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EDOARDO BA L L I C O (*)

On two theorems of Bertini

for infinite-dimensional projective spaces (**)

1 - Introduction

Let V be an infinite-dimensional complex Banach space and let P (V) denote
the projective space of all one-dimensional linear subspaces of V. Hence P (V) is
an infinite-dimensional complex manifold. For every integer d there is a holomor-
phic line bundle OP (V) (d) on P (V) such that the vector space V(d) of all holomor-
phic sections of OP (V) (d) is the set of all degree d continuous homogeneous po-
lynomials f : VKC . Hence V(d) 4 ]0( if dE0, V(0) `C (the constant functions)
and V(1) is the dual of V. Every f�V(d)0]0( induces a degree d hypersurface
] f40( of P (V). After [L] and [Ko] it is a natural problem the existence of smoo-
th closed subvarieties X of P (V) which are complete intersections of finitely many
hypersurfaces. By the vanishing theorems proved in [Ko] the case in which V is a
separable Hilbert space seems to be important. In [Ko] the smoothness of the
complete intersection was essential to use complex analytic techniques (the ¯-bar
operator). The existence of smooth complete intersections is a subtle problem sin-
ce by [K] or [B1] Sard’s theorem fails when the domain is infinite-dimensional and
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the target finite-dimensional. Even worst: by [B2] on each 1p space, 1GpE1Q,
there are continuous real and complex polynomials whose set of critical values has
a non-empty interior. There are very interesting results concerning differential
Fredholm maps ([S], [QS], [PR]) but they cannot be applied in our set-up because
we consider maps from an infinite-dimensional domain to a finite-dimensional tar-
get. In section two we prove the following result.

T h e o r e m 1.1. Fix positive integers s , d1 , R ds and a separable Hilbert spa-
ce V . Then there exists a smooth codimension s complete intersection X%P (V) of
s hypersurfaces of degree d1 , R , ds .

One could hope that adding an algebricity condition, still some weak form of
Bertini theorem may hold. In general this is not true: there are projective spaces
P (V) with V Fréchet nuclear space such that every homogeneous hypersurface of
degree at least two of P (V) is singular (see Example 3.3). In section three we con-
sider the case V4C (N) and prove the following result.

T h e o r e m 1.2. Fix an integer dF2 and a subset S of CP 1 with at most
countable elements. Then there exist linearly independent homogeneous degree d
polynomials F and G on C (N) such that a hypersurface ]lF1mG40( of
P4C (N) with (l ; m) �CP 1 is singular if and only if (l ; m) �S .

The set-up of Theorem 1.2 (varieties over a complex vector space with counta-
ble algebraic dimension) is essentially the set-up for infinite-dimensional algebraic
geometry introduced in [S] and [T]. Theorem 1.2 just describes the singular mem-
bers of the pencil of degree d hypersurfaces of P4C (N) generated by the hyper-
surfaces ]F40( and ]G40(.

R e m a r k 1.3. We stress that in the statement of Theorem 1.2 we allow the
case S4¯ , i.e. for every integer dF2 we prove the existence of a pencil of degree
d hypersurfaces of P4C (N) without any singular member. This is in striking con-
trast with the case of pencils on CPn : in that case if dc1 every pencil has a sin-
gular member because the set of degree d singular hypersurfaces is a hypersurfa-
ce in the big projective space parametrizing all degree d hypersurfaces of CPn .

2 - Proof of Theorem 1.1

L e m m a 2.1. Fix positive integers n , s , d1 , R , ds such that nFs . Fix ho-
mogeneous coordinates z0 , R , zn on Pn . Let A(s , n , d1 , R , ds ) be the subset of
C s(n11) formed by all aij �C , G iGs , 0 G jGn , such that ]F1 4R4Fs 40( is a
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smooth codimension s complete intersection of Pn , where Fi 4 !
0 G jGn

aij xj
di . Then

A(s , n , d1 , R , ds ) is a non-empty Zariski open subset of C s(n11) .

P r o o f . Since smoothness is an open condition in the Zariski topology and
the same is true for the codimension s (i.e. the maximal possible codimension) con-
dition, it is sufficient to show that A(s , n , d1 , R , ds ) 4¯ . We will use induction on
s . If s41, set B(s21) 4Pn . If sF2 take aij �C , 1 G iGs21, 0 G jGn , such
that B(s2 l) »4 ]F1 4R4Fs21 40( is a smooth codimension s21 complete
intersection of Pn (inductive assumption). Let V(ds ) be the linear system on
B(s21) spanned by the restriction to B(s21) of the degree ds monomials xj

ds ,
0 G jGn . Since V(ds ) has no base points and B(s21) is smooth, the general
member of the linear system V(ds ) is a smooth hypersurface of B(s21) by Berti-
ni theorem ([H], Cor. III. 10.9, or [K]), i.e. for general asj �Cn11 , 0 G jGn ,
B(s21)OFs is a smooth codimension s complete intersection of Pn . Thus
A(s , n , d1 , R , ds ) c¯ .

