EDOARDO BALLICO (*)

On two theorems of Bertini for infinite-dimensional projective spaces (**)

1 - Introduction

Let V be an infinite-dimensional complex Banach space and let P(V) denote the projective space of all one-dimensional linear subspaces of V. Hence P(V) is an infinite-dimensional complex manifold. For every integer d there is a holomorphic line bundle $O_{P(V)}(d)$ on P(V) such that the vector space V(d) of all holomorphic sections of $O_{P(V)}(d)$ is the set of all degree d continuous homogeneous polynomials $f: V \rightarrow C$. Hence $V(d) = \{0\}$ if $d < 0, V(0) \cong C$ (the constant functions) and V(1) is the dual of V. Every $f \in V(d) \setminus \{0\}$ induces a degree d hypersurface $\{f=0\}$ of P(V). After [L] and [Ko] it is a natural problem the existence of smooth closed subvarieties X of P(V) which are complete intersections of finitely many hypersurfaces. By the vanishing theorems proved in [Ko] the case in which V is a separable Hilbert space seems to be important. In [Ko] the smoothness of the complete intersection was essential to use complex analytic techniques (the ∂ -bar operator). The existence of smooth complete intersections is a subtle problem since by [K] or [B1] Sard's theorem fails when the domain is infinite-dimensional and

^(*) Department of Mathematics, University of Trento, 38050 Povo TN, Italy.

^(**) Received 16th October 2002. AMS classification 32 K 05, 14 N 05. This research was partially supported by MURST and GNSAGA of INdAM (Italy).

the target finite-dimensional. Even worst: by [**B2**] on each 1^p space, $1 \le p < +\infty$, there are continuous real and complex polynomials whose set of critical values has a non-empty interior. There are very interesting results concerning differential Fredholm maps ([**S**], [**QS**], [**PR**]) but they cannot be applied in our set-up because we consider maps from an infinite-dimensional domain to a finite-dimensional target. In section two we prove the following result.

Theorem 1.1. Fix positive integers $s, d_1, \ldots d_s$ and a separable Hilbert space V. Then there exists a smooth codimension s complete intersection $X \in \mathbf{P}(V)$ of s hypersurfaces of degree d_1, \ldots, d_s .

One could hope that adding an algebricity condition, still some weak form of Bertini theorem may hold. In general this is not true: there are projective spaces P(V) with V Fréchet nuclear space such that every homogeneous hypersurface of degree at least two of P(V) is singular (see Example 3.3). In section three we consider the case $V = C^{(N)}$ and prove the following result.

Theorem 1.2. Fix an integer $d \ge 2$ and a subset S of \mathbb{CP}^1 with at most countable elements. Then there exist linearly independent homogeneous degree d polynomials F and G on $\mathbb{C}^{(N)}$ such that a hypersurface $\{\lambda F + \mu G = 0\}$ of $\mathbb{P} = \mathbb{C}^{(N)}$ with $(\lambda; \mu) \in \mathbb{CP}^1$ is singular if and only if $(\lambda; \mu) \in S$.

The set-up of Theorem 1.2 (varieties over a complex vector space with countable algebraic dimension) is essentially the set-up for infinite-dimensional algebraic geometry introduced in [S] and [T]. Theorem 1.2 just describes the singular members of the pencil of degree d hypersurfaces of $\mathbf{P} = \mathbf{C}^{(N)}$ generated by the hypersurfaces $\{F = 0\}$ and $\{G = 0\}$.

Remark 1.3. We stress that in the statement of Theorem 1.2 we allow the case $S = \emptyset$, i.e. for every integer $d \ge 2$ we prove the existence of a pencil of degree d hypersurfaces of $\mathbf{P} = \mathbf{C}^{(N)}$ without any singular member. This is in striking contrast with the case of pencils on \mathbf{CP}^n : in that case if $d \ne 1$ every pencil has a singular member because the set of degree d singular hypersurfaces is a hypersurface of \mathbf{CP}^n .

