
R i v . M a t . U n i v . P a r m a ( 7 ) 2 ( 2 0 0 3 ) , 2 3 - 3 1

E. AR A G N O and N. ZA G A G L I A SA L V I (*)

Edge-bipancyclicity of the extended

and the widened Fibonacci cubes (**)

1 - Introduction

The hypercube Qn is the graph with 2n vertices, each corresponding to a bina-
ry string of length n , where two vertices are adjacent if and only if the correspon-
ding binary strings differ in exactly one bit.

These graphs have been used extensively as architectural models for parallel
processors where each vertex represents a processor and each edge represents a
direct link between two processors. In recent years various subgraphs of Qn have
been proposed as alternative models. Among these are the Fibonacci cubes, pro-
posed by Hsu [4], the extended Fibonacci cube, proposed by Wu [8], the widened
Fibonacci cube [1].

A Fibonacci string is a binary string with no two consecutive ones. Let Bn and
Cn denote the sets of binary strings and Fibonacci strings of length n respect-
ively; thus Bn is the set of vertices of Qn , while Cn is the set of vertices of a sub-
graph G n of Qn , called Fibonacci cube of order n.

If a and b denote two strings, then ab is the string obtained by concatenating
a and b. More generally if S is a set of strings, then aSb denotes the set of strings
agb , where g�S.

The set Cn12 can be partitioned into two disjoint subsets, depending whether

(*) Dip. di Matematica, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy,
e-mail: eziamaria.aragnoHmate.polimi.it; norma.zagagliaHmate.polimi.it

(**) Received 30th September 2002 and in revised form 27th March 2003. AMS classifica-
tion 05 C 38, 05 C 75. Work partially supported by MIUR (Ministero dell’Istruzione, dell’U-
niversità e della Ricerca).



24 E. ARAGNO and N. ZAGAGLIA SALVI [2]

the first element of a string is 0 or 1. If the first element is 1 , then the second has
to be 0. Then we obtain the relation

Cn12 40Cn11 110Cn(1)

with initial conditions C0 4 ]¯(, C1 4 ]0, 1(, where ¯ denotes the empty
string.

It is well known that the cardinality of Cn is the Fibonacci number Fn , with
the initial values F0 41 and F1 42. Thus the Fibonacci cube G n is the bipartite
graph whose set of vertices is Cn and whose edges are the pairs of vertices with
unit Hamming distance.

The extended Fibonacci cube is constructed by the same recursive relation as
the Fibonacci cube, but with different initial conditions.

For positive integers i , n , iGn , the ith extended Fibonacci cube of order n ,
denoted by G i

n , is a vertex induced subgraph of Qn , where V(G i
n ) 4V i

n is defined
recursively by the relation

V i
n12 40V i

n11 110V i
n ,

with initial conditions V i
i 4Bi , V i

i11 4Bi11 . Thus G i
i 4Qi and G i

i11 4Qi11 .
The widened Fibonacci cube WFCn14 , nF0, is the graph whose set of verti-

ces Wn14 satisfies the recursive relation

Wn14 400Cn12 110Cn12 10100Cn 10101Cn(2)

and whose edges are again the pairs of vertices with unit Hamming distance.
Clearly this graph is embedded in the hypercube Qn14 and contains Qn. Mo-

reover it mantains all the desirable properties of the Fibonacci cube, having in ad-
dition the hamiltonicity, proved in [1], not satisfied by all the Fibonacci cubes.

In this paper we prove that the extended Fibonacci cubes G i
n , nF5, iF1 and

the widened Fibonacci cubes WFCn , nF6 satisfy the property that every edge
belongs to cycles of every even length.

If G is a simple graph, with vertex set V(G) and edge set E(G), an edge e of G
is said pancyclic in G when it belongs to cycles of all lengths in G.

G is said edge-pancyclic when every edge is pancyclic. In the case in which G
is bipartite, the lengths have to be even and G is also said bipancyclic.

Let C be a cycle of G, (a , b) an edge of C and (a 8 , b 8 ) an edge of G which does
not belong to C; moreover let us assume a 8 adjacent to a and b 8 adjacent to b. We
say that we widen C from (a , b) to (a 8 , b 8 ) when we replace (a , b) with the 3-pa-
th aa 8 b 8 b .

