Ashish Kar and P. Bhattacharyya (*)

Bitopological α-compact spaces (**)

1-Introduction

In 1965, O.Njåstad [9] introduced the notion of α-sets. Since then, a large number of topologists studied various properties of point set topology with the help of α-sets. In 1985, utilizing α-sets, Maheswari et al. [8] defined the notion of α-compactness in spaces with single topology. In 1988, Noiri et al. [11] obtained further properties of this kind of spaces. The purpose of the present paper is to generalize the concept of α-compactness in bitopological setting and examine how far the properties of α-compact space remain valid in this new setting.

The notion «pairwise compactness» is current in the existing literature. «Pairwise open cover» defined by Fletcher et al. [3] is instrumental for the introduction of this concept. In like manner, defining «pairwise α-cover», we have introduced pairwise α-compact (briefly $p \alpha c$) spaces. In Section 2 of this paper some known definitions and results necessary for presentation of the subject in bitopological setting are reproduced. Section 3 gives the definition and examples of pac space, which is a stronger notion - substantiated by an example - than pairwise compact spaces. Fletcher et al. [3], the leading exponents of pairwise compact spaces, did not examine the cases whether bi-compact [13] spaces can generate a pairwise compact space or two non-compact spaces with single topologies can produce a pairwise compact space. In this section queries parallel to these have been answered for a pac space. Section 4 deals with some bitopological separation axioms which are interesting in their own right, but are necessary in this paper to unveil

[^0]the richness of pac space and demonstrate its properties. Section 5 is concerned with the interrelationship among the new separation axioms on one hand, while the queries that crop up as a natural consequence of our study have been met, with appropriate examples, on the other hand. Last section is concerned with the properties of $p a c$ space developed in the light of the axioms introduced in Section 4.

Throughout the paper, the triple (X, τ_{1}, τ_{2}), where X is a set and τ_{1}, τ_{2} are topologies on X, will always denote a bitopological space [6], while (X, τ) or simply X denotes a single topological space. In (X, τ), the family of all τ-closed sets are denoted by $\mathscr{F}(\tau)$. The τ_{i}-closure (resp. τ_{i}-interior) of a set A is denoted by $\tau_{i^{-}}$ $\mathrm{Cl}(A)$ or $\mathrm{Cl}_{\tau_{i}}(A)$ (resp. $\tau_{i}-\operatorname{Int}(A)$ or $\left.\operatorname{Int}_{\tau_{i}}(A)\right)$. The abbreviation b.t.s. for bitopological space is used in this paper. Notations not explained here, but used in this paper are obtained from Dugundji [2] and Pervin [12].

2-Known definitions and results

We shall require the following known definitions and results.
Definition 2.1 [9]. In $(X, \tau), A \subset X$ is called an α-set iff A $\subset \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(A)))$.

Njåstad [9] used the symbol τ^{α} to denote the family of all α-set in X and showed that τ^{α} is a topology on X.

Definition 2.2 [10]. The complement of an α-set is called α-closed. The family of all α-closed sets in X is denoted by $\mathscr{F}\left(\tau^{\alpha}\right)$.

Definition 2.3 [13]. In $\left(X, \tau_{1}, \tau_{2}\right), A \subset X$ is termed bi-compact iff A is both τ_{1}-compact and τ_{2}-compact.

Definition 2.4 [3]. A cover \mathcal{U} of $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise open if $\mathcal{U} \subset \tau_{1} \cup \tau_{2}, \mathcal{U} \cap \tau_{i} \supset\{A \neq \phi\}, i=1,2$. If every pairwise open cover of $\left(X, \tau_{1}, \tau_{2}\right)$ has a finite subcover, then the space is called pairwise compact.

Definition 2.5 [6]. $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise Hausdorff iff for each pair of distinct points x and y of X there are $a \tau_{1}$-open set U and a τ_{2}-open set V such that $x \in U, y \in V$ and $U \cap V=\phi$.

This definition was first given by Weston [15] who used the term consistent.

Definition $2.6[6]$. In $\left(X, \tau_{1}, \tau_{2}\right), \tau_{i}$ is said to be regular with respect to τ_{j} iff for each point x in X and each $F \in \mathscr{F}\left(\tau_{i}\right)$ such that $x \notin F$, there exist $U \in \tau_{i}$ and $V \in \tau_{j}$ with $x \in U, F \subset V$ and $U \cap V=\phi, i, j=1,2 ; i \neq j$.
$\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise regular iff τ_{1} is regular with respect to τ_{2} and vice-versa.

Definition 2.7 [6]. (X, τ_{1}, τ_{2}) is termed pairwise normal iff for each $F_{1} \in \mathscr{F}\left(\tau_{1}\right)$ and $F_{2} \in \mathscr{F}\left(\tau_{2}\right)$ with $F_{1} \cap F_{2}=\phi$, there exist $U \in \tau_{2}$ and $V \in \tau_{1}$ such that $F_{1} \subset U, F_{2} \subset V$ and $U \cap V=\phi$.

Definition 2.8 [4]. ($\left.X, \tau_{1}, \tau_{2}\right)$ is said to bi-Hausdorff if both $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ are Hausdorff.

Definition 2.9 [8]. X is called α-compact iff every cover of X by α-set has a finite subcover.

Theorem 2.1.. (Theorem 12 [3]). If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise Hausdorff and pairwise compact, then it is pairwise regular.

