t)>0$. For simplicity, assume for the rest of this section that M is compact (hence $C(M)$ is compact, as well). A smooth map $\Phi:\left(C(M), \mathscr{F}_{\theta}\right) \rightarrow(N, h)$ is F-harmonic if it is a critical
point of

$$
\boldsymbol{E}_{F}(\Phi)=\int_{C(M)} F\left(\frac{1}{2} \operatorname{trace}_{\mathscr{J}_{\theta}}\left(\Phi^{*} h\right)\right) d \operatorname{vol}\left(\mathscr{F}_{\theta}\right),
$$

i.e. if $\tau_{F}\left(\Phi ; \mathfrak{F}_{\theta}, h\right)=0$, where (cf. [1])

$$
\begin{align*}
\tau_{F}\left(\Phi ; \mathfrak{F}_{\theta}, h\right) & :=F^{\prime}\left(\frac{1}{2} \operatorname{trace}_{\widetilde{J}_{\theta}}\left(\Phi^{*} h\right)\right) \tau\left(\Phi ; \mathfrak{F}_{\theta}, h\right) \\
+ & \Phi_{*}\left\{\nabla F^{\prime}\left(\frac{1}{2} \operatorname{trace}_{\mathscr{J}_{\theta}}\left(\Phi^{*} h\right)\right)\right\} . \tag{13}
\end{align*}
$$

Here $\tau\left(\Phi ; \mathfrak{F}_{\theta}, h\right)$ is the ordinary tension field of $\Phi:\left(C(M), \mathscr{F}_{\theta}\right) \rightarrow(N, h)$ (cf. e.g. [6], p. 107) and $\nabla: C^{\infty}(C(M)) \rightarrow \mathscr{X}(C(M))$ the gradient operator with respect to the Fefferman metric \mathscr{F}_{θ}. At this point we may prove Theorem 4. Let (U, x^{A}) be a local coordinate system on M (the convention as to the range of indices is $A, B, \ldots \in\{0,1, \ldots, n, \overline{1}, \ldots, \bar{n}\})$ and set $u^{A}:=x^{A} \circ \pi: \pi^{-1}(U) \rightarrow \boldsymbol{R}$. If $c=[\omega]$ $\in \pi^{-1}(U)$ then $\omega \in K_{0}(M)$ may be written $\omega=\lambda\left(\theta \wedge \theta^{1} \wedge \ldots \wedge \theta^{n}\right)_{x}$, for some $\lambda \in \boldsymbol{C}^{*}=\boldsymbol{C} \backslash\{0\}$ and $x=\pi(c) \in U$. Then $\gamma: \pi^{-1}(U) \rightarrow \boldsymbol{R}$ is given by $\gamma(c)$ $=\arg (\lambda /|\lambda|)\left(\right.$ with $\left.\arg : S^{1} \rightarrow[0,2 \pi)\right)$ and $\left(\pi^{-1}(U), u^{A}, \gamma\right)$ is a local coordinate system on $C(M)$. Set $g_{a b}=\mathscr{F}_{\theta}\left(\partial / \partial u^{a}, \partial / \partial u^{b}\right)$ and $\left[g^{a b}\right]=\left[g_{a b}\right]^{-1}$, where $a, b, \ldots\{0,1, \ldots, n, \overline{1}, \ldots, \bar{n}, 2 n+2\}$ and $u^{2 n+2}=\gamma$. Let $\phi: M \rightarrow N$ be a smooth map and set $\Phi:=\phi \circ \pi$. Then

$$
\operatorname{trace}_{J_{J_{\theta}}}\left(\Phi^{*} h\right)=g^{a b} \frac{\partial \Phi^{j}}{\partial u^{a}} \frac{\partial \Phi^{k}}{\partial u^{b}}\left(h_{j k} \circ \Phi\right)=g^{A B}\left(\frac{\partial \phi^{j}}{\partial x^{A}} \circ \pi\right)\left(\frac{\partial \phi^{k}}{\partial x^{B}} \circ \pi\right)\left(h_{j k} \circ \Phi\right)
$$

