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V1IJAY GUPTA and PRERNA MAHESHWARI (*)

Bezier variant of a new Durrmeyer type operators (**)

1 - Introduction

Durrmeyer [3] introduced the integral modification of Bernstein polynomials
to approximate Lebesgue integrable functions on the interval [0, 1]. The operators
introduced by Durrmeyer are defined by

n 1
M B,(f,a)=(u+1) 3 (@) [p,u)) SO dt,  wel0, 1]
0

where p, (%) = (Z) k(1 — )"k,

Recently Gupta [6] introduced a slight modification of the operators (1) and
studied the rate of convergence for functions of bounded variation. We now define
a new type of Durrmeyer operators to approximate Lebesgue integrable functions
on the interval [0,1] as

n 1
Q) P,(f,x)= nkzl D, 1() Ipn,l,k,l(t) f@) dt + (1 —x)"f(0), xe[0, 1]
- 0

where p, , is as defined in (1).
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Chang [2] studied some approximation properties of Bernstein Bezier polyno-
mials. Zeng and Piriou [7] and Zeng and Chen [8] estimated the rate of conver-
gence for the Bezier variants of Bernstein polynomials and their Kantorovitch
and Durrmeyer modifications. In computer aided design Bezier basis functions
play an important role. This along with the recent work on Bernstein Bezier type
operators, motivated us to study further on some different operators. We observe
that the approximation properties of the operators (2) are entirely different from
the usual Durrmeyer operators. For a function f defined on [0,1] and a = 1, we in-
troduce the Bezier variant of the operators (2) as

n 1
@ Pl =12 Q@) [P () ) dE+ Q@) f(0),
0

where Q%.(x) =J; ;(x) = 41 (x) and J, ,(x) = _Ek Pa, ().
j=

Some important properties of J, ,(x) are as follows:

(1) Jn,k(x)_Jn,k-%—l(x) :pn,k(x)7 kIO’ 1’ 2’ 35 e
(11) J?é,k(x):npnfl,kfl(xx k:1727 3’;

(iif) Jn‘k(x)=nfpn_ly,c_1(u)du, k=1,2,3,...
0
(IV) Jn,,o(x)>=]n,1(x)>Jn,2(x)>---><]n,n(x)-

For every natural number k, J, ,(x) increases strictly from 0 to 1 on
[0,1].
Alternatively we may rewrite the operators (3) as

1
) P, . (f, )= JKM(x, t) fydt, 0<x<1
0

n

where K, ,(x,t)=n > Q) py_1r1() + Q4 (x) (t), 6(t) being the Dirac
delta function. k=t

It is easily verified that P, ,(f, ) are linear positive operators, P, ,(1, x) =1
and for a =1, the operators P, ,(f, ¥) reduce to the operators (2). For further
properties of Q\%).(x), we refer to the readers [7].

In the present paper, we study the rate of point wise convergence of the ope-
rators P, ,(f, ) at those points € (0, 1) at which one sided limits f(x —) and

flx +) exist.
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2 - Auxiliary results

In this section we give certain results, which are necessary to prove the main
result.

Lemma 1. For meN° (the set of non-negative integers), if we define
n 1
P,((t—x)", x) =4, (%) =nk21 P, 1 () fpnfl,kfl(t)(t—ﬂc)de(—96)’”(1—90)"-
- 0

Then

— x(1-2)2n+1)—(1—-3x)x
A =1, A -~ A =
n,O(x) ’ n,l(x) (7’&+1)’ n,Z(x) (%+1)(7’L+2)

and for m =1 there holds the recurrence relation:

[n +m+ 1] An,m+ 1 (90) = 90(1 - x)[Avg,lzn (.CU) + ZMAVL, m—1 (90)] + [m(l - 296) - 90] An, m (90) .

Proof. The values of A, ((x), A, ;(x) easily follows from the definition. We
prove the recurrence relation as follows:

n 1
2(1-m) AN @ =n 3 (1 =2) plL@) [p, 1 x 1 (O = 2)"dt
k=1
0

n 1
_mnké:l 90(1 - 90) pn,k(x) Jpnfl,k—l(t)(t - x)m_ldt
0

—{n(—x)" (1 =) ' +m(—x)" 1 (1 —a)"} (1 —x).