2 - Proof of Theorem 1.1

Lemma 2.1. Fix positive integers n, s, d_1, \ldots, d_s such that $n \ge s$. Fix homogeneous coordinates z_0, \ldots, z_n on \mathbf{P}^n . Let $A(s, n, d_1, \ldots, d_s)$ be the subset of $C^{s(n+1)}$ formed by all $a_{ij} \in C$, $\le i \le s$, $0 \le j \le n$, such that $\{F_1 = \ldots = F_s = 0\}$ is a

smooth codimension s complete intersection of \mathbf{P}^n , where $F_i = \sum_{\substack{0 \le j \le n \\ 0 \le j \le n}} a_{ij} x_j^{d_i}$. Then $A(s, n, d_1, ..., d_s)$ is a non-empty Zariski open subset of $\mathbf{C}^{s(n+1)}$.

Proof. Since smoothness is an open condition in the Zariski topology and the same is true for the codimension s (i.e. the maximal possible codimension) condition, it is sufficient to show that $A(s, n, d_1, ..., d_s) = \emptyset$. We will use induction on s. If s = 1, set $B(s - 1) = \mathbf{P}^n$. If $s \ge 2$ take $a_{ij} \in \mathbf{C}$, $1 \le i \le s - 1$, $0 \le j \le n$, such that $B(s - l) := \{F_1 = ... = F_{s-1} = 0\}$ is a smooth codimension s - 1 complete intersection of \mathbf{P}^n (inductive assumption). Let $V(d_s)$ be the linear system on B(s - 1) spanned by the restriction to B(s - 1) of the degree d_s monomials $x_j^{d_s}$, $0 \le j \le n$. Since $V(d_s)$ has no base points and B(s - 1) is smooth, the general member of the linear system $V(d_s)$ is a smooth hypersurface of B(s - 1) by Bertini theorem ([**H**], Cor. III. 10.9, or [**K**]), i.e. for general $a_{sj} \in \mathbb{C}^{n+1}$, $0 \le j \le n$, $B(s - 1) \cap F_s$ is a smooth codimension s complete intersection of \mathbf{P}^n . Thus $A(s, n, d_1, ..., d_s) \ne \emptyset$.

Proof of Theorem 1.1. Fix an orthonormal basis $\{x_n\}_{n \ge 1}$ of V. For any $z = \sum_{n \ge 1} z_n x_n \in V$ set $\alpha_n(z) := z_n$. Thus $z = \sum_{n \ge 1} \alpha_n(z) x_n$ for every $z \in V$ and $\alpha_n(z) = z_n x_n + z_n x_n \in V$. $\in V(1)$. Fix complex numbers $\mu_{i,j}$, $i \ge 1$, $1 \le j \le s$, which are algebraically independent over the field **Q** of rational numbers and such that $0 < |\mu_{i,j}| \leq 1$ for all i, j. This is possible because C has infinite (and even uncountable) trascendence degree over Q. For every $z = \sum_{n \ge 1} \alpha_n(z) x_n \in V$ set $F_j(z) := \sum_{i \ge 1} \mu_{i,j} \alpha_n(z)^{dj}$. Hence F_i is a continuous homogeneous degree d_i polynomial on V. Set $A_i := \{F_i = 0\}$ and $X = A_1 \cap \ldots \cap A_s$. Obviously X has codimension exactly s in P(V). It is sufficient to prove that X is smooth. Fix $P \in X$ and take $z = \sum_{i>1} \alpha_i(z) x_i \in V \setminus \{0\}$ representing P. Let M be the matrix with s rows and countable columns, say M(P) $= (b_{ij}), i \ge 1, 1 \le j \le s$, with $b_{ij} = \partial/\partial \alpha_i(F_j)(P) = d_j \mu_{i,j} \alpha_i(z)^{d_j-1}$. It is sufficient to prove that for every $P \in X$ the matrix M(P) has rank s. First assume the existence of indices i_1, \ldots, i_s such that $\alpha(z)_{ik} \neq 0$ for every k with $1 \leq k \leq s$. Call $M(P)(i_1, \ldots, i_s)$ the minor of M(P) formed by the columns i_1, \ldots, i_s . We have det $(M(P)(i_1, \ldots, i_s)) = d_1 \ldots d_s \alpha_{i_1}(z)^{d_1} \ldots \alpha_{i_s}(z)^{d_s} \det(B)$ where B is the $s \times s$ matrix $(\mu_{i_k, j}), 1 \le k \le s, 1 \le j \le s$. Since $\alpha_{i_k}(z) \ne 0$ for every k and det $(B) \ne 0$ by the algebraic independence over Q of the complex numbers $\mu_{i,j}$, we obtain $\det(M(P)) \neq 0$. Now assume that no such indices i_1, \ldots, i_s do exists. Hence at most the first s homogeneous coordinates of P are non-zero. We apply Lemma 2.1 to the case n = s, in which we see P^s as P(W), where $W \in V$ is the linear span of the vectors x_1, \ldots, x_{s+1} . By Lemma 2.1 the submatrix of M(P) formed by the first s+1 columns has rank s at P and hence rank (M(P)) = s, proving the theorem.

