Edoardo Ballico (*)

On two theorems of Bertini for infinite-dimensional projective spaces (**)

1-Introduction

Let V be an infinite-dimensional complex Banach space and let $\boldsymbol{P}(V)$ denote the projective space of all one-dimensional linear subspaces of V. Hence $\boldsymbol{P}(V)$ is an infinite-dimensional complex manifold. For every integer d there is a holomorphic line bundle $\boldsymbol{O}_{\boldsymbol{P}(V)}(d)$ on $\boldsymbol{P}(V)$ such that the vector space $V(d)$ of all holomorphic sections of $\boldsymbol{O}_{\boldsymbol{P}(V)}(d)$ is the set of all degree d continuous homogeneous polynomials $f: V \rightarrow \boldsymbol{C}$. Hence $V(d)=\{0\}$ if $d<0, V(0) \cong \boldsymbol{C}$ (the constant functions) and $V(1)$ is the dual of V. Every $f \in V(d) \backslash\{0\}$ induces a degree d hypersurface $\{f=0\}$ of $\boldsymbol{P}(V)$. After [L] and [Ko] it is a natural problem the existence of smooth closed subvarieties X of $\boldsymbol{P}(V)$ which are complete intersections of finitely many hypersurfaces. By the vanishing theorems proved in [Ko] the case in which V is a separable Hilbert space seems to be important. In [Ko] the smoothness of the complete intersection was essential to use complex analytic techniques (the ∂-bar operator). The existence of smooth complete intersections is a subtle problem since by [K] or [B1] Sard's theorem fails when the domain is infinite-dimensional and

[^0]the target finite-dimensional. Even worst: by [B2] on each 1^{p} space, $1 \leqslant p<+\infty$, there are continuous real and complex polynomials whose set of critical values has a non-empty interior. There are very interesting results concerning differential Fredholm maps ([S], [QS], [PR]) but they cannot be applied in our set-up because we consider maps from an infinite-dimensional domain to a finite-dimensional target. In section two we prove the following result.

Theorem 1.1. Fix positive integers $s, d_{1}, \ldots d_{s}$ and a separable Hilbert space V. Then there exists a smooth codimension s complete intersection $X \subset \boldsymbol{P}(V)$ of s hypersurfaces of degree d_{1}, \ldots, d_{s}.

One could hope that adding an algebricity condition, still some weak form of Bertini theorem may hold. In general this is not true: there are projective spaces $\boldsymbol{P}(V)$ with V Fréchet nuclear space such that every homogeneous hypersurface of degree at least two of $\boldsymbol{P}(V)$ is singular (see Example 3.3). In section three we consider the case $V=\boldsymbol{C}^{(\boldsymbol{N})}$ and prove the following result.

Theorem 1.2. Fix an integer $d \geqslant 2$ and a subset S of $\boldsymbol{C P}^{1}$ with at most countable elements. Then there exist linearly independent homogeneous degree d polynomials F and G on $\boldsymbol{C}^{(\boldsymbol{N})}$ such that a hypersurface $\{\lambda F+\mu G=0\}$ of $\boldsymbol{P}=\boldsymbol{C}^{(\boldsymbol{N})}$ with $(\lambda ; \mu) \in \boldsymbol{C} \boldsymbol{P}^{1}$ is singular if and only if $(\lambda ; \mu) \in S$.

The set-up of Theorem 1.2 (varieties over a complex vector space with countable algebraic dimension) is essentially the set-up for infinite-dimensional algebraic geometry introduced in [S] and [T]. Theorem 1.2 just describes the singular members of the pencil of degree d hypersurfaces of $\boldsymbol{P}=\boldsymbol{C}^{(\boldsymbol{N})}$ generated by the hypersurfaces $\{F=0\}$ and $\{G=0\}$.

Remark 1.3. We stress that in the statement of Theorem 1.2 we allow the case $S=\emptyset$, i.e. for every integer $d \geqslant 2$ we prove the existence of a pencil of degree d hypersurfaces of $\boldsymbol{P}=\boldsymbol{C}^{(\boldsymbol{N})}$ without any singular member. This is in striking contrast with the case of pencils on $\boldsymbol{C} \boldsymbol{P}^{n}$: in that case if $d \neq 1$ every pencil has a singular member because the set of degree d singular hypersurfaces is a hypersurface in the big projective space parametrizing all degree d hypersurfaces of $\boldsymbol{C} \boldsymbol{P}^{n}$.