Now using the identity (1 — ) p "} (x) = (k — nx) p,, (), we obtain

96(1 - x)[A;E,lzn(x) + WLAn,mf 1(9(7)]

n 1
= 2 (k= 1) Py, (@) [ gy (O = @) b+ (=) (1 = )"
0

N 1
= nk; Do, 1 (20) J'[k—l— (m—Dt+nm—1)C—2)+ (1 —2)]p,_q1p-1(OE—2)"dt
B 0

+’l’L( _x)m+1(1 _ x)n
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n 1
=12 9y @) [H1=) DDy (O ="+ (0=1) Ay 1 @)+ (=) A, (@)
- 0

—(=o)"(1 - )"

n 1
= 2 po@) [[(1=20)( = @) + (¢ = @) + (1= )] pPy (O = )" dt
- 0

+(n - l)An,m+1(m) + (1 - 9(:) An,m(x) - (_x)m(l - m)n

= —(m+1)(1 = 20)[A4, ,(x) = ()" (1 —2)"]
+(m + 2)[A, (@) = (=) (1 = x)"]

—.’)0(1 - 90) m[An,mfl(m) - (_x)?n71(1 - x)n] + (7@ - 1) An,m+1(x)
+(1 - .’)C) An,m(x) - (_x)m(l - x)n
=[1-x)—(m+1)1A—2x)] An,m(x) +m+m+ 1)A77,,m+1(x) —ma(l—x) An,m—l(m) .

This completes the proof of recurrence relation.
The value of A, ;(x) easily follows from the above recurrence relation.

Remark 1. For = is sufficiently large and x e (0, 1), it is observed that

1- 2x(1 —
AT g, < 2T
n n

Lemma 2. For every 0<k<mn, xe(0,1) and for all ne N, we have

1

V2enx(1 —x) .

pn,k(x) =

Proof. In order to prove the lemma we have to maximize (n) 2t
1

-(l—x)n_“E, for 0<k<n a?d xe (0, 1).
1 A
First (n) 90“5(1—90)”7“5 is maximum for x = k+1/2.
Let k (n+1)
n
k+12k+1/2 _k+12n7k+1/2
(k)( 2) ( 2) I'n+1)
v(n, k) = Ju(k),

(n+1)TL+1 - (n+1)n+1
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where

(k+1/2)F+12(p — k + 1/2)n ki +12

k) =
J(®) k+1)IMn—k+1)

Thus with x € [0, n], it is easily remarked that f, (x) = f, (n — x). We take the lo-
garithm: #,(x) =Inf,(x) and then differentiate twice

no@)=In@+12)—-Inn—-—a+1/2)—Inl(x+1)) —Unl(n—2x+1))

—(InMx+1))

77,7’2(%') =

1
Y wrm—z+1)y
172 +[n—x+1/2 (nfe -z +1))

=y(x) + yp(n —x), say.

Next In £, (x) is convex on [0, n], that is y(x) + ¥(n — x) = 0. To complete the as-
sertion it is sufficient to show that y(x) =0. We have

1
In I 1)) _—
(In Iz + 1)) gﬂ TS

1 1 1
The strike is: = E -
x+1/2 pz21\x+p-1/2 ax+p+1/72

1 1 1
= _—— > - 4 .
pe1 (x+pyP—1/4 g0 (x+1+q¢P—-1/4 q¢50(x+1+¢q)

Thus with the above it is obvious that f, attains its maximum at x = 0 (and x = n).
So maximum is

1 (’}’L+ 1/2)n+1/2 ) )
f,(0) = — ———— and v(n, k) is maximum at k=0.

V2 IT(n+1)

This maximum is

F(n+1)f(0)_1(1_ 1 )"“ 1
(n+1) 17" V2 2(n+1) n+1/2

_ 1 (1_ 1 )n+1 .\/%
Van 2(n+1) Ve+12’

1 n+1 1 n
Here n+1=1/2, then (1 - —— < — and <1.
2n+1) Ve n+1/2
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1

V2en

This completes the proof of Lemma 2.

Thus ¢(n, k) <v(n, 0) <

Lemma 3. For all xe (0, 1), there hold

a

VZ2enx(1l —x) .

QL (@) S a.p, p(®) <

Proof. Using the well known inequality |a*—-0%| <ala—b|, (0<a,b
<1,a=1) and by Lemma 2, we obtain

a

V2enx(1 — x) .