Theorem 2.2. (Theorem 13 [3]). If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise compact and either τ_{1} is regular with respect to τ_{2} or τ_{2} is regular with respect to τ_{1}, then it is pairwise normal.

Theorem 2.3. (Theorem 10 [3]). If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise Hausdorff and bi-compact, then $\tau_{1}=\tau_{2}$.

Theorem 2.4. (Theorem 11 [3]). If $\left(X, \tau_{1}, \tau_{2}\right)$ is bi-Hausdorff and pairwise compact, then $\tau_{1}=\tau_{2}$.

3-Pairwise α-compact spaces

Following Flectcher et al. [3], we introduce the definitions given below.
Definition 3.1. A cover \mathcal{U} of $\left(X, \tau_{1}, \tau_{2}\right)$ is termed pairwise α-cover if $\mathcal{U} \subset \tau_{1}^{\alpha} \cup \tau_{2}^{\alpha}$ and $\mathcal{U} \cap \tau_{i}^{\alpha} \supset\{A \neq \phi\}, i=1,2$.

Definition 3.2. A b.t.s $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise α-compact (briefly $p \alpha c)$ if every pairwise α-cover of $\left(X, \tau_{1}, \tau_{2}\right)$ has a finite subcover.

A reformulation of this definition is:

$$
\left(X, \tau_{1}, \tau_{2}\right) \text { is pac iff }\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right) \text { is pairwise compact. }
$$

Remark 3.1. Since $\tau \subset \tau^{\alpha}$ for every topology τ, it follows that every pac space is pairwise compact. But the converse is not, in general, true. This is seen from the following example.

Example 3.1. Let R be the real line and $A=(0, \infty) \subset R$. Consider the b.t.s. $\left(R, \tau_{1}, \tau_{2}\right)$, where $\tau_{1}=\{R\} \cup\{G: G \subset R$ and $G \cap A=\phi\}, \quad \tau_{2}=\{\phi, R,\{1\}$, $R \backslash\{1\}\}$. Let $\mathcal{U}=\left\{V_{\beta}: \beta \in \Delta\right\}$ be any pairwise open cover for $\left(R, \tau_{1}, \tau_{2}\right)$. Since \mathcal{U} is a cover for R, it is so for $A . \tau_{1}$ is the set exclusion topology with the excluding set A. So, two cases arise.

Either $R \in \mathcal{U}$ or $R \backslash\{1\}$ and $\{1\} \in \mathcal{U}$. Since in each case we obtain a finite subcover of $\mathcal{U},\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise compact. If we consider the family of sets $\mathfrak{\vartheta}$, defined by $\mathcal{V}=\left\{V_{n}: n \in N\right.$ ($=$ the set of positive integers) $\}$, where $V_{n}=(-\infty, n)$, then it is easy to check that $V_{n} \in \tau_{i}^{\alpha}$. Also, $\{1\} \in \tau_{2}$ and hence $\{1\} \in \tau_{2}^{\alpha}$. Let $\mathcal{U}=\mathcal{O} \cup\{\{1\}\}$. Then $\mathcal{U} \subset \tau_{1}^{\alpha} \cup \tau_{2}^{\alpha}$. Also, $\mathcal{U} \cap \tau_{i}^{\alpha} \supset\{A \neq \phi\}, i=1$, 2. Hence \mathcal{U} is a pairwise α-cover of (R, τ_{1}, τ_{2}). But no finite subfamily of \mathcal{U} can cover R. Hence \mathcal{U} has no finite subcover. Consequently, $\left(R, \tau_{1}, \tau_{2}\right)$ is not pairwise α-compact.

The immediate problem that occurs to our mind is: Is α-compactness for the individual topologies equivalent to pac of the b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$? Or, can two non α compact spaces with single topology generate a pac b.t.s.? Examples 3.2 and 3.3 offer answer to these two queries.

Example 3.2. Let R be the real line with $\tau_{1}=\{R\} \cup\{G \subset R: 1 \notin G\}$ and $\tau_{2}=\{R\} \cup\{G \subset R: 2 \notin G\}$. We assert that only α-set containing 1 in $\left(R, \tau_{1}\right)$ is R. For, if possible, let G be an α-set in $\left(R, \tau_{1}\right)$ such that $1 \in G$ but $G \neq R$. Then $\operatorname{Int}_{\tau_{1}}(G) \neq \phi$ and coincides with $G \backslash\{1\}$, so that $\mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(G)\right)=G$ and $\operatorname{Int}_{\tau_{1}}\left(\mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(G)\right)\right)=G \backslash\{1\}$, that is, $G \notin \tau_{1}^{\alpha}$. Thus the only α-set containing 1 is the set R. Hence, any α-cover \mathcal{C} of $\left(R, \tau_{1}\right)$ surely contains R. So, $\{R\}$ is a finite subcover of \mathcal{C} so that $\left(R, \tau_{1}\right)$ is α-compact. Pursuing similar reasoning, we see that $\left(R, \tau_{2}\right)$ is α-compact. But the b.t.s. $\left(R, \tau_{1}, \tau_{2}\right)$ is not $p \alpha c$. For, if we consider the family

$$
\mathcal{U}=\{\{x\}: x \in R \backslash\{1\}\} \cup\{\{1\}\}
$$

then $\mathcal{U} \subset \tau_{1}^{\alpha} \cup \tau_{2}^{\alpha}$. Clearly, $\mathcal{U} \cap \tau_{i}^{\alpha} \supset\{A \neq \phi\}, i=1,2$. Hence \mathcal{U} is a pairwise α-cover for $\left(R, \tau_{1}, \tau_{2}\right)$. But it has no finite subcover. $\operatorname{So},\left(R, \tau_{1}, \tau_{2}\right)$ is not pac.