2-Proof of Theorem 1.1

Lemma 2.1. Fix positive integers $n, s, d_{1}, \ldots, d_{s}$ such that $n \geqslant s$. Fix homogeneous coordinates z_{0}, \ldots, z_{n} on \boldsymbol{P}^{n}. Let $A\left(s, n, d_{1}, \ldots, d_{s}\right)$ be the subset of $\boldsymbol{C}^{s(n+1)}$ formed by all $a_{i j} \in \boldsymbol{C}, \leqslant i \leqslant s, 0 \leqslant j \leqslant n$, such that $\left\{F_{1}=\ldots=F_{s}=0\right\}$ is a
smooth codimension s complete intersection of \boldsymbol{P}^{n}, where $F_{i}=\sum_{0 \leqslant j \leqslant n} a_{i j} x_{j}^{d_{i}}$. Then $A\left(s, n, d_{1}, \ldots, d_{s}\right)$ is a non-empty Zariski open subset of $\boldsymbol{C}^{s(n+1)}$.

Proof. Since smoothness is an open condition in the Zariski topology and the same is true for the codimension s (i.e. the maximal possible codimension) condition, it is sufficient to show that $A\left(s, n, d_{1}, \ldots, d_{s}\right)=\emptyset$. We will use induction on s. If $s=1$, set $B(s-1)=\boldsymbol{P}^{n}$. If $s \geqslant 2$ take $a_{i j} \in \boldsymbol{C}, 1 \leqslant i \leqslant s-1,0 \leqslant j \leqslant n$, such that $B(s-l):=\left\{F_{1}=\ldots=F_{s-1}=0\right\}$ is a smooth codimension $s-1$ complete intersection of \boldsymbol{P}^{n} (inductive assumption). Let $V\left(d_{s}\right)$ be the linear system on $B(s-1)$ spanned by the restriction to $B(s-1)$ of the degree d_{s} monomials $x_{j}^{d_{s}}$, $0 \leqslant j \leqslant n$. Since $V\left(d_{s}\right)$ has no base points and $B(s-1)$ is smooth, the general member of the linear system $V\left(d_{s}\right)$ is a smooth hypersurface of $B(s-1)$ by Bertini theorem ([H], Cor. III. 10.9, or [K]), i.e. for general $a_{s j} \in \boldsymbol{C}^{n+1}, 0 \leqslant j \leqslant n$, $B(s-1) \cap F_{s}$ is a smooth codimension s complete intersection of \boldsymbol{P}^{n}. Thus $A\left(s, n, d_{1}, \ldots, d_{s}\right) \neq \emptyset$.

Proof of Theorem 1.1. Fix an orthonormal basis $\left\{x_{n}\right\}_{n \geqslant 1}$ of V. For any $z=\sum_{n \geqslant 1} z_{n} x_{n} \in V$ set $\alpha_{n}(z):=z_{n}$. Thus $z=\sum_{n \geqslant 1} \alpha_{n}(z) x_{n}$ for every $z \in V$ and α_{n} $\in V(1)$. Fix complex numbers $\mu_{i, j}, i \geqslant 1,1 \leqslant j \leqslant s$, which are algebraically independent over the field \boldsymbol{Q} of rational numbers and such that $0<\left|\mu_{i, j}\right| \leqslant 1$ for all i, j. This is possible because \boldsymbol{C} has infinite (and even uncountable) trascendence degree over \boldsymbol{Q}. For every $z=\sum_{n \geqslant 1} \alpha_{n}(z) x_{n} \in V$ set $F_{j}(z):=\sum_{i \geqslant 1} \mu_{i, j} \alpha_{n}(z)^{d j}$. Hence F_{j} is a continuous homogeneous degree d_{j} polynomial on V. Set $A_{j}:=\left\{F_{j}=0\right\}$ and $X=A_{1} \cap \ldots \cap A_{s}$. Obviously X has codimension exactly s in $\boldsymbol{P}(V)$. It is sufficient to prove that X is smooth. Fix $P \in X$ and take $z=\sum_{i \geqslant 1} \alpha_{i}(z) x_{i} \in V \backslash\{0\}$ representing P. Let M be the matrix with s rows and countable columns, say $M(P)$ $=\left(b_{i j}\right), i \geqslant 1,1 \leqslant j \leqslant s$, with $b_{i j}=\partial / \partial \alpha_{i}\left(F_{j}\right)(P)=d_{j} \mu_{i, j} \alpha_{i}(z)^{d_{j}-1}$. It is sufficient to prove that for every $P \in X$ the matrix $M(P)$ has rank s. First assume the existence of indices i_{1}, \ldots, i_{s} such that $\alpha(z)_{i k} \neq 0$ for every k with $1 \leqslant k \leqslant s$. Call $M(P)\left(i_{1}, \ldots, i_{s}\right)$ the minor of $M(P)$ formed by the columns i_{1}, \ldots, i_{s}. We have $\operatorname{det}\left(M(P)\left(i_{1}, \ldots, i_{s}\right)\right)=d_{1} \ldots d_{s} \alpha_{i_{1}}(z)^{d_{1}} \ldots \alpha_{i_{s}}(z)^{d_{s}} \operatorname{det}(B)$ where B is the $s \times s$ matrix $\left(\mu_{i_{k}, j}\right), 1 \leqslant k \leqslant s, 1 \leqslant j \leqslant s$. Since $\alpha_{i_{k}}(z) \neq 0$ for every k and $\operatorname{det}(B) \neq 0$ by the algebraic independence over \boldsymbol{Q} of the complex numbers $\mu_{i, j}$, we obtain $\operatorname{det}(M(P)) \neq 0$. Now assume that no such indices i_{1}, \ldots, i_{s} do exists. Hence at most the first s homogeneous coordinates of P are non-zero. We apply Lemma 2.1 to the case $n=s$, in which we see \boldsymbol{P}^{s} as $\boldsymbol{P}(W)$, where $W \subset V$ is the linear span of the vectors x_{1}, \ldots, x_{s+1}. By Lemma 2.1 the submatrix of $M(P)$ formed by the first $s+1$ columns has rank s at P and hence rank $(M(P))=s$, proving the theorem.