P r o o f o f T h e o r e m 1.1. Fix an orthonormal basis ]xn (nF1 of V . For any
z4 !

nF1
zn xn �V set a n (z) »4zn . Thus z4 !

nF1
a n (z)xn for every z�V and a n

�V(1). Fix complex numbers m i , j , iF1, 1 G jGs , which are algebraically inde-
pendent over the field Q of rational numbers and such that 0 ENm i , j NG1 for all
i , j . This is possible because C has infinite (and even uncountable) trascendence
degree over Q . For every z4 !

nF1
a n (z)xn �V set Fj (z) »4 !

iF1
m i , j a n (z)dj . Hence

Fj is a continuous homogeneous degree dj polynomial on V . Set Aj »4 ]Fj 40(

and X4A1 OROAs . Obviously X has codimension exactly s in P (V). It is suffi-
cient to prove that X is smooth. Fix P�X and take z4 !

iF1
a i (z) xi �V0]0( repre-

senting P . Let M be the matrix with s rows and countable columns, say M(P)
4 (bij ), iF1, 1 G jGs , with bij 4¯/¯a i (Fj )(P) 4dj m i , j a i (z)dj21 . It is sufficient
to prove that for every P�X the matrix M(P) has rank s . First assume the exi-
stence of indices i1 , R , is such that a(z)ik c0 for every k with 1 GkGs . Call
M(P)(i1 , R , is ) the minor of M(P) formed by the columns i1 , R , is . We have
det (M(P)(i1 , R , is ) ) 4d1 R ds a i1

(z)d1
R a is

(z)ds det (B) where B is the s3s ma-
trix (m ik , j ), 1 GkGs , 1 G jGs . Since a ik

(z) c0 for every k and det (B) c0 by
the algebraic independence over Q of the complex numbers m i , j , we obtain
det (M(P) ) c0. Now assume that no such indices i1 , R , is do exists. Hence at
most the first s homogeneous coordinates of P are non-zero. We apply Lemma 2.1
to the case n4s , in which we see P s as P (W), where W%V is the linear span of
the vectors x1 , R , xs11 . By Lemma 2.1 the submatrix of M(P) formed by the first
s11 columns has rank s at P and hence rank (M(P) ) 4s , proving the theorem.
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3 - Proof of Theorem 1.2

P r o o f o f T h e o r e m 1.2. First we will prove the case S infinite (and counta-
ble). Then in a completely different way we will prove the case S4¯ . Then we
will adapt the proof of the case S4¯ to the case Sc¯ and S finite.

Step 1. Here we assume S infinite and countable. Up to a projective trans-
formation we may assume that (1 ; 0 ) �S , (21; 1 ) �S and (0 ; 1 ) �S . Hence
S4 ]2ai �N( with ai �C , ai � ]0, 1(. Choose homogeneous coordinates zi ,
iF0, on P (C (N) ). Set F»4 !

iF0
zi

d and G»4 !
iF0

ai zi
d . Hence ]F40( is a Fermat

hypersurface and G is in diagonal form. Since every point of P (C (N) ) has only fini-
tely many non-zero entries, it is very easy to check as in the finite-dimensional ca-
se that the hypersurface ]lF1mG( has a singular point if and only if l1mai 40
for some i , i.e. if and only if 0(l ; m) �S .

Step 2. Here we assume S4¯ . Let N(d) be the set of all multi-indices a i ,
iF0, of non-negative integers with !

iF0
a i 4d . Every homogeneous degree d

hypersurface of P (C (N) ) has an equation of the form !
a�N(d)

aa z a for some complex

numbers aa . Set F4 !
a�N(d)

aa z a and G4 !
a�N(d)

ba z a, where we assume that all

aa8 s and ba8 s are trascendentally free over the field Q of rational numbers. This
may be done because N(d) is countable, while C has even uncountable trascenden-
ce degree over Q. For all (l ; m) �CP 1 , set X(l , m) »4 ]lF1mG( and call L this
pencil of hypersurfaces. We need to check that every X(l , m) is smooth. For any
integer nF0, set CPn »4 ]z�P (C (N) ) : zi 40 for iDn(, X(l , m ; n) »