Example 3.3. Let R be the real line with $\tau_{1}=\{\phi\} \cup\{G \subset R: G \supset(-\infty, 0]\}$ and $\tau_{2}=\{\phi\} \cup\{G \subset R: G \supset[0, \infty)\}$. Let $\mathcal{U}_{1}=\left\{U_{n}: n \in N(=\right.$ the set of
positive integers) $\}, \mathcal{U}_{2}=\left\{V_{n}: n \in N\right\}$, where $U_{n}=(-\infty, n)$ and $V_{n}=(-n, \infty)$, $\forall n \in N$. For each $n \in N, U_{n} \supset(-\infty, 0]$ and $V_{n} \supset[0, \infty)$. So, $U_{n} \in \tau_{1}, V_{n} \in \tau_{2}$ for each $n \in N$. Thus \mathcal{U}_{1} is an open cover for $\left(R, \tau_{1}\right)$. Since each open set is an α-set, \mathcal{U}_{1} is a α-cover of $\left(R, \tau_{1}\right)$. But no finite subfamily of \mathcal{U}_{1} covers R, so that (R, τ_{1}) is not α-compact. In like manner $\left(R, \tau_{2}\right)$ is not α-compact. But the b.t.s. $\left(R, \tau_{1}, \tau_{2}\right)$ is pac. Let \mathcal{U} be a pairwise α-cover for $\left(R, \tau_{1}, \tau_{2}\right)$. Then $\mathcal{U} \subset \tau_{1}^{\alpha} \cup \tau_{2}^{\alpha}$ and $\mathcal{U} \cap \tau_{i}^{\alpha} \supset\{A \neq \phi\}$, for $i=1$, 2. Take $\phi \neq U_{1} \in \mathcal{U} \cap \tau_{1}^{\alpha}, \quad \phi \neq U_{2} \in \mathcal{U} \cap \tau_{2}^{\alpha}$ and set $\mathfrak{W}=\left\{U_{1}, U_{2}\right\}$. It is easy to check that the finite family \mathfrak{W} covers R. Now $U_{1} \in \tau_{1}^{\alpha} \Rightarrow \operatorname{Int}_{\tau_{1}}\left(U_{1}\right) \neq \phi$ and this, by definition of τ_{1}, implies $\operatorname{Int}_{\tau_{1}}\left(U_{1}\right)$ $\supset(-\infty, 0]$, because $\operatorname{Int}_{\tau_{1}}\left(U_{1}\right) \in \tau_{1}$. Thus $U_{1} \supset \operatorname{Int}_{\tau_{1}}\left(U_{1}\right) \supset(-\infty, 0]$. Similar argument yields $U_{2} \supset[0, \infty)$. So $U_{1} \cup U_{2} \supset(-\infty, 0] \cup[0, \infty)=R$ whence $U_{1} \cup U_{2}=R$. Consequently, \mathfrak{W} covers R and it is a finite subcover of \mathcal{U}. So the b.t.s. (R, τ_{1}, τ_{2}) is $p \alpha c$.

4 - Some new bitopological separation axioms

We now introduce three bitopological separation axioms, namely pairwise α Hausdorffness, pairwise α-regularity and pairwise α-normality.

Pairwise α-Hausdorffness

In 1980, Maheswari and Thakur [7] introduced the notion of α-Hausdorff space by replacing in the definition of Hausdorff space the words «open sets» by « α sets». Noiri [10] has given a lucid and simple proof of the fact that (X, τ) is Hausdorff iff $\left(X, \tau^{\alpha}\right)$ is so. Thus the concept of α-Hausdorffness coincides with the usual notion of Hausdorffness as pointed out by Jankovic and Reilly [5]. As a result of this fact, in the sequel, we shall freely interchange the terms «Hausdorff space» and « α-Hausdorff space».

Definition 4.1. A b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise α-Hausdorff if the b.t.s. $\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)$ is pairwise Hausdorff, that is if, for $x, y \in X, x \neq y$, there exist a τ_{i}^{α}-set U and τ_{j}^{α}-set V such that $x \in U, y \in V$ and $U \cap V=\phi, i, j=1,2 ; i \neq j$.

Remark 4.1. Since $\tau_{i} \subset \tau_{i}^{\alpha}(i=1,2)$, for a b.t.s. pairwise Hausdorffness implies pairwise α-Hausdorffness. On the other hand, the reverse implication does not, in general, hold for a b.t.s.. This remarkable departure from a single topological space has been demonstrated by the example below.