(because $\partial \pi^{A} / \partial \gamma=0$) and then, by the identity (9) in H. Urakawa \& alt., [3], p. 730

$$
g^{A B}\left(\frac{\partial \phi^{j}}{\partial x^{A}} \circ \pi\right)\left(\frac{\partial \phi^{k}}{\partial x^{B}} \circ \pi\right)=h^{\alpha \bar{\beta}}\left\{T_{\alpha}\left(\phi^{j}\right) T_{\bar{\beta}}\left(\phi^{k}\right)+T_{\bar{\beta}}\left(\phi^{j}\right) T_{\alpha}\left(\phi^{k}\right)\right\} \circ \pi
$$

we have

$$
\operatorname{trace}_{J_{\sqrt{\theta}}}\left(\Phi^{*} h\right)=2 h^{\alpha \bar{\beta}} T_{\alpha}\left(\phi^{j}\right) T_{\bar{\beta}}\left(\phi^{k}\right) \circ \pi=\left\{\operatorname{trace}_{G_{\theta}}\left(\pi_{H} \phi^{*} h\right)\right\} \circ \pi=Q \circ \pi .
$$

Therefore (by (13))

$$
\tau_{F}\left(\Phi ; \mathscr{F}_{\theta}, h\right)=F^{\prime}\left(\frac{1}{2} Q \circ \pi\right) \tau\left(\Phi ; \mathscr{F}_{\theta}, h\right)+\Phi_{*} \nabla\left\{F^{\prime}\left(\frac{1}{2} Q \circ \pi\right)\right\}
$$

i.e. $\Phi=\phi \circ \pi$ is F-harmonic if and only if

$$
\begin{equation*}
(\varrho(Q) \circ \pi) \tau\left(\Phi ; \mathfrak{F}_{\theta}, h\right)+\Phi_{*} \nabla(\varrho(Q) \circ \pi)=0 \tag{14}
\end{equation*}
$$

where $\varrho(s):=F^{\prime}(s / 2)$. It is well known that, under a conformal change of metric, the tension tensor field transforms as

$$
\begin{equation*}
\tau\left(\Phi ; \lambda^{2} \mathscr{F}_{\theta}, h\right)=\lambda^{-(2 n+2)}\left\{\lambda^{2 n} \tau\left(\Phi ; \mathscr{F}_{\theta}, h\right)+\Phi_{*} \nabla\left(\lambda^{2 n}\right)\right\}, \tag{15}
\end{equation*}
$$

for any $\lambda \in C^{\infty}(C(M))$. By Theorem 2ϕ is F-pseudoharmonic if and only if $\tau\left(\phi ; \varrho(Q)^{1 / n} \theta, h\right)=0$, that is [by Theorem 2.1 in H. Urakawa \& alt., [3], p. 729] if and only if $\phi \circ \pi$ is harmonic with respect to the Fefferman metric $\mathscr{F}_{\varrho(Q)^{1 / n} \theta}$, i.e.

$$
\tau\left(\phi \circ \pi ; \mathscr{F}_{\varrho(Q)^{1 / n} \theta}, h\right)=0 .
$$

Finally [by (15) with $\left.\lambda:=(\varrho(Q) \circ \pi)^{1 /(2 n)}\right] \phi$ is F-pseudoharmonic if and only if (14) holds. Q.e.d.

