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Edge-bipancyclicity of the extended

and the widened Fibonacci cubes (**)

1 - Introduction

The hypercube @, is the graph with 2" vertices, each corresponding to a bina-
ry string of length 7, where two vertices are adjacent if and only if the correspon-
ding binary strings differ in exactly one bit.

These graphs have been used extensively as architectural models for parallel
processors where each vertex represents a processor and each edge represents a
direct link between two processors. In recent years various subgraphs of @, have
been proposed as alternative models. Among these are the Fibonacci cubes, pro-
posed by Hsu [4], the extended Fibonacci cube, proposed by Wu [8], the widened
Fibonaceci cube [1].

A Fibonacct string is a binary string with no two consecutive ones. Let B,, and
C, denote the sets of binary strings and Fibonacci strings of length » respect-
ively; thus B, is the set of vertices of @,, while C,, is the set of vertices of a sub-
graph I, of Q,, called Fibonacci cube of order n.

If @ and S denote two strings, then af is the string obtained by concatenating
a and 5. More generally if S is a set of strings, then aSp denotes the set of strings
ayp, where yeS.

The set C, ., can be partitioned into two disjoint subsets, depending whether

(*) Dip. di Matematica, Politecnico di Milano, P.zza L. da Vinei 32, 20133 Milano, Italy,
e-mail: eziamaria.aragno@mate.polimi.it; norma.zagaglia@mate.polimi.it
(**) Received 30" September 2002 and in revised form 27" March 2003. AMS classifica-
tion 05 C 38, 05 C 75. Work partially supported by MIUR (Ministero dell’Istruzione, dell’U-
niversita e della Ricerca).



24 E. ARAGNO and N. ZAGAGLIA SALVI [2]

the first element of a string is 0 or 1. If the first element is 1, then the second has
to be 0. Then we obtain the relation

(1) C11+2:OC7L+1+10C7’L

with initial conditions Cy= {0}, C;={0,1}, where ¢ denotes the empty
string.

It is well known that the cardinality of C, is the Fibonacci number F,, with
the initial values ¥y =1 and F; = 2. Thus the Fibonacci cube I',, is the bipartite
graph whose set of vertices is C, and whose edges are the pairs of vertices with
unit Hamming distance.

The extended Fibonacci cube is constructed by the same recursive relation as
the Fibonacci cube, but with different initial conditions.

For positive integers 7, n, ¢ < n, the ith extended Fibonacci cube of order #,
denoted by I'i,, is a vertex induced subgraph of @,,, where V(I'},) = V! is defined
recursively by the relation

7§+2:OI/7§+1 + 10‘/7;’

with initial conditions Vi =B;, Vi,1=B;,1. Thus I''=Q; and I'\, ;= Q; ., .
The widened Fibonacci cube WFC,, .4, n =0, is the graph whose set of verti-
ces W, 4 satisfies the recursive relation

2 W,14=00C, 2 +10C, 5+ 0100C, + 0101C,

and whose edges are again the pairs of vertices with unit Hamming distance.

Clearly this graph is embedded in the hypercube @, , 4+ and contains @,. Mo-
reover it mantains all the desirable properties of the Fibonacci cube, having in ad-
dition the hamiltonicity, proved in [1], not satisfied by all the Fibonacci cubes.

In this paper we prove that the extended Fibonacci cubes I'l,, n =5, i =1 and
the widened Fibonacci cubes WFC,,, n = 6 satisfy the property that every edge
belongs to cycles of every even length.

If G is a simple graph, with vertex set V(G) and edge set E(G), an edge e of G
is said pancyclic in G when it belongs to cycles of all lengths in G.

G is said edge-pancyclic when every edge is pancyclic. In the case in which G
is bipartite, the lengths have to be even and G is also said bipancyeclic.

Let C be a cycle of G, (a, b) an edge of C and (a’, b') an edge of G which does
not belong to C; moreover let us assume a’ adjacent to @ and b’ adjacent to b. We
say that we widen C from (a, b) to (a’, b') when we replace (@, b) with the 3-pa-
th aa'b'b.