Example 4.1. Let $\left(R, \tau_{1}, \tau_{2}\right)$ be a b.t.s. where $R=$ the real line, $\tau_{1}=$ the usual topology and $\tau_{2}=\{\phi, R\} \cup\{(a, \infty): a \in R\}$, called the right hand topolo-
gy by Pervin [12]. For the points 2 and 1 of R, let $2 \in U \in \tau_{1}$ and $1 \in V \in \tau_{2}$. Then $(2-r, 2+r) \subset U$ and $(t, \infty) \subset V$, for some $r>0$ and some $t<1$ respectively. Consequently, $(t, \infty) \cap(2-r, 2+r) \neq \phi$, as $t<1<2$. This implies that $U \cap V \neq \phi$ and so (R, τ_{1}, τ_{2}) is not pairwise Hausdorff. Again, for any two distinct points $x<y$ in $R, U_{1}=(x-r, x+r) \in \tau_{1}^{\alpha}, V_{1}=(x+r, \infty) \in \tau_{2}^{\alpha}$, where $r=\frac{y-x}{2}$, are two disjoint τ_{1}^{α}-set and τ_{2}^{α}-set containing x and y respectively. Recall that the interior of a set A is the largest open set contained in A. Then, for the same r as taken above, $U_{2}=(y-r, y+r) \in \tau_{1}^{\alpha}$ and $V_{2}=\{x\} \cup(y+r, \infty) \in \tau_{2}^{\alpha}$, where U_{2}, V_{2} are disjoint but contain y and x respectively. Thus $\left(R, \tau_{1}, \tau_{2}\right)$ is pairwise α-Hausdorff.

Before the introduction of bitopological separation axiom of pairwise α-regularity, we define α-regularity in a single topological space as follows:

Definition 4.2. A space (X, τ) is said to be α-regular iff the space $\left(X, \tau^{\alpha}\right)$ is regular, that is, for every $F \in \mathscr{F}\left(\tau^{\alpha}\right)$ and every $x \notin F$, there exist $U, V \in \tau^{\alpha}$ such that $x \in U, F \subset V$ and $U \cap V=\phi$.

Theorem 4.1. Every α-regular space is regular.
Proof. Let (X, τ) be an α-regular space, F any τ-closed set and $x \notin F$. Since every closed set is α-closed, $F \in \mathscr{F}\left(\tau^{\alpha}\right)$. The α-regularity of X gives the existence of $U, V \in \tau^{\alpha}$ such that $x \in U, F \subset V$ and $U \cap V=\phi$.

Now

$$
\begin{aligned}
U \cap V=\phi & \Rightarrow \operatorname{Int}(U) \cap \operatorname{Int}(V)=\phi \\
& \Rightarrow \operatorname{Cl}(\operatorname{Int}(U)) \cap \operatorname{Int}(V)=\phi \\
& \Rightarrow \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U))) \cap \operatorname{Int}(V)=\phi \\
& \Rightarrow \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U))) \cap \operatorname{Cl}(\operatorname{Int}(V))=\phi \\
& \Rightarrow \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U))) \cap \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(V)))=\phi .
\end{aligned}
$$

Since U and V are α-sets, $U \subset \operatorname{Int}(C l(\operatorname{Int}(U))), V \subset \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(V)))$. Hence we obtain the disjoint sets $\operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U)))$, $\operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(V))) \in \tau$, which contain x and F respectively. Thus (X, τ) is a regular space.

Remark 4.2. The following example shows that the converse of the above theorem is not true.

Example 4.2. Let (R, \mathcal{U}) be a topological space where $R=$ the real line, $\mathcal{U}=$ the usual topology. Let F be any \mathcal{U}-closed set and $x \notin F$. Obviously $x \in R \backslash F \in \mathcal{U}$.

Consequently, the open interval $I_{r}(x)=(x-r, x+r)$, for some $r>0$, is contained in $R \backslash F$, which, in its turn, implies that $F \subset R \backslash I_{r}(x)$. If we take $U=I_{\frac{r}{2}}(x)$ and $V=R \backslash \mathrm{Cl}\left(I_{\frac{r}{2}}(x)\right)$, then $U, V \in \mathcal{U}$, with $x \in U$. Also, we observe that

$$
\begin{aligned}
\mathrm{Cl}\left(I_{\frac{r}{2}}(x)\right) & =\left[x-\frac{r}{2}, x+\frac{r}{2}\right] \subset(x-r, x+r) \\
& \Rightarrow R \backslash \mathrm{Cl}\left(I_{\frac{r}{2}}(x)\right) \supset R \backslash I_{r}(x) \supset F \Rightarrow V \supset F
\end{aligned}
$$

Moreover, $V \cap \mathrm{Cl}\left(I_{\frac{r}{2}}(x)\right)=\phi \Rightarrow V \cap I_{\frac{r}{2}}(x)=\phi \Rightarrow U \cap V=\phi$.
Hence (R, \mathcal{U}) is ${ }^{2}$ a regular space. ${ }^{2}$
To show that (R, \mathcal{U}) is not α-regular, take $F=\left\{\frac{1}{n}: n \in N(=\right.$ the set of positive integers $)\}$. Then $\mathrm{Cl}(F)=F \cup\{0\} \Rightarrow \operatorname{Int}(\mathrm{Cl}(F))=\operatorname{Int}(F \cup\{0\})=\phi$ $\Rightarrow \mathrm{Cl}(\operatorname{Int}(\mathrm{Cl}(F)))=\phi \subset F \Rightarrow F \in \mathscr{F}\left(\mathcal{U}^{\alpha}\right)$. Also, $0 \notin F$. We take any two sets U, V $\in \mathcal{U}^{\alpha}$ such that $0 \in U$ and $F \subset V$. We assert that $U \cap V \neq \phi$. Suppose, if possible, $U \cap V=\phi$. Then, in like manner as in above theorem, $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U)))$ $\cap \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(V)))=\phi . \quad$ Now $\quad 0 \in U \subset \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U)))$. This implies that $0 \in U \subset \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U))) \in \mathcal{U}$. Since $0 \in D(F) \quad(=$ the derived set of F), $\operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U))) \cap F \neq \phi \Rightarrow \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(U))) \cap \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(V))) \neq \phi$, a contradiction. Therefore $U \cap V \neq \phi$. Thus (R, \mathcal{U}) is not α-regular, though it is regular.