3-Proof of Theorem 1.2

Proof of Theorem 1.2. First we will prove the case S infinite (and countable). Then in a completely different way we will prove the case $S=\emptyset$. Then we will adapt the proof of the case $S=\emptyset$ to the case $S \neq \emptyset$ and S finite.

Step 1. Here we assume S infinite and countable. Up to a projective transformation we may assume that $(1 ; 0) \notin S,(-1 ; 1) \notin S$ and $(0 ; 1) \notin S$. Hence $S=\left\{-a_{i} \in \boldsymbol{N}\right\}$ with $a_{i} \in \boldsymbol{C}, a_{i} \notin\{0,1\}$. Choose homogeneous coordinates z_{i}, $i \geqslant 0$, on $\boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right)$. Set $F:=\sum_{i \geqslant 0} z_{i}^{d}$ and $G:=\sum_{i \geqslant 0} a_{i} z_{i}^{d}$. Hence $\{F=0\}$ is a Fermat hypersurface and G is in diagonal form. Since every point of $\boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right)$ has only finitely many non-zero entries, it is very easy to check as in the finite-dimensional case that the hypersurface $\{\lambda F+\mu G\}$ has a singular point if and only if $\lambda+\mu a_{i}=0$ for some i, i.e. if and only if $\backslash(\lambda ; \mu) \in S$.

Step 2. Here we assume $S=\emptyset$. Let $N(d)$ be the set of all multi-indices α_{i}, $i \geqslant 0$, of non-negative integers with $\sum_{i \geqslant 0} \alpha_{i}=d$. Every homogeneous degree d hypersurface of $\boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right)$ has an equation of the form $\sum_{\alpha \in N(d)} a_{\alpha} z^{\alpha}$ for some complex numbers a_{α}. Set $F=\sum_{\alpha \in N(d)} a_{\alpha} z^{\alpha}$ and $G=\sum_{\alpha \in N(d)} b_{\alpha} z^{\alpha}$, where we assume that all $a_{\alpha}^{\prime} s$ and $b_{\alpha}^{\prime} s$ are trascendentally free over the field \boldsymbol{Q} of rational numbers. This may be done because $\boldsymbol{N}(d)$ is countable, while \boldsymbol{C} has even uncountable trascendence degree over \boldsymbol{Q}. For all $(\lambda ; \mu) \in \boldsymbol{C} \boldsymbol{P}^{1}$, set $X(\lambda, \mu):=\{\lambda F+\mu G\}$ and call L this pencil of hypersurfaces. We need to check that every $X(\lambda, \mu)$ is smooth. For any integer $n \geqslant 0$, set $\boldsymbol{C P} \boldsymbol{P}^{n}:=\left\{z \in \boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right): z_{i}=0 \quad\right.$ for $\left.\quad i>n\right\}, \quad X(\lambda, \mu ; n)$: $=X(\lambda, \mu) \mid \boldsymbol{C P}{ }^{n}$ and $L(n)$ the associated pencil of $\boldsymbol{C P}{ }^{n}$. Since every point of $\boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right)$ has only finitely many non-zero coordinates, every singular point, P, of $X(\lambda, \mu)$ must be contained in some $X(\lambda, \mu ; n)$ for some large n. It is easy to check that P must be a singular point of $X(\lambda, \mu ; n)$. However, the converse is not true. Take a hypersurface Y of $\boldsymbol{C P}{ }^{n+1}$, a hyperplane H of $\boldsymbol{C P}{ }^{n+1}$ and $Q \in H$ such that Q is an ordinary double point of $Y \cap H$. A priori two cases may occur: either Q is an ordinary double point of Y and H is as transversal as possible to Y at Q or Y is smooth at Q and H is tangent to Y at Q. By the genericity of the coefficients a_{α} and b_{α} for every finite integer $n \geqslant 2$ the pencil $L(n)$ has only finitely many singular members, each singular hypersurface of $Y(n)$ has a unique singular point and this point is an ordinary double point. Now we compare the singular members of $L(n)$ and of $L(n+1)$. No singular member of $L(n)$ is the restriction of a singular member of $L(n+1)$, i.e. if $X(\lambda, \mu ; n)$ is singular at Q, then $(\lambda, \mu ; n+1)$ is smooth at Q and $\boldsymbol{C} \boldsymbol{P}^{n}$ is tangent to $(\lambda, \mu ; n+1)$ at Q. Hence letting n going to $+\infty$ we obtain that no $X(\lambda, \mu)$ may be singular.