3 - Proof of Theorem 1.2

Proof of Theorem 1.2. First we will prove the case *S* infinite (and countable). Then in a completely different way we will prove the case $S = \emptyset$. Then we will adapt the proof of the case $S = \emptyset$ to the case $S \neq \emptyset$ and *S* finite.

Step 1. Here we assume *S* infinite and countable. Up to a projective transformation we may assume that $(1; 0) \notin S$, $(-1; 1) \notin S$ and $(0; 1) \notin S$. Hence $S = \{-a_i \in N\}$ with $a_i \in C$, $a_i \notin \{0, 1\}$. Choose homogeneous coordinates z_i , $i \ge 0$, on $P(C^{(N)})$. Set $F := \sum_{i\ge 0} z_i^d$ and $G := \sum_{i\ge 0} a_i z_i^d$. Hence $\{F = 0\}$ is a Fermat hypersurface and *G* is in diagonal form. Since every point of $P(C^{(N)})$ has only finitely many non-zero entries, it is very easy to check as in the finite-dimensional case that the hypersurface $\{\lambda F + \mu G\}$ has a singular point if and only if $\lambda + \mu a_i = 0$ for some *i*, i.e. if and only if $\backslash(\lambda; \mu) \in S$.

Step 2. Here we assume $S = \emptyset$. Let N(d) be the set of all multi-indices α_i , $i \ge 0$, of non-negative integers with $\sum_{i\ge 0} a_i = d$. Every homogeneous degree d hypersurface of $P(C^{(N)})$ has an equation of the form $\sum_{\alpha\in N(d)} a_\alpha z^\alpha$ for some complex numbers a_{α} . Set $F = \sum_{\alpha \in N(d)} a_{\alpha} z^{\alpha}$ and $G = \sum_{\alpha \in N(d)} b_{\alpha} z^{\alpha}$, where we assume that all $a'_a s$ and $b'_a s$ are trascendentally free over the field **Q** of rational numbers. This may be done because N(d) is countable, while C has even uncountable trascendence degree over Q. For all $(\lambda; \mu) \in \mathbb{CP}^1$, set $X(\lambda, \mu) := \{\lambda F + \mu G\}$ and call L this pencil of hypersurfaces. We need to check that every $X(\lambda, \mu)$ is smooth. For any integer $n \ge 0$, set $CP^n := \{z \in P(C^{(N)}) : z_i = 0 \text{ for } i > n\}, X(\lambda, \mu; n) :$ $= X(\lambda, \mu) | CP^n$ and L(n) the associated pencil of CP^n . Since every point of $P(C^{(N)})$ has only finitely many non-zero coordinates, every singular point, P, of $X(\lambda, \mu)$ must be contained in some $X(\lambda, \mu; n)$ for some large n. It is easy to check that P must be a singular point of $X(\lambda, \mu; n)$. However, the converse is not true. Take a hypersurface Y of CP^{n+1} , a hyperplane H of CP^{n+1} and $Q \in H$ such that Q is an ordinary double point of $Y \cap H$. A priori two cases may occur: either Q is an ordinary double point of Y and H is as transversal as possible to Y at Q or Y is smooth at Q and H is tangent to Y at Q. By the genericity of the coefficients a_a and b_a for every finite integer $n \ge 2$ the pencil L(n) has only finitely many singular members, each singular hypersurface of Y(n) has a unique singular point and this point is an ordinary double point. Now we compare the singular members of L(n) and of L(n+1). No singular member of L(n) is the restriction of a singular member of L(n+1), i.e. if $X(\lambda, \mu; n)$ is singular at Q, then $(\lambda, \mu; n+1)$ is smooth at Q and CP^n is tangent to $(\lambda, \mu; n+1)$ at Q. Hence letting n going to $+\infty$ we obtain that no $X(\lambda, \mu)$ may be singular.