4X(l , m)NCPn and L(n) the associated pencil of CPn . Since every point of
P (C (N) ) has only finitely many non-zero coordinates, every singular point, P , of
X(l , m) must be contained in some X(l , m ; n) for some large n . It is easy to
check that P must be a singular point of X(l , m ; n). However, the converse is not
true. Take a hypersurface Y of CPn11, a hyperplane H of CPn11 and Q�H such
that Q is an ordinary double point of YOH. A priori two cases may occur: either
Q is an ordinary double point of Y and H is as transversal as possible to Y at Q or
Y is smooth at Q and H is tangent to Y at Q . By the genericity of the coefficients
aa and ba for every finite integer nF2 the pencil L(n) has only finitely many sin-
gular members, each singular hypersurface of Y(n) has a unique singular point
and this point is an ordinary double point. Now we compare the singular members
of L(n) and of L(n11). No singular member of L(n) is the restriction of a singu-
lar member of L(n11), i.e. if X(l , m ; n) is singular at Q , then (l , m ; n11) is
smooth at Q and CPn is tangent to (l , m ; n11) at Q. Hence letting n going to
1Q we obtain that no X(l , m) may be singular.
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Step 3. Here we assume S finite and Sc¯ . Set s»4card (S). We may assume,
up to a projective transformation that S is given by the complex numbers 2aj ,
1 G jGs»4card (S), with aj � ]0, 1( for every j . For any positive integer n set
N(d , n) »4 ](a i ) �N(d) : a i 40 for iDn(. Set F(s) »4 !

0 G iGs
zi

d and G(s)

»4 !
0 G iGs

ai zi
d and call L(s) the pencil of hypersurfaces generated by F(s) and

G(s). The singular members of L(s) are exactly the hypersurfaces ]aj F(s)1G(s)
40( of CP s with Qj (0 ; R ; 1 ; 0 , R ; 0 ) as unique singular points. Let V(s11)
be the set of all extensions of L(s) to a pencil of CP s11 with singular members for
the parameters aj , 1 G jGs , and respectively with Qj as singular point. V(s11)
is a finite-dimensional linear space. V(s11) c¯ (e.g. just take aa4ba40 if
a�N(d , n11)0N(d , n)). Call L(s11) any general member of V(s11). The
hypersurface of L(s11) corresponding to the parameter (aj ; 1 ) have Qj as only
singular point. There will be also finitely many singular hypersurfaces in L(s11)
but all of them with an ordinary double point as unique singular point. Call
L(s12) a general extension of L(s11) to a pencil of hypersurfaces of CP s12

with a singular member for each parameter (aj ; 1 ) and at the point Qj . The other
singular members of the pencil L(s11) will not be singular in CP s11 except on
the points Qj , 1 G jGs , i.e. passing from L(s11) to L(s12) we have swallowed
the singularities of the pencil L(s11) which were not assign in advance. And so
on as in Step 2.

R e m a r k 3.1. In the case S infinite and countable we obtained a pencil in which
all singular members have only one singular point and with a rather bad singularity
(at least if dF3). Just allowing repetitions among the complex numbers ai , iF0, we
obtain in the same way examples in which S is the set of all singular hypersurface,
but each singular hypersurface is a cone over a smooth hypersurface and the vertex
of the cone may have arbitrary dimension (finite or countable). If S is finite and Sc¯

the construction of Step 3 of the proof of Theorem 1.2 gives hypersurfaces with a uni-
que singular point and an ordinary one, because for every mF2s11 the hypersur-
face of the pencil L(m) corresponding to the parameter (aj ; 1) have an ordinary
double point at Qj . However, we may even at each step of the induction to impose a
bad singularity and find examples satisfying, the thesis of Theorem 1.2 but with pre-
scribed multiplicity at the singular points.

Remark 3.2. Let L be any pencil of degree d hypersurfaces of P (C (N) ) and
call L(n) its restriction to CPn »4 ]z�P (C (N) ) : zi 40 for iDn(. Assume that for
every nF2L(n) has no base points. Hence L(n) has only finitely many singular
members. Since every point of P (C (N) ) has only finitely many non-zero coordina-
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tes and the restriction to CPn of a hypersurface singular at P�CPn is singular at
P , we see that L has at most countably many singular members.

E x a m p l e 3.3. Let I be any infinite set. Since every germ of holomorphic
function on C I depends only from finitely many variables, every homogeneous po-
lynomial on C I depends only from finitely many variables. Hence every zero-locus
of a homogeneous polynomial of C I is a cone with infinite-dimensional vertex over
a hypersurface of a finite-dimensional projective space. Hence every hypersurface
of degree at least two of C I is singular. The space CN is a Fréchet nuclear space
and hence it should be considered as a rather good locally convex space.
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S u m m a r y

Here we prove the following two results. Fix positive integers s , d1 , R , ds and a sepa-
rable Hilbert space V ; then there exists a smooth codimension s complete intersection X
%P (V) of s hypersurfaces of degree d1 , R , ds. Fix an integer dF2 and a subset S of CP 1

with at most countable elements; then there exist linearly independent homogeneous de-
gree d polynomials F and G on C (N) such that a hypersurface ]lF1mG40( of P (C (N) )
with (l ; m) �CP 1 is singular if and only if (l ; m) �S; we allow the case S4¯ , which is in
striking contrast with the corresponding problem in CP n.

* * *