Lemma 4. Let xe(0,1) and K, ,(x,t) be the kernel defined by (4). Then
for n sufficiently large, we have

Qi (x) < ap,, (x) <

Y
2a.x(1 —2x)
5) ool y) = fK(x Hat< 2T g <y <,
X n(x —y)?
1
2a.2(1 —x)
(6) l_in,a(xaz):fKn,(z(x5t)dtsﬁ’ r<z<l.
wz—x

Proof. We first prove (5), as follows

Y

7 ! (@ — 1)
fK(x 1) dt < J'K(ac £)
0 0

dt
(x —y)*

a.P, (t—x), x) _ 2a.x(1—x)
(x—y)? T -y

N

Pna t— 2, S
—r J(E—z), x)

by Lemma 1. The proof of (6) is similar.

3 - Main result

In this section we prove the following main theorem
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Theorem. Let f be a function of bounded variation on [0, 1], a =1. Then
for every xe (0, 1) and n sufficiently large, we have

‘PmAﬁxr{ L fwsy+ -2
a+1 o+

1f(oc—)

|fle+)— fla—) |

‘ a
< -
V2enx(1—2x)

i Vi REVE (g,
mc(l—x =

where

f)—flx—), 0<t<zx
9.8) =40, t=x
f) —fla+), x<t<l1

and v2( g.) 18 the total variation of g, on [a,Db].

Proof. Clearly Following [8], we have

1 o
. ‘Pmﬁﬁx)—[a+1ﬂw+%+a+1ﬂx—4‘
7

1
s |Pn,a(gx7 x)l + E ‘ ", a(Slgn(t—%) 96')+

Mﬂx+> fle=)] .

First, we have
1 i
P, (sign(t—a), @)= [K, ,(x, ) di [ K, (e, t) di
x 0
1
=j L@, t)dt—zj o, ) di
0

x 1
=1-2 [K, (@, 0 dt=~1+2 [K,  (x, 0)di.
0 @
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k-1 1
Using Lemma 2, Lemma 3 and the fact that > p, ;(x) = %J']an,kﬂ(t) dt, we
have =0 @

" 1 1
P, o(sign(t —a), @) = ~1+2n 3 Q) [P si@di+2 [Q(@) ot) dt
=1 -
1
Since [ Q)(w) (1) dt =0 as x>0, thus
n k-1
Pn,a(Sign (t - .CU), 90) =-1+2 kEl Q"rgt,xl)c(x) Eopn,](ﬁﬁ)
- =
= —1+2 2 p, @) 2 Q@) = —14+2 X p, @) J¢ ().
j=0 k=j j=0 ’ ’
Therefore we have

Pn,a(Sign (t - 90), 90) + “-
o+

1 n 2 n
=2 2 p, (@) S (@) — —— 2 QL V().
1 j=0 a+1j=0
Since > Q.\“ V' (x) =1, by mean value theorem, it follows
=0

Qi V() = Ji (@) = S T (@) = (@ + 1) py, (@) y, (@),
where J ;. q(x) <yq j(x) <J;(x). Hence

-1
P, ,(sign(t—wx), x)+ ¢

<2 2 p, (@TL (@) — S, (@)
o Jj=0

<2 Zop @ @) =T (@) szagpi, (@),
J= J=

where we have used the inequality b“ —a“<a(b—a),0<a,b<1and a=1. Ap-
plying Lemma 2, we get

-1 2
® Py, (sign (¢ =), ) + £ |= ¢ 2e(0,1).

\V2enax(l — x)
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Next we estimate P, ,(g,, ). By Lebesgue-Stieltjes integral representation, we
have

P, o(gs @) = fKn,aw, 1) g. () dt = ( [+]+ j)Kn,a@c, ) g.() dt
0

L I I

)

:E1+E2+E’3, say ,

where I,=1[0,x—a/ ], L=[x—a\n,x+(1—x)/\Vn] and I;=[x+ (1
—x)/\V/n, 1]. We first estimate E,. Writing y = x — x/\/n and using Lebesgue-
Stieltjes integration by parts, we have

Y Y
By = [0.0) dih,o(@, ) = 0,y ) Ay o, 1) = [1, o, £) dy(ga(1)).
0 0
Since |g.(y +)| <v,+(g,), it follows that
Y
B S Vi (9 Au @, )+ A, o, 0 di(=Vi(g)).
0

By using (5) of Lemma 4, we get

|Ev | < V)i (g.)

Y
20.0(1-x) 2a-w(1—w>J L =vie).
0 (90

n(x —y)? n —t)?
Integrating by parts the last term we have after simple computation

2a.2(1 —x)

n

|Ey| <

» y P
Vi (9.) +2J Vi(g,) dt].

x? (x —t)?