For other definitions and notations, the reader is referred to [2].
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2 - Extended Fibonacci cubes

In [7] the following decomposition of the extended Fibonacei cubes is pro-
ved:

3) r,=ri" xK,

where I'), = I',, » = 1 and ¢ = 1. By the above decomposition, I'}, , ; consists of two
vertex-disjoint copies of the Fibonacci cubes I',,, # =1, having sets of vertices V
and V', with the addition of the F, edges connecting each vertex of V with its cor-
responding vertex in V'. Denote by G and G’ the copies of I',, having sets of verti-
ces Vand V'. An edge (v, w) of G and an edge (v', w') of G’ are said correspon-
ding when the vertices v', w' are adjacent to v, w respectively.

Lemma 1. Let F, be even; then I ., n>5, is edge-pancyclic.

Proof. By a result proved in [9], I",,, » =5, is edge-pancyclic. Let ¢ be an
edge of (7, C' a hamiltonian cycle of G containing e, g # ¢ an edge of G and g’ its
corresponding in G'. Then widening C from ¢ to ¢g', and replacing ¢’ by suitable
paths of all possible odd lengths, we obtain e is pancyclic. A perfectly similar situ-
ation holds when e is an edge of G'.

Now consider an edge e = (v, v'), where ve G and v' e G'. If w is a vertex of
G adjacent to v and w' its corresponding in G', then e belongs to the 4-cycle
w'w’ wv; then by replacing (v, w) and also (v', w') by suitable odd paths of all
lengths, we obtain that also (v, v') is pancyclic. Then the result follows. =

Lemma 2. For n=4, I', | is edge-bipancyclic.

Proof. First consider the case of n >4, in which I', turns out to be pan-
cyclic. In the case of F, even, the result follows from Lemma 1.

Thus assume F, is odd. By a result proved in [9], every edge of G belongs to
cycles of length [: 4 <I<F, —1; now we prove it is pancyclic in I', ;. Let e
= (a, b) be an edge of G, D an (F',, — 1)-cycle of G containing e, w the vertex not
in D and t a vertex adjacent to w in D; denote by D', w’ and ¢’ the corresponding
elements of G'. Moreover denote by u;, u; , where 1 <1 < (F, — 2), the vertices of
D and D' distinct from ¢, ¢ respectively. The vertices u,, u;, where k=F, — 2,
are adjacent to ¢ in D. We note that {u;, u;} # {a, b}, otherwise (a, b) ¢ D. We
may also assume (a,b) = (uy, t), because otherwise we may to reverse the order of
the vertices of D. Then the cycle u; ... u,uy ... u{ t"w' wtu, is a Hamiltonian cycle
of I'}, , ; which contains e. In particular if t € {a, b}, say t = a, then u; = b. A per-
fectly similar procedure holds for the edges of G'.



26 E. ARAGNO and N. ZAGAGLIA SALVI [4]

Similarly to the even case we are able to prove that every edge (v, v'), where
v is a vertex of G and v its corresponding in G’, belongs to cycles of every length
l, where 4 <] <2(F,—1). Now we prove that (v, v') belongs to a Hamiltonian
cycle. Consider the cycle C

Uy U] UG U Ug Us ... Uy Uy T W Wiy .

It contains the edge (u;', u;, ;) for j odd and in particular the edge (v, '), since
k is odd. Moreover C contains all the edges (v, v'), but (¢,1").

However, as the degree of w is greater than 1, it follows that w is adjacent to
at least another vertex ¢ of D and we may repeat the above procedure by repla-
cing t by g. Thus every edge (v, v') is pancyelic in I}, ;.

Finally consider the case of n=4. A representation of I'} is shown in
Fig. 1.

Denote by v; and w;, 1 <1 < 8, the vertices of G and G’ respectively, both iso-
morphic to I'4. Notice that every edge e of G distinct from (v,, v5), (v4, v5) is pan-
cyclic in G; then, by following the same procedure used in Lemma 1, it is pancyclic
in I'}. Consider now the 4-cycle v; v, v5v,v;. Widen it from (v;, v,) to (w;, w,) and
then to (wy, ws), (wy, wg), (vy, vg); moreover from (w,, ws) to (ws, wg), then to
(v3, vg). This implies that (v,, v5) and (v, v5), which belong to the initial cycle, are
pancyclic.