Pairwise α-regularity

Following the technique of J. C. Kelly [6], we introduce the definitions given below.

Definition 4.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s.. Then τ_{i} is said to be α-regular with respect to τ_{j} if the b.t.s. $\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)$ is such that τ_{i}^{α} is regular with respect to τ_{j}^{α}, that is, for each point x in X and each $F \in \mathscr{F}\left(\tau_{i}^{\alpha}\right)$ with $x \notin F$, there exist $U \in \tau_{i}^{\alpha}, V \in \tau_{j}^{\alpha}$ such that $x \in U, F \subset V$ and $U \cap V=\phi, i, j=1,2 ; i \neq j$.

Definition 4.4. A b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise α-regular if $\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)$ is pairwise regular.

In view of Theorem 4.1 and Example 4.2 we observe that in a space with single topology, α-regularity implies regularity, though the reverse implication may not hold. Thus, in a single topological space, some sort of interconnection exists between regularity and α-regularity. The natural query is: Is there any relation bet-
ween pairwise regularity and α-regularity in bitopological spaces? The answer is in the negative. Examples 4.3 and 4.4 reveal that the notions of pairwise regularity and pairwise α-regularity, in bitopological setting, are independent.

Example 4.3. Let $\left(R, \tau_{1}, \tau_{2}\right)$ be a b.t.s. where $R=$ real line, $\tau_{1}=$ the point exclusion topology with the excluding point 0 and $\tau_{2}=\{\phi, R,\{0\}\}$. If $A=\{1,2\}$, then $F=R \backslash A$ is τ_{1}-closed and $1 \notin F$. But R is the only τ_{2}-open set with $F \subset R$ and R intersects every τ_{1}-open set containing 1 . So, by Definition 2.6, τ_{1} is not regular with respect to τ_{2}. Therefore $\left(R, \tau_{1}, \tau_{2}\right)$ is not pairwise regular according to Definition 2.6.

On the other hand, take any $F \in \mathscr{F}\left(\tau_{1}^{\alpha}\right), F \neq \phi, R$. Then, by definition of τ_{1}, $0 \in F$ and, if $x \in R$ is such that $x \notin F$, then $x \neq 0$. It is not difficult to check that $U=\{x\} \in \tau_{1}^{\alpha}$ and $V=F \in \tau_{2}^{\alpha}$. From the disjointness of U and V we deduce that τ_{1} is α-regular with respect to τ_{2}. The definition of τ_{2} shows that, if $F \in \mathscr{F}\left(\tau_{2}^{\alpha}\right)$, $F \neq \phi, R$, then $0 \notin F$ and so the definition of τ_{1} guarantees that $F \in \tau_{1} \subset \tau_{1}^{\alpha}$. If $x \notin F$, then x and F can be separated by $U=\{0\} \cup\{x\} \in \tau_{2}^{\alpha}$ and $V=F \in \tau_{1}^{\alpha}$, as the disjointness of U and V is obvious from their construction. Hence τ_{2} is α-regular with respect to τ_{1}. Therefore, $\left(R, \tau_{1}, \tau_{2}\right)$ is pairwise α-regular.

Example 4.4. In the b.t.s. of the previous example take $\tau_{1}=$ the topology τ_{2} of that example and $\tau_{2}=\{\phi, R, R \backslash\{0\}\}$. Clearly, $\left(R, \tau_{1}, \tau_{2}\right)$ is pairwise regular. Take $A=\{0,1\}$. Then $A \in \tau_{1}^{\alpha}$, so that $F=R \backslash A \in \mathscr{F}\left(\tau_{1}^{\alpha}\right)$ and $1 \notin F$. Now if $V \in \tau_{1}^{\alpha}$ such that $F \subset V$, then $V=R$ or $R \backslash\{0\}$. In both cases, V intersects any τ_{1}-set U containing 1 . Consequently, τ_{1} is not α-regular with respect to τ_{2}. $\operatorname{So}\left(R, \tau_{1}, \tau_{2}\right)$ is not pairwise α-regular.

Pairwise α-normality

Definition 4.5. A b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is termed pairwise α-normal if the b.t.s. ($X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}$) is pairwise normal, that is if, for each $F_{1} \in \mathscr{F}\left(\tau_{1}^{\alpha}\right)$ and $F_{2} \in \mathscr{F}\left(\tau_{2}^{\alpha}\right)$, disjoint from F_{1}, there exist $U \in \tau_{2}^{\alpha}$ and $V \in \tau_{1}^{\alpha}$, such that $F_{1} \subset U, F_{2} \subset V$ and $U \cap V=\phi$.