For other definitions and notations, the reader is referred to [2].
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2 - Extended Fibonacci cubes

In [7] the following decomposition of the extended Fibonacci cubes is pro-
ved:

G i
n 4G i21

n21 3K2(3)

where G 0
n 4G n , nF1 and iF1. By the above decomposition, G 1

n11 consists of two
vertex-disjoint copies of the Fibonacci cubes G n , nF1, having sets of vertices V
and V8, with the addition of the Fn edges connecting each vertex of V with its cor-
responding vertex in V 8. Denote by G and G8 the copies of G n having sets of verti-
ces V and V 8. An edge (v , w) of G and an edge (v 8 , w 8 ) of G8 are said correspon-
ding when the vertices v 8 , w 8 are adjacent to v , w respectively.

L e m m a 1. Let Fn be even; then G 1
n11 , nD5, is edge-pancyclic.

P r o o f . By a result proved in [9], G n , nF5, is edge-pancyclic. Let e be an
edge of G , C a hamiltonian cycle of G containing e , gce an edge of G and g 8 its
corresponding in G 8. Then widening C from g to g 8 , and replacing g 8 by suitable
paths of all possible odd lengths, we obtain e is pancyclic. A perfectly similar situ-
ation holds when e is an edge of G8.

Now consider an edge e4 (v , v 8 ), where v�G and v 8�G 8. If w is a vertex of
G adjacent to v and w 8 its corresponding in G8, then e belongs to the 4-cycle
vv 8 w 8 wv ; then by replacing (v , w) and also (v 8 , w 8 ) by suitable odd paths of all
lengths, we obtain that also (v , v 8 ) is pancyclic. Then the result follows. r

L e m m a 2. For nF4, G 1
n11 is edge-bipancyclic.

P r o o f . First consider the case of nD4, in which G n turns out to be pan-
cyclic. In the case of Fn even, the result follows from Lemma 1.

Thus assume Fn is odd. By a result proved in [9], every edge of G belongs to
cycles of length l : 4 G lGFn 21; now we prove it is pancyclic in G 1

n11 . Let e
4 (a , b) be an edge of G, D an (Fn 21)-cycle of G containing e , w the vertex not
in D and t a vertex adjacent to w in D; denote by D 8, w 8 and t 8 the corresponding
elements of G8. Moreover denote by ui , ui 8 , where 1 G iG (Fn 22), the vertices of
D and D 8 distinct from t , t 8 respectively. The vertices u1 , uk , where k4Fn 22,
are adjacent to t in D. We note that ]u1 , uk ( c ]a , b(, otherwise (a , b) �D. We
may also assume (a,b)c (uk , t), because otherwise we may to reverse the order of
the vertices of D. Then the cycle u1 R uk u 8k R u 81 t 8 w 8 wtu1 is a Hamiltonian cycle
of G 1

n11 which contains e. In particular if t� ]a , b(, say t4a , then u1 4b. A per-
fectly similar procedure holds for the edges of G8.
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Similarly to the even case we are able to prove that every edge (v , v 8 ), where
v is a vertex of G and v 8 its corresponding in G8, belongs to cycles of every length
l, where 4 G lG2(Fn 21). Now we prove that (v , v 8 ) belongs to a Hamiltonian
cycle. Consider the cycle C

u1 u 81 u 82 u2 u3 u 83 R uk u 8k t 8 w 8 wtu1 .

It contains the edge (u 8j , u 8j11 ) for j odd and in particular the edge (u 8k , t 8 ), since
k is odd. Moreover C contains all the edges (v , v 8 ), but (t , t 8 ).

However, as the degree of w is greater than 1, it follows that w is adjacent to
at least another vertex q of D and we may repeat the above procedure by repla-
cing t by q. Thus every edge (v , v 8 ) is pancyclic in G 1

n11 .
Finally consider the case of n44. A representation of G 1

5 is shown in
Fig. 1.

Denote by vi and wi , 1 G iG8, the vertices of G and G8 respectively, both iso-
morphic to G 4 . Notice that every edge e of G distinct from (v2 , v5 ), (v4 , v5 ) is pan-
cyclic in G; then, by following the same procedure used in Lemma 1, it is pancyclic
in G 1

5 . Consider now the 4-cycle v1 v2 v5 v4 v1 . Widen it from (v1 , v2 ) to (w1 , w2 ) and
then to (w4 , w5 ), (w7 , w8 ), (v7 , v8 ); moreover from (w2 , w5 ) to (w3 , w6 ), then to
(v3 , v6 ). This implies that (v2 , v5 ) and (v4 , v5 ), which belong to the initial cycle, are
pancyclic.