0

Now replacing the variable y in the last integral by x — ac/\/z, we obtain

2a(1—x)[ < ] 4a <
10 E | <2 \Vig)+ 2. Vi i(g) | < ——— 2. V2 i(gs).
A0 || < ————|Vi(g)+ 2 Vi i) W(l_x)k; NE(:)

Using the similar method and (6) of Lemma 4, we get

4 n
(11) |By| < — % D ysra-oni(g .
ne(l —x) k=1
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Finally we estimate E,. For te[x —x/\/n, x + (1 — x/\/n], we have

9. | = 9. — g.(@) | SV 02V (g,)

and therefore

r+(1-0)Vk
|| <VERTY g [ dilha, 1),
x—a/\Vk

b
Since fdt/ln,a(x, t) <1, for all (a, b) [0, 1], therefore
(12) B < V707"V (g

Collecting the estimates (9)-(12), we have

5 & &X
(13) 1Py )| < —2% Sy SRV ).
ne(l —x) k=1

Combining the estimates of (7), (8) and (13), our theorem follows.

Remark 2. By taking the Durrmeyer-Bezier type operators of the form (3)
some approximation formulae become simpler (i.e. we do not require the results of
the type Lemma 3 and Lemma 4 of [8]), in our case.

Remark 3. Using our Lemma 2, we can improve the main results of [1], [4]
and [6] for Bernstein Durrmeyer type operators.

4 - Our estimate is asymptotically optimal

We shall show that our estimate is essentially the best possible for continuity
points of bounded variation functions f. If x is continuity point of f, then the con-
clusion of our Theorem becomes

W) |Punlf,2)—f) | < —2% DS, =1,
’ ne(l —x) k=1

First we prove the result for a = 1. Consider the function f(¢) = |t — x| on the
closed interval [0, 1], where 0 < x < 1. By Lemma 1, for any small 6 > 0 and % suf-
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ficiently large, we have

Pn(|t—m|,x)=( j + f )Kn,a(x,t)u—mdt

(15) lt-2]<o  |t-a|>0
1 22(1 —x)
<o+ gAn,z(x)Sé—i— _—
and
x40 1 x+0
P,(Jt—x],x)= J’ K,  (x,t)|t—a|dt= 3 j K, ()t —x)*dt
(16)
2(1—2x) 1 21— 1) c,
=2 —— - - —A (x)= _ ,
no o3 (@) ) 532

where C; is a constant. Choosing 6 =2 \/C;/nx(1 — &), we obtain from (15) and
(16) that

3{a(1 —x)}*” _ 2C {x(1 —2)} 2+ {a(1 —x)}3?

<sP,(|[t—x]|, x)
8 VnC; | | VCn

10

Also, Vi (f) =a+p, we get

n

5 o
1P, (f, @) = f@)| S —— 2 VI Or WE( f)

na(l —x) k=1
(18)

n _ -1
L5 1 _10{e -0} "

na(1—o) 1 \k Vn

From (17) and (18) we conclude that the conclusion of our main theorem can not
be asymptotically improved for bounded variation functions.
Next when a # 1, consider the function f(¢) =t¢. By (14), we have

5a & 1 10afz(l-z)}"
19 P - S (- S NE '
(19) | n,a(f’ ) f(ﬂC)| s ne(l —x) k=1 \k = W
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On the other hand, using the following inequality (see [7], (38)), for n sufficiently
large

Va(l —x)
\/7& ’

= C,

n k
(20) ‘ > L@@ —x
k=1mn

where C, is a positive constant.
Hence for n sufficiently large

1
|Pn,a(t7 90)—90| = ‘ J’Kn,a(x’ t) tdt — x
0

Sk "ok _
@ S PO T =|L > 2 Q@ —w +_x\
k=1m+1 n+1lk=1n n+1
>‘L iEQ(")(x)—x] 1 ~C Vel —x)
BETSI= n+l 2 ovm
1 1 1
by 20) and ——— s(— - —).
CoVna(l —x) 2 "

Hence by (19) and (21), we conclude that (14) can not be asymptotically improved
when n— . Hence for a = 1, our estimate in the main theorem is asymptotically
optimal.
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Summary

In this paper, we introduce a Bezier variant of a new type of Durrmeyer operators
and estimate the rate of convergence of functions of bounded variation. Our result im-
proves and extends the results of Guo (J. Approx Theory 51 (1987), 183-192) and Zeng and
Chen (J. Approx. Theory 102 (2000), 1-12). In the end we show that our estimate is
asymptotically optimal.