For a space with single topology Mršević and Reilly [9] posed the question: Does normality of (X, τ^{α}) imply $\tau^{\alpha}=\tau$? J. Dontchev [1] nicely answered this question in affirmative showing that, if $\left(X, \tau^{\alpha}\right)$ is normal, then $\tau^{\alpha}=\tau$. Thus « α-normality» always implies «normality» in a single topological space. But it is highly surprising that the concepts pairwise normality and pairwise α-normality are independent of each other. This assertion has been substantiated by Examples 4.5 and 4.6 below.

Example 4.5. In the b.t.s. of Example 4.1, take $\tau_{1}=$ the right hand topology τ_{2} of that example and $\tau_{2}=\sup \left\{\sigma_{1}, \sigma_{2}\right\}$, (called the countable complement extension topology by Steen and Seebach [14]), where $\sigma_{1}=$ the usual topology and $\sigma_{2}=$ the cocountable topology. We first note that any set G is $\tau_{2^{2}}$-open iff $G=U \backslash A$ where $U \in \sigma_{1}$ and A is countable. Take $F_{1}=(-\infty, 0]$ and $F_{2}=\left\{\frac{1}{n}: n \in N\right.$ (= the set of positive integers) $\}$. Then $F_{1} \in \mathscr{F}\left(\tau_{1}\right), F_{2} \in \mathscr{F}\left(\sigma_{2}\right) \subset \mathscr{F}\left(\tau_{2}\right)$ and $F_{1} \cap F_{2}=\phi$. Suppose $U \in \tau_{2}, V \in \tau_{1}$ such that $F_{1} \subset U$ and $F_{2} \subset V$. We claim that $U \cap V \neq \phi$.

Since $\frac{1}{n} \in F_{2} \subset V, \forall n \in N$, and $V \in \tau_{1}$, it follows that $(0, \infty) \subset V$. The fact that $U \in \tau_{2}$ assures that U must be of the form $U=G \backslash A$, where $G \in \sigma_{1}$ and A is countable. Since $(-\infty, 0]=F_{1} \subset U=G \backslash A$, it follows that $0 \in G \backslash A \subset G$. This gives the existence of some $r>0$ such that $0 \in(-r, r) \subset G \Rightarrow 0 \in(-r, r) \backslash A \subset G \backslash A=U$. Since A is countable, $\phi \neq(0, r) \backslash A \subset(-r, r) \backslash A \subset U$. But $[(0, r) \backslash A] \cap(0, \infty)$ $\neq \phi$, which indicates that $[(0, r) \backslash A] \cap V \neq \phi$ and this gives $U \cap V \neq \phi$. Hence (R, τ_{1}, τ_{2}) is not pairwise normal. Suppose $F_{1} \in \mathscr{F}\left(\tau_{1}^{\alpha}\right), F_{1} \neq \phi, R$ and $F_{2} \in \mathscr{F}\left(\tau_{2}^{\alpha}\right)$, with $F_{1} \cap F_{2}=\phi$. Then $\operatorname{Int}_{\tau_{1}}\left(R \backslash F_{1}\right)=(a, \infty)$ for some $a \in R$. If $b \in R$ such that $b>a$ then

$$
(-\infty, b) \supset(-\infty, a]=R \backslash \operatorname{Int}_{\tau_{1}}\left(R \backslash F_{1}\right)=\mathrm{Cl}_{\tau_{1}}\left(F_{1}\right)
$$

Hence $F_{1} \subset \mathrm{Cl}_{\tau_{1}}\left(F_{1}\right) \subset(-\infty, b)$. Also $F_{1} \subset R \backslash F_{2}$ and so,

$$
F_{1} \subset(-\infty, b) \cap\left(R \backslash F_{2}\right)=U, \text { say }
$$

Since $(-\infty, b) \in \sigma_{1} \subset \tau_{2} \subset \tau_{2}^{\alpha}$ and τ_{2}^{α} is a topology, we observe that $U \in \tau_{2}^{\alpha}$. If we write $V=F_{2} \cup[b, \infty)$, then $(b, \infty) \subset \operatorname{Int}_{\tau_{1}}(V) \Rightarrow R \subset \mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(V)\right) \Rightarrow R$ $=\operatorname{Int}_{\tau_{1}}\left(\mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(V)\right)\right.$. So $\quad V \in \tau_{1}^{\alpha}$. Also $F_{2} \subset V$. Now $U \cap V=[(-\infty, b)$ $\left.\cap\left(R \backslash F_{2}\right)\right] \cap\left[F_{2} \cup[b, \infty)\right]=\left[(-\infty, b) \cap\left(R \backslash F_{2}\right) \cap F_{2}\right] \cup\left[(-\infty, b) \cap\left(R \backslash F_{2}\right)\right.$ $\cap[b, \infty)]=\phi$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise α-normal.

Example 4.6. Let $\left(R, \tau_{1}, \tau_{2}\right)$ be a b.t.s. where $R=$ the real line, $\tau_{1}=\{\phi, R,\{0\}\}$ and $\tau_{2}=\{\phi, R,\{0,1\}\}$. From the definitions of τ_{1} and τ_{2}, it is clear that every non-empty τ_{1}-closed set intersects every non-empty τ_{2}-closed set and hence the b.t.s. $\left(R, \tau_{1}, \tau_{2}\right)$ is trivially pairwise normal. Now take $F_{1}=\{2,3\}, F_{2}=\{4,5\}$. We observe:
(1) $\mathrm{Cl}_{\tau_{1}}\left(F_{1}\right)=R \backslash\{0\}$

$$
\Rightarrow \mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}\left(\mathrm{Cl}_{\tau_{1}}\left(F_{1}\right)\right)\right)=\mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(R \backslash\{0\})\right)=\phi \Rightarrow F_{1} \in \mathscr{H}\left(\tau_{1}^{\alpha}\right)
$$

(2) In like manner, $F_{2} \in \mathscr{F}\left(\tau_{2}^{\alpha}\right)$ and (3) $F_{1} \cap F_{2}=\phi$.