Consider an edge (vi , wi ), 1 G iG8. Let vj , jc i , 1 G jG8, be a vertex of G
adjacent to vi such that (vi , vj ) is distinct from (v2 , v5 ), (v4 , v5 ) and then pancyclic
in G. Starting from the 4-cycle vi vj wj wi vi and replacing (vi , vj ) and (wi , wj ) by
suitable paths in G and G8, we obtain that also the edges (vi , wi ) are pancyclic.
This completes the proof of the lemma. r

Figure 1
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T h e o r e m 1. Let i , n be positive integers with nF i and nF5. Then the
extended Fibonacci cube G i

n is edge-pancyclic.

P r o o f . Let G i
n be an extended Fibonacci cube, where 0 E iGn. We prove

the result by induction on the value of i. For i41 the result follows from Lemma
2. Assume iF2 and consider the decomposition (3). Since, by induction, G i21

n21

is edge-pancyclic, using the same procedure of Lemma 1, the result fol-
lows. r

3 - Widened Fibonacci cubes

In this section we study the edge-bipancyclity of the widened Fibonacci cubes,
WFCn14 , nF1, the graphs, embedded in the hypercube Qn14 , whose set of verti-
ces Wn14 satisfies the relation (2) and whose edges are the pairs of vertices ha-
ving unit Hamming distance. By iterating a suitable number of times the decom-
position (1), equation (2) gives

Wn14 40010Cn 10000Cn 100010Cn21 11010Cn 11000Cn

110010Cn21 10100Cn 10101Cn .

Denote by A , B , C , D , E , F the graphs, isomorphic to G n , having as sets of ver-
tices XCn where X coincides with 1010, 0010, 1000, 0000, 0100, 0101 respectively.
Moreover let G and H be the graphs, isomorphic to G n21 , having as sets of verti-
ces YCn21 , where Y is 00010 and 10010 respectively. Thus WFCn14 can be decom-
posed as the graph of Fig. 2, isomorphic to G 4 .

In all the section we denote by ]xi N1 G iGFn (, where x� ]a , b , R , f ( the
sets of vertices of A, B, C, D, E, F and by ]xj N1 G jGFn21 (, where x� ]g , h(,
the sets of vertices of G, H respectively. Notice that both the subgraphs induced
by CNH and DNG are each isomorphic to G n11 , while the subgraphs induced
by V1 4AN (CNH) and V2 4BN (DNG), denoted by H1 and H2 respectively,

Figure 2
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are isomorphic to G n12 . Finally the subgraph, denoted by G1 , induced by V1 NV2

is isomorphic to G 1
n13 , while the subgraph, denoted by G2 , induced by ENF is

isomorphic to G 1
n11 .

Note that WFC5 is not edge-pancyclic; indeed it is easy to see that the edges
(c1 , d1 ) and (d1 , g1 ) do not belong to hamiltonian cycles.

L e m m a 3. Let nF4 and U a hamiltonian cycle of G1 . Then U contains at
least two edges which belong to the subgraph induced by DNG.

P r o o f . Since every vertex of G is adjacent to only one vertex of H , it is ad-
jacent in U to at most one vertex of H. Consequently in U every vertex of G is ad-
jacent to a vertex of GND. When Fn21 is odd at least one vertex of G is adjacent

in U to a vertex of D; thus at least N
C Fn21

2 N
E

D2 edges of U belong to the subgra-
ph induced by GND. r

L e m m a 4. Let nF4 and T a hamiltonian cycle of G2 . Then T contains at
least two edges having at least one vertex in E.

P r o o f . Notice that every vertex of E is adjacent to only one vertex of G1 and
to only one vertex of F. Then in T every vertex of E is adjacent to at most a ver-

tex of F. It follows that T contains at least N
C Fn

2 N
E

D2 edges which connect either

vertices of E or vertices of E and F. r

T h e o r e m 2. For nD1, WFCn14 is edge-pancyclic.

P r o o f . First assume that nF4. Then by Lemma 2 both the subgraphs G1

and G2 , respectively isomorphic to G 1
n13 and G 1

n11 , are edge-pancyclic. Let e be
an edge of G1 , C1 an hamiltonian cycle of G1 , which contains e , gce an edge of C1

which belongs to the subgraph induced by GND by Lemma 3. Denoted by g 8 the
corresponding of g in G2 , by widening C1 from g to g 8 , and replacing g 8 by suita-
ble paths of odd lengths, it follows that e is edge-pancyclic in all the graph.

Let f be an edge of G2 and C2 an hamiltonian cycle containing f. It follows from
Lemma 4 that C2 contains at least one edge tc f having one vertex in E; conse-
quently t corresponds to an edge of G1 , say t 8. Then by widening C2 from t to t 8

and replacing t 8 by suitable paths, we obtain that f is pancyclic in all the
graph.