Consider an edge (v;, w;), 1 S¢<8. Let v;, j# 1, 1 <j <8, be a vertex of G
adjacent to v; such that (v;, v;) is distinet from (v, v5), (v4, v5) and then pancyclic
in G. Starting from the 4-cycle v;v;w;w;v; and replacing (v;, v;) and (w;, w;) by
suitable paths in G and G’, we obtain that also the edges (v;, w;) are pancyclic.
This completes the proof of the lemma. =

U1 V2 U3
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v
(% 8
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wi\ |W2
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W4y Wsy
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Figure 1
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Theorem 1. Let i, n be positive integers with n =1 and n=5. Then the
extended Fibonacci cube I, is edge-pancyclic.

Proof. Let I'’, be an extended Fibonacci cube, where 0 <i <n. We prove
the result by induction on the value of 7. For 7 = 1 the result follows from Lemma
2. Assume i =2 and consider the decomposition (3). Since, by induction, I\, Y
is edge-pancyclic, using the same procedure of Lemma 1, the result fol-

lows. =

3 - Widened Fibonacci cubes

In this section we study the edge-bipancyclity of the widened Fibonacci cubes,
WFC, .4, n =1, the graphs, embedded in the hypercube @, . 4, Whose set of verti-
ces W, , 4 satisfies the relation (2) and whose edges are the pairs of vertices ha-
ving unit Hamming distance. By iterating a suitable number of times the decom-
position (1), equation (2) gives

W, . 4= 0010C, + 0000C, + 00010C, _, + 1010C,, + 1000C,
+10010C, _, + 0100C, + 0101C,.

Denote by A, B, C, D, E, F the graphs, isomorphic to I",,, having as sets of ver-
tices XC,, where X coincides with 1010, 0010, 1000, 0000, 0100, 0101 respectively.
Moreover let G and H be the graphs, isomorphic to I, _ ;, having as sets of verti-
ces YC, _, where Y is 00010 and 10010 respectively. Thus WFC,, , 4 can be decom-
posed as the graph of Fig. 2, isomorphic to I',.

In all the section we denote by {x; |1 <i<F,}, where xe {a, b, ..., f} the
sets of vertices of A, B, C, D, E, F and by {x; |1<j<F,_,}, where xe {g, h},
the sets of vertices of G, H respectively. Notice that both the subgraphs induced
by CUH and D U G are each isomorphic to I, , ;, while the subgraphs induced
by Vi=AU(CUH) and Vo, =B U (D UG), denoted by H; and H, respectively,

A B

D
C E
H G F

Figure 2
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are isomorphic to I, ; ». Finally the subgraph, denoted by G, induced by V; UV,
is isomorphic to I}, 5, while the subgraph, denoted by G,, induced by E U F is
isomorphic to I'l, ;.

Note that WFCj is not edge-pancyclic; indeed it is easy to see that the edges
(¢1, dy) and (d;, g;) do not belong to hamiltonian cycles.

Lemma 3. Let n=4 and U a hamiltonian cycle of Gi. Then U contains at
least two edges which belong to the subgraph induced by D U G.

Proof. Since every vertex of G is adjacent to only one vertex of H, it is ad-
jacent in U to at most one vertex of H. Consequently in U every vertex of G is ad-
jacent to a vertex of G U D. When F',, _; is odd at least one vertex of 7 is adjacent

F,_
in U to a vertex of D; thus at least [ #1 } > 2 edges of U belong to the subgra-
ph induced by GUD. =

Lemma 4. Let n=4 and T a hamiltonion cycle of Gy. Then T contains at
least two edges having at least one vertex in K.

Proof. Notice that every vertex of £ is adjacent to only one vertex of G; and
to only one vertex of F. Then in T every vertex of £ is adjacent to at most a ver-

n

F
tex of F. It follows that T' contains at least [ > } > 2 edges which connect either

vertices of E or vertices of £ and F. =
Theorem 2. For n>1, WFC, ,, is edge-pancyclic.

Proof. First assume that n =4. Then by Lemma 2 both the subgraphs G,
and G, respectively isomorphic to I'}, 5 and I}, are edge-pancyclic. Let e be
an edge of (;, C; an hamiltonian cycle of G;, which contains ¢, g # ¢ an edge of C;
which belongs to the subgraph induced by G U D by Lemma 3. Denoted by g ' the
corresponding of ¢ in G,, by widening C; from g to ¢g', and replacing ¢’ by suita-
ble paths of odd lengths, it follows that e is edge-pancyclic in all the graph.