Suppose $F_{1} \subset U \in \tau_{2}^{\alpha}$ and $F_{2} \subset V \in \tau_{1}^{\alpha}$. Since $U \in \tau_{2}^{\alpha}, \operatorname{Int}_{\tau_{2}}(U) \neq \phi$. This implies, by definition of τ_{2}, that $\{0,1\} \subset \operatorname{Int}_{\tau_{2}}(U) \subset U$. Similar reasoning produces that $\{0\} \subset \operatorname{Int}_{\tau_{1}}(V) \subset V$. This gives that $U \cap V \neq \phi$. Hence $\left(R, \tau_{1}, \tau_{2}\right)$ is not pairwise α-normal.

5 - Interrelationships

So far we have devoted ourselves to the introduction of three bitopological separation axioms, viz pairwise α-Hausdorffness, pairwise α-regularity and pairwise α-normality. We have also investigated the interconnection between these notions and the corresponding notions via open sets, which already exist in literature. The outcome of our investigation can be summarized as follows:
(a) Pairwise Hausdorffness \Rightarrow Pairwise α-Hausdorffness but the reverse implication does not hold.
(b) Pairwise regularity and Pairwise α-regularity are independent of each other.
(c) Pairwise normality and Pairwise α-normality are independent of each other.

Now we like to pay our attention to study the interrelationships between these new bitopological separation axioms. Examples 5.1 and 5.2 have been constructed below to reveal some relations existing among these axioms.

Example 5.1. There is a pairwise α-Hausdorff b.t.s. which is not pairwise α-regular. Let (R, τ_{1}, τ_{2}) be a b.t.s. where $R=$ the real line, $\tau_{1}=$ the usual topology and $\tau_{2}=$ the lower limit topology. We first note that $\tau_{1} \subset \tau_{2}$. Since τ_{1} is Hausdorff and $\tau_{1} \subset \tau_{2}, \tau_{2}$ is Hausdorff. Hence the b.t.s. $\left(R, \tau_{1}, \tau_{2}\right)$ is pairwise Hausdorff and so, by (a), it is pairwise α-Hausdorff.

That (R, τ_{1}, τ_{2}) is not pairwise α-regular will be clear from the following argument. Consider the set $F=\left\{\frac{1}{n}: n \in N\right.$ (=the set of positive integers) $\}$ of Example 4.2. Then $F \in \mathscr{F}\left(\tau_{1}^{\alpha}\right)$ as shown in that example. Also $0 \notin F$. Take any two sets U, V such that $0 \in U \in \tau_{1}^{\alpha}$ and $F \subset V \in \tau_{2}^{\alpha}$. We assert that $U \cap V \neq \phi$. This can be checked as follows.

The α-ness of U with respect to τ_{1} indicates that 0 is an interior point of the τ_{1}-open set $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U)))$. Hence $r_{1}(>0)$ can be found such that

$$
0 \in\left(-r_{1}, r_{1}\right) \subset \operatorname{Int}_{\tau_{1}}\left(\mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(U)\right)\right) \subset \mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(U)\right)
$$

Also we can find a positive integer n_{0} such that the element $\frac{1}{n_{0}} \in F$ lies in
$\left(-r_{1}, r_{1}\right)$. But $\frac{1}{n_{0}}$ is an interior point of the τ_{2}-open set $\operatorname{Int}_{\tau_{2}}\left(\mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(V)\right)\right)$ and τ_{2} is the lower limit topology. So there exists $r_{2}(>0)$ such that

$$
\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r_{2}\right] \subset \operatorname{Int}_{\tau_{2}}\left(\mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(V)\right)\right) \subset \mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(V)\right)
$$

If $r=\min \left\{r_{1}-\frac{1}{n_{0}}, r_{2}\right\}$, then $\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r\right) \subset\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r_{2}\right) \subset \mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(V)\right)$ $\Rightarrow\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r\right) \cap \operatorname{Int}_{\tau_{2}}(V) \neq \phi$. Suppose $x \in\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r\right) \cap \operatorname{Int}_{\tau_{2}}(V)$. Since $\operatorname{Int}_{\tau_{2}}(V)$ is a τ_{2}-open set containing x, there exists $r_{3}>0$ such that $\left[x, x+r_{3}\right)$ $\subset \operatorname{Int}_{\tau_{2}}(V)$. This implies that the set G defined by $G=\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r\right)$ is such that $G \cap\left[x, x+r_{3}\right) \neq \phi=[x, k)$, where $k=\min \left\{\frac{1}{n_{0}}+r, x+r_{3}\right\}$. Obviously, the definitions of n_{0}, r and k give $(x, k) \subset\left[x, x+r_{3}\right) \subset \operatorname{Int}_{\tau_{2}}(V)$ and $\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r\right)$ $\subset\left(-r_{1}, r_{1}\right) \subset \mathrm{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(U)\right)$, whence we obtain $(x, k) \subset G \subset\left[\frac{1}{n_{0}}, \frac{1}{n_{0}}+r\right)$ $\subset \operatorname{Cl}_{\tau_{1}}\left(\operatorname{Int}_{\tau_{1}}(U)\right) \Rightarrow(x, k) \cap \operatorname{Int}_{\tau_{1}}(U) \neq \phi \Rightarrow \operatorname{Int}_{\tau_{2}}(V) \cap \operatorname{Int}_{\tau_{1}}(U) \neq \phi \Rightarrow U \cap V \neq \phi$. Hence τ_{1} is not α-regular with repect to τ_{2}. $\operatorname{So}\left(R, \tau_{1}, \tau_{2}\right)$ is not pairwise α-regular.