References

[1] M. Ara, Geometry of F-harmonic maps, Kodai Math. J. 22 (1999), 243-263.
[2] P. Baird and S. Gudmundson, p-Harmonic maps and minimal submanifolds, Math. Ann. 294 (1992), 611-624.
[3] E. Barletta, S. Dragomir and H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, Indiana Univ. Math. J. 50 (2001), 719-746.
[4] L. F. Cheung and P.F. Leung, Some results on stable p-harmonic maps, Glasgow Math. J. 36 (1994), 77-80.
[5] S. Dragomir, A survey of pseudohermitian geometry, Rend. Circ. Mat. Palermo 49 (1997), 101-112.
[6] S. Dragomir and J.C. Wood, Sottovarietà minimali ed applicazioni armoniche, Quaderni dell'Unione Matematica Italiana, Vol. 35, Pitagora Editrice, Bologna 1989.
[7] G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373-376.
[8] A. Greenleaf, The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Comm. Partial Differential Equations 10 (1985), 191-217.
[9] P. Hajlasz and P. Strzelecki, Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann. 312 (1998), 341-362.
[10] M. C. Hong, On the conformal equivalence of harmonic maps and exponentially harmonic maps, Bull. London Math. Soc. 24 (1992), 488-492.
[11] T. Ishinara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), 215-229.
[12] J. Jost and C.-J. Xu, Subelliptic harmonic maps, Trans. Amer. Math. Soc. 350 (1998), 4633-4649.
[13] S. E. Kон, A nonexistence theorem for stable exponentially harmonic maps, Bull. Korean Math. Soc. 32 (1995), 211-214.
[14] E. V. Radkevik, Hypoeliptic operators with multiple characteristics, Mat. Sb. 79 (1969), 193-216.
[15] N. TANAKA, A differential geometric study on strongly pseudoconvex manifolds, Kinokuniya Co. Ltd., Tokyo 1975.
[16] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240.
[17] S. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geometry 13 (1978), 25-41.
[18] J. C. Wood, Harmonic morphisms, foliations and Gauss maps, Contemp. Math. 49 (1986), 145-184.
[19] C. -J. Xu and C. Zuily, Higher interior regularity for quasilinear subelliptic systems, Calc. Var. Partial Differential Equations 5 (1997), 323-343.
[20] Z. -R. Zноч, Uniqueness of subelliptic harmonic maps, Ann. Global Anal. Geom. 17 (1999), 581-594.

Summary

Owing to the ideas of M. Ara (cf. [1]) and K. Uhlenbeck (cf. [16]) we consider F-pseudoharmonic maps, i.e. critical points of the energy $E_{F}(\phi)=\int_{M} F\left(\frac{1}{2} \operatorname{trace}_{G_{\theta}}\left(\pi_{H} \phi^{*} h\right)\right) \theta$ $\wedge(d \theta)^{n}$, on the class of smooth maps $\phi: M \rightarrow N$ from a (compact) strictly pseudoconvex $C R$ manifold (M, θ) to a Riemannian manifold (N, h), where θ is a contact form and $F:[0, \infty) \rightarrow[0, \infty)$ is a C^{2} function such that $F^{\prime}(t)>0 . F$-pseudoharmonic maps generalize both J. Jost \& C-J. Xu's subelliptic harmonic maps (the case $F(t)=t, c f$. [12]) and P. Hajlasz \& P. Strzelecki's subelliptic p-harmonic maps (the case $F(t)=(2 t)^{p / 2}$, cf. [9]). We obtain the first variation formula for $E_{F}(\phi)$. We investigate the relationship between F pseudoharmonicity and pseudoharmonicity, by exploiting the analogy between $C R$ and conformal geometry (cf. [1] for the Riemannian counterpart). We consider pseudoharmonic morphisms from a strictly pseudoconvex CR manifold and show that any pseudoharmonic morphism is a pseudoharmonic map (the CR analogue of T. Ishihara's theorem, cf. [11]). We give a geometric interpretation of F-pseudoharmonicity in terms of the Fefferman metrics of (M, θ).

[^0]: (*) Università degli Studi della Basilicata, Dipartimento di Matematica, Contrada Macchia Romana, 85100 Potenza, Italy, e-mail: barletta@unibas.it
 (**) Received $9^{\text {th }}$ December 2002. AMS classification 58 E 20, 53 C 43, 32 V 20 , 35 H 20.