Step 3. Here we assume S finite and $S \neq \emptyset$. Set $s := \operatorname{card}(S)$. We may assume, up to a projective transformation that S is given by the complex numbers $-a_i$, $1 \leq j \leq s := \operatorname{card}(S)$, with $a_j \notin \{0, 1\}$ for every j. For any positive integer n set $N(d, n) := \{(\alpha_i) \in N(d): \alpha_i = 0 \text{ for } i > n\}. \text{ Set } F(s) := \sum_{0 \le i \le s} z_i^d \text{ and } G(s)$ $:= \sum_{0 \le i \le s} a_i z_i^d$ and call L(s) the pencil of hypersurfaces generated by F(s) and G(s). The singular members of L(s) are exactly the hypersurfaces $\{a_i F(s) + G(s)\}$ = 0 of CP^s with $Q_i(0; \ldots; 1; 0, \ldots; 0)$ as unique singular points. Let V(s+1)be the set of all extensions of L(s) to a pencil of CP^{s+1} with singular members for the parameters a_i , $1 \le j \le s$, and respectively with Q_i as singular point. V(s+1)is a finite-dimensional linear space. $V(s+1) \neq \emptyset$ (e.g. just take $a_a = b_a = 0$ if $\alpha \in N(d, n+1) \setminus N(d, n)$. Call L(s+1) any general member of V(s+1). The hypersurface of L(s+1) corresponding to the parameter $(a_i; 1)$ have Q_i as only singular point. There will be also finitely many singular hypersurfaces in L(s + 1)but all of them with an ordinary double point as unique singular point. Call L(s+2) a general extension of L(s+1) to a pencil of hypersurfaces of \mathbb{CP}^{s+2} with a singular member for each parameter $(a_i; 1)$ and at the point Q_i . The other singular members of the pencil L(s+1) will not be singular in CP^{s+1} except on the points Q_i , $1 \le j \le s$, i.e. passing from L(s+1) to L(s+2) we have swallowed the singularities of the pencil L(s + 1) which were not assign in advance. And so on as in Step 2.

Remark 3.1. In the case S infinite and countable we obtained a pencil in which all singular members have only one singular point and with a rather bad singularity (at least if $d \ge 3$). Just allowing repetitions among the complex numbers a_i , $i \ge 0$, we obtain in the same way examples in which S is the set of all singular hypersurface, but each singular hypersurface is a cone over a smooth hypersurface and the vertex of the cone may have arbitrary dimension (finite or countable). If S is finite and $S \ne \emptyset$ the construction of Step 3 of the proof of Theorem 1.2 gives hypersurfaces with a unique singular point and an ordinary one, because for every $m \ge 2s + 1$ the hypersurface of the pencil L(m) corresponding to the parameter $(a_j; 1)$ have an ordinary double point at Q_j . However, we may even at each step of the induction to impose a bad singularity and find examples satisfying, the thesis of Theorem 1.2 but with prescribed multiplicity at the singular points.