Step 3. Here we assume S finite and $S \neq \emptyset$. Set $s:=\operatorname{card}(S)$. We may assume, up to a projective transformation that S is given by the complex numbers $-a_{j}$, $1 \leqslant j \leqslant s:=\operatorname{card}(S)$, with $a_{j} \notin\{0,1\}$ for every j. For any positive integer n set $\boldsymbol{N}(d, n):=\left\{\left(\alpha_{i}\right) \in \boldsymbol{N}(d): \alpha_{i}=0\right.$ for $\left.i>n\right\}$. Set $F(s):=\sum_{0 \leqslant i \leqslant s} z_{i}^{d}$ and $G(s)$ $:=\sum_{0 \leqslant i \leqslant s} a_{i} z_{i}^{d}$ and call $L(s)$ the pencil of hypersurfaces generated by $F(s)$ and $G(s)$. The singular members of $L(s)$ are exactly the hypersurfaces $\left\{a_{j} F(s)+G(s)\right.$ $=0\}$ of $\boldsymbol{C} \boldsymbol{P}^{s}$ with $Q_{j}(0 ; \ldots ; 1 ; 0, \ldots ; 0)$ as unique singular points. Let $V(s+1)$ be the set of all extensions of $L(s)$ to a pencil of $\boldsymbol{C} \boldsymbol{P}^{s+1}$ with singular members for the parameters $a_{j}, 1 \leqslant j \leqslant s$, and respectively with Q_{j} as singular point. $V(s+1)$ is a finite-dimensional linear space. $V(s+1) \neq \emptyset$ (e.g. just take $a_{\alpha}=b_{\alpha}=0$ if $\alpha \in \boldsymbol{N}(d, n+1) \backslash \boldsymbol{N}(d, n))$. Call $L(s+1)$ any general member of $V(s+1)$. The hypersurface of $L\left(s+1\right.$) corresponding to the parameter $\left(a_{j} ; 1\right)$ have Q_{j} as only singular point. There will be also finitely many singular hypersurfaces in $L(s+1)$ but all of them with an ordinary double point as unique singular point. Call $L(s+2)$ a general extension of $L(s+1)$ to a pencil of hypersurfaces of $\boldsymbol{C} \boldsymbol{P}^{s+2}$ with a singular member for each parameter $\left(a_{j} ; 1\right)$ and at the point Q_{j}. The other singular members of the pencil $L(s+1)$ will not be singular in $\boldsymbol{C} \boldsymbol{P}^{s+1}$ except on the points $Q_{j}, 1 \leqslant j \leqslant s$, i.e. passing from $L(s+1)$ to $L(s+2)$ we have swallowed the singularities of the pencil $L(s+1)$ which were not assign in advance. And so on as in Step 2.