Finally consider the edge (v , v 8 ) connecting a vertex v 8 of G2 with its corre-
sponding v in G1 ; denoted by w 8 a vertex of G2 , adjacent to v 8 , having correspon-
ding in G1 , say w , adjacent to v , we see that (v , v 8 ) belongs to the 4-cycle
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Figure 3

vv 8 w 8 wv. Replacing (v , w) and (v 8 , w 8 ) by suitable paths, we obtain that also
(v , v 8 ) is pancyclic.

Consider the case of n42; a representation of WFC6 is shown in Fig. 3.
Now G1 is isomorphic to G 1

5 , edge-pancyclic by Lemma 2, while G2 is isomor-
phic to G 1

3 , edge-pancyclic with the exception of one edge, namely (e2 , f2 ). Let e be
an edge of G1 and C1 an hamiltonian cycle of G1 which contains e. We note that
this cycle has to contain at least one edge, say q , of the path P4g2 g1 d1 , because
otherwise the vertex g1 does not belong to the cycle. If e�P , then the edge q of C1

is distinct from e and its corresponding q 8 in G2 is distinct from (e2 , f2 ). This im-
plies that e is pancyclic in all the graph. If e�P , then we may determine the follo-
wing cycle of G1 which contains P and then an edge q satisfying the above
condition:

d1 g1 g2 d2 d3 b3 b2 b1 a1 a2 a3 c3 c2 h2 h1 c1 d1 .

Let ec (e2 , f2 ) be an edge of G2 . It belongs to a 4-cycle of G2 and then to the 6-
cycle C2 4e1 e2 e3 f3 f2 f1 which contains at least one edge l� ](e1 , e2 ), (e2 , e3 )(, di-
stinct from e , having corresponding l 8 in G1 . If we widen C2 from l to l 8 in G1 and
replace l 8 by suitable paths, we obtain that e is pancyclic in all the graph.

It therefore remains to consider the edge (e2 , f2 ). It belongs to the 4-cycle
e2 f2 f3 e3 e2 , which we may widen from (e2 , e3 ) to (d2 , d3 ), then to (b2 , b3 ), (a2 , a3 ),
(c2 , c3 ), from (a2 , b2 ) to (a1 , b1 ), (c1 , d1 ), (h1 , g1 ), (h2 , g2 ) and finally from ( g1 , d1 )
to ( f1 , e1 ), thus proving (e2 , f2 ) is pancyclic in WFC6 .

Now, consider the case of n43. The subgraph G1 is isomorphic to G 1
6 , pan-

cyclic by Lemma 2, while G2 is isomorphic to G 1
4 , which is edge-pancyclic with the
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exception of the edge (e2 , f2 ). Let e be an edge of G1 and C1 an hamiltonian cycle
of G1 which contains e. We note that this cycle has to contain at least one edge,
say q , of the path P4g2 g1 d1 , because otherwise the vertex g1 does not belong to
the cycle. If e�P , then C1 contains at least the edge qce having corresponding
in G2 . This implies that e is pancyclic in all the graph WFC7 . If e�P , then we may
determine the following cycle of G1 which contains P and then an edge q as
before:

g2 g1 d1 d2 d3 b3 b2 b5 b4 b1 a1 a4 a5 a2 a3 c3 c2 c5 d5 d4 c4 c1 h1 h2 h3 g3 g2 .

In relation to an edge of G2 , distinct from (e2 , f2 ), or an edge (v , v 8 ), where v 8

�G2 and v is its corresponding in G1 , we may repeat the above procedure.
Finally consider the edge (e2 , f2 ). It belongs to the 4-cycle e2 f2 f5 e5 e2 ; widening

this cycle from (e2 , e5 ) to (e1 , e4 ), then to ( f1 , f4 ), from (e1 , e2 ), to (d1 , d2 ),
(d4 , d5 ), (c4 , c5 ), (c1 , c2 ), (a1 , a2 ), (b1 , b2 ), (b4 , b5 ), (a4 , a5 ), from (a2 , b2 ) to
(a3 , b3 ), (c3 , d3 ), (h3 , g3 ), (h2 , g2 ), (h1 , g1 ), from (d3 , g3 ) to (e3 , f3 ), we obtain that
(e2 , f2 ) is pancyclic, thus completing the proof. r
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S u m m a r y

Extended Fibonacci cubes and widened Fibonacci cubes are generalizations of the Fi-
bonacci cube, the subgraph of the usual hypercube induced by the set of binary strings
with no two consecutive ones. Using particular decompositions of these bipartite graphs
we prove that, except some initial cases, they satisfy the property that every edge belongs
to cycles of any even length.

* * *