Remark 3.2. Let *L* be any pencil of degree *d* hypersurfaces of $P(C^{(N)})$ and call L(n) its restriction to $CP^n := \{z \in P(C^{(N)}) : z_i = 0 \text{ for } i > n\}$. Assume that for every $n \ge 2L(n)$ has no base points. Hence L(n) has only finitely many singular members. Since every point of $P(C^{(N)})$ has only finitely many non-zero coordina-

tes and the restriction to CP^n of a hypersurface singular at $P \in CP^n$ is singular at P, we see that L has at most countably many singular members.

Example 3.3. Let I be any infinite set. Since every germ of holomorphic function on C^{I} depends only from finitely many variables, every homogeneous polynomial on C^{I} depends only from finitely many variables. Hence every zero-locus of a homogeneous polynomial of C^{I} is a cone with infinite-dimensional vertex over a hypersurface of a finite-dimensional projective space. Hence every hypersurface of degree at least two of C^{I} is singular. The space C^{N} is a Fréchet nuclear space and hence it should be considered as a rather good locally convex space.

References

- [B1] R. BONIC, A note on Sard's theorem in Banach spaces, Proc. Amer. Math. Soc. 17 (1966), 1218.
- [B2] R. BONIC, Four brief examples concerning polynomials on certain Banach spaces, J. Differential Geometry 2 (1968), 391-392.
- [H] R. HARTSHORNE, *Algebraic Geometry*, Springer-Verlag, New York-Heidelberg 1977.
- [K] S. L. KLEIMAN, The transversality of a general translate, Compositio Math. 28 (1974), 287-297.
- [Ko] B. KOTZEV, Vanishing of the first Dolbeaut cohomology group of line bundles on complete intersection, P. D. thesis, Purdue University, December 2001.
- [Ku] I. KUPKA, Counterexample to the Morse-Sard theorem in the case of infinite-dimensional manifolds, Proc. Amer. Math. Soc. 16 (1965), 954-957.
- [L] L. LEMPERT, The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc. 11 (1998), 485-520.
- [PR] J. PEJSACHOWICZ and P. J. RABIER, A substitute for the Sard-Smale theorem in the C^1 case, J. Anal. Math. 76 (1998), 265-288.
- [QS] F. QUINN and A. SARD, Hausdorff conullity of critical images of Fredholm maps, Amer. J. Math. 94 (1972), 1101-1110.
- [Sh] I. R. SHAFAREVICH, On some infinite-dimensional group, Rend. Mat. e Appl. 25 (1966), 208-212.
- [S] S. SMALE, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965), 861-866.
- [T] A. N. TYURIN, Vector bundles of finite rank over infinite varieties, Math. USSR Izv. 10 (1976), 1187-1204.

Summary

Here we prove the following two results. Fix positive integers s, d_1, \ldots, d_s and a separable Hilbert space V; then there exists a smooth codimension s complete intersection $X \\\subset \mathbf{P}(V)$ of s hypersurfaces of degree d_1, \ldots, d_s . Fix an integer $d \ge 2$ and a subset S of \mathbf{CP}^1 with at most countable elements; then there exist linearly independent homogeneous degree d polynomials F and G on $\mathbf{C}^{(N)}$ such that a hypersurface $\{\lambda F + \mu G = 0\}$ of $\mathbf{P}(\mathbf{C}^{(N)})$ with $(\lambda; \mu) \in \mathbf{CP}^1$ is singular if and only if $(\lambda; \mu) \in S$; we allow the case $S = \emptyset$, which is in striking contrast with the corresponding problem in \mathbf{CP}^n .