Remark 3.1. In the case S infinite and countable we obtained a pencil in which all singular members have only one singular point and with a rather bad singularity (at least if $d \geqslant 3$). Just allowing repetitions among the complex numbers $a_{i}, i \geqslant 0$, we obtain in the same way examples in which S is the set of all singular hypersurface, but each singular hypersurface is a cone over a smooth hypersurface and the vertex of the cone may have arbitrary dimension (finite or countable). If S is finite and $S \neq \emptyset$ the construction of Step 3 of the proof of Theorem 1.2 gives hypersurfaces with a unique singular point and an ordinary one, because for every $m \geqslant 2 s+1$ the hypersurface of the pencil $L(m)$ corresponding to the parameter $\left(a_{j} ; 1\right)$ have an ordinary double point at Q_{j}. However, we may even at each step of the induction to impose a bad singularity and find examples satisfying, the thesis of Theorem 1.2 but with prescribed multiplicity at the singular points.

Remark 3.2. Let L be any pencil of degree d hypersurfaces of $\boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$ and call $L(n)$ its restriction to $\boldsymbol{C} \boldsymbol{P}^{n}:=\left\{z \in \boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right): z_{i}=0\right.$ for $\left.i>n\right\}$. Assume that for every $n \geqslant 2 L(n)$ has no base points. Hence $L(n)$ has only finitely many singular members. Since every point of $\boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right)$ has only finitely many non-zero coordina-
tes and the restriction to $\boldsymbol{C P}{ }^{n}$ of a hypersurface singular at $P \in \boldsymbol{C} \boldsymbol{P}^{n}$ is singular at P, we see that L has at most countably many singular members.

Example 3.3. Let I be any infinite set. Since every germ of holomorphic function on \boldsymbol{C}^{I} depends only from finitely many variables, every homogeneous polynomial on \boldsymbol{C}^{I} depends only from finitely many variables. Hence every zero-locus of a homogeneous polynomial of \boldsymbol{C}^{I} is a cone with infinite-dimensional vertex over a hypersurface of a finite-dimensional projective space. Hence every hypersurface of degree at least two of \boldsymbol{C}^{I} is singular. The space \boldsymbol{C}^{N} is a Fréchet nuclear space and hence it should be considered as a rather good locally convex space.

References

[B1] R. Bonic, A note on Sard's theorem in Banach spaces, Proc. Amer. Math. Soc. 17 (1966), 1218.
[B2] R. Bonic, Four brief examples concerning polynomials on certain Banach spaces, J. Differential Geometry 2 (1968), 391-392.
[H] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg 1977.
[K] S. L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287-297.
[Ko] B. KотZev, Vanishing of the first Dolbeaut cohomology group of line bundles on complete intersection, P. D. thesis, Purdue University, December 2001.
[Ku] I. Kupka, Counterexample to the Morse-Sard theorem in the case of infinite-dimensional manifolds, Proc. Amer. Math. Soc. 16 (1965), 954-957.
[L] L. Lempert, The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc. 11 (1998), 485-520.
[PR] J. Pejsachowicz and P. J. Rabier, A substitute for the Sard-Smale theorem in the C^{1} case, J. Anal. Math. 76 (1998), 265-288.
[QS] F. Quinn and A. Sard, Hausdorff conullity of critical images of Fredholm maps, Amer. J. Math. 94 (1972), 1101-1110.
[Sh] I. R. Shafarevich, On some infinite-dimensional group, Rend. Mat. e Appl. 25 (1966), 208-212.
[S] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965), 861-866.
[T] A. N. Tyurin, Vector bundles of finite rank over infinite varieties, Math. USSR Izv. 10 (1976), 1187-1204.

Summary

Here we prove the following two results. Fix positive integers s, d_{1}, \ldots, d_{s} and a separable Hilbert space V; then there exists a smooth codimension s complete intersection X $c \boldsymbol{P}(V)$ of s hypersurfaces of degree d_{1}, \ldots, d_{s}. Fix an integer $d \geqslant 2$ and a subset S of $\boldsymbol{C P}^{1}$ with at most countable elements; then there exist linearly independent homogeneous degree d polynomials F and G on $\boldsymbol{C}^{(\boldsymbol{N})}$ such that a hypersurface $\{\lambda F+\mu G=0\}$ of $\boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$ with $(\lambda ; \mu) \in \boldsymbol{C} \boldsymbol{P}^{1}$ is singular if and only if $(\lambda ; \mu) \in S$; we allow the case $S=\emptyset$, which is in striking contrast with the corresponding problem in $\boldsymbol{C P}{ }^{n}$.

[^0]: (*) Department of Mathematics, University of Trento, 38050 Povo TN, Italy.
 (**) Received $16^{\text {th }}$ October 2002. AMS classification $32 \mathrm{~K} 05,14 \mathrm{~N} 05$. This research was partially supported by MURST and GNSAGA of INdAM (Italy).