Let f be an edge of G, and C, an hamiltonian cycle containing f. It follows from
Lemma 4 that C, contains at least one edge ¢ # f having one vertex in E; conse-
quently ¢ corresponds to an edge of Gy, say t’. Then by widening C; from ¢ to ¢’
and replacing ¢’ by suitable paths, we obtain that f is pancyclic in all the
graph.

Finally consider the edge (v, v") connecting a vertex v’ of G, with its corre-
sponding v in Gy; denoted by w' a vertex of G, adjacent to v', having correspon-
ding in G, say w, adjacent to v, we see that (v, v') belongs to the 4-cycle
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v’ w' wv. Replacing (v, w) and (v', w') by suitable paths, we obtain that also
(v, v") is pancyclic.

Consider the case of n =2; a representation of WFC; is shown in Fig. 3.

Now G; is isomorphic to I'}, edge-pancyclic by Lemma 2, while G, is isomor-
phic to I'}, edge-pancyclic with the exception of one edge, namely (e,, f;). Let e be
an edge of G; and C; an hamiltonian cycle of G; which contains e. We note that
this cycle has to contain at least one edge, say ¢, of the path P = g, ¢, d,, because
otherwise the vertex g; does not belong to the cycle. If ¢ ¢ P, then the edge ¢q of C;
is distinct from e and its corresponding ¢’ in G, is distinet from (es, f5). This im-
plies that e is pancyeclic in all the graph. If e e P, then we may determine the follo-
wing cycle of G; which contains P and then an edge ¢ satisfying the above
condition:

d19192d2d3b3by by ay asagcgcahohycydy.

Let e # (eq, f5) be an edge of G,. It belongs to a 4-cycle of G, and then to the 6-
cycle C; = e; ez e3f5f>f; which contains at least one edge le {(e, e€2), (es, €3)}, di-
stinet from e, having corresponding I’ in G;. If we widen C, from [ to I’ in G; and
replace [’ by suitable paths, we obtain that e is pancyclic in all the graph.

It therefore remains to consider the edge (e, f5). It belongs to the 4-cycle
es f>fs e3 65, which we may widen from (e,, e3) to (ds, d3), then to (by, bs), (as, as3),
(¢2, ¢3), from (ay, by) to (ay, by), (¢y, dy), (R, g1), (he, g») and finally from (g;, d;)
to (f1, €1), thus proving (e, f;) is pancyclic in WFCj.

Now, consider the case of n =3. The subgraph G, is isomorphic to I'f, pan-
cyclic by Lemma 2, while G, is isomorphic to I'}, which is edge-pancyclic with the
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exception of the edge (e,, f3). Let e be an edge of G; and C; an hamiltonian cycle
of G; which contains e. We note that this cycle has to contain at least one edge,
say q, of the path P = g, ¢, d,, because otherwise the vertex g; does not belong to
the cycle. If e ¢ P, then C; contains at least the edge g # e having corresponding
in G,. This implies that e is pancyclic in all the graph WFC;. If ¢ € P, then we may
determine the following cycle of G; which contains P and then an edge ¢ as
before:

92910y o d3 b3 050504 b1 0y Oy 0502 03 C3Co C5 A5 Ay CoC1 Ry ho s g3 9.

In relation to an edge of G,, distinct from (e,, f5), or an edge (v, v'), where v’
e G, and v is its corresponding in G;, we may repeat the above procedure.

Finally consider the edge (es, f2). It belongs to the 4-cycle e, f; f; e5 e ; widening
this cycle from (e, e5) to (e, e4), then to (fi, fi), from (e, €5), to (d;, dy),
(dy, d5), (cq, C5), (€1, C2), (aq, ag), (by, b2), (by, b5), (ay, as), from (ay, by) to
(ag, by), (c3, d3), (hs, g3), (ha, go), (hy, g1), from (dg, g3) to (es, f3), we obtain that
(es, f>) is pancyclie, thus completing the proof. m
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Summary

Eaxtended Fibonacci cubes and widened Fibonacct cubes are generalizations of the Fi-
bonacci cube, the subgraph of the usual hypercube induced by the set of binary strings
with no two consecutive ones. Using particular decompositions of these bipartite graphs
we prove that, except some initial cases, they satisfy the property that every edge belongs
to cycles of any even length.