Example 5.2. There is a pairwise α-regular b.t.s. which is not pairwise α normal. In this case, the ground set of the space we consider is taken from Example 94 in [14]. Let $X=\bigcup_{n=0}^{\infty} L_{n}$ be the union of the horizontal lines in the Euclidean plane where
(i) $L_{0}=\{(x, 0): 0<x<1\}$
and
(ii) $L_{n}=\left\{\left(x, \frac{1}{n}\right): 0 \leqslant x<1\right\}$, where $n \in N$, the set of positive integers.

A family τ of subsets of X is defined as follows:
(a) $\phi, X \in \tau$
(b) $G \subset X \backslash\left[\left\{\left(0, \frac{1}{n}\right): n \in N\right\} \cup L_{0}\right] \Rightarrow G \in \tau$.
(c) For $n \geqslant 1, G(\subset X)$ contains points of the form $\left(0, \frac{1}{n}\right) \Rightarrow G \in \tau$ iff $X \backslash G$ con-
tains only a finite number of points of L_{n}.
(d) For $0<x<1,(x, 0) \in G \Rightarrow G \in \tau$ iff for each $(x, 0) \in G$ there exists $n_{x} \in N$ with

$$
U_{n_{x}}(x, 0)=\{(x, 0)\} \cup\left\{\left(x, \frac{1}{n}\right): n \geqslant n_{x}\right\} \subset G .
$$

It is not hard to check that τ is a topology with the following properties:
[P_{1}] Every singleton on the horizontal line $L_{n}(n \geqslant 1)$ with the point $\left(0, \frac{1}{n}\right)$ deleted is open and hence any subset of $L_{n} \backslash\left\{\left(0, \frac{1}{n}\right)\right\}$ is so. (This follows from (b) of the definition of τ). Also each $L_{n}(n \geqslant 1)$ is open, by (c) of the definition of τ.
[P_{2}] No point of the line $L_{n}(n \geqslant 1)$, not to speak of other points of X, can be an accumulation point of a singleton of L_{n} and hence singletons on $L_{n}(n \geqslant 1)$ are closed.
[$\left.P_{3}\right]$ The sets $U_{n_{x}}(x, 0)$ defined in (d) are open sets. On the other hand, no point of $X \backslash U_{n_{x}}(x, 0)$ is an accumulation point of $U_{n_{x}}(x, 0)$ and therefore $U_{n_{x}}(x, 0)$ is closed as well.
[P_{4}] For the topological space $(X, \tau), \tau^{\alpha}=\tau$, which is proved below.
Suppose $U \in \tau^{\alpha}$. Then the following cases are to be considered.
Case I. Let $U \subset X \backslash\left[\left\{\left(0, \frac{1}{n}\right): n \in N\right\} \cup L_{0}\right]$. Then by (b) of the definition of $\tau, U \in \tau$.

Case II. Let U contain points of the form $\left(0, \frac{1}{n}\right)$. The α-ness of $U \Rightarrow \operatorname{Int}_{\tau}(U) \neq \phi$. Define the set A by

$$
A=\left[L_{n} \backslash\left\{\left(0, \frac{1}{n}\right)\right\}\right] \cap\left[X \backslash \operatorname{Int}_{\tau}(U)\right]
$$

which is a subset of $L_{n} \backslash\left\{\left(0, \frac{1}{n}\right)\right\}$. Hence, by [$\left.P_{1}\right], A$ is open. We assert that A is finite. The very construction of A guarantees that A contains no point of $\operatorname{Int}_{\tau}(U)$. On the other hand, the openness of A indicates that no point of A is an accumula-
tion point of $\operatorname{Int}_{\tau}(U)$. These facts give

$$
\begin{aligned}
& A \cap \operatorname{Int}_{\tau}(U)=\phi, A \cap D\left[\operatorname{Int}_{\tau}(U)\right]=\phi \\
\Rightarrow & A \cap \operatorname{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)=\phi \\
\Rightarrow & A \cap \operatorname{Int}_{\tau}\left(\mathrm{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)\right)=\phi \\
\Rightarrow & A \subset X \backslash \operatorname{Int}_{t}\left(\mathrm{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)\right)
\end{aligned}
$$

Again, $\left(0, \frac{1}{n}\right) \in U \subset \operatorname{Int}_{\tau}\left(\mathrm{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)\right)$. This, together with (c) of the definition of τ, implies that $X \backslash \operatorname{Int}_{\tau}\left(\mathrm{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)\right)$ contains only a finite number of points of L_{n} and contains A. Hence A is finite and this yields from the construction of A that $\operatorname{Int}_{\tau}(U)$ and, a fortiori, U contains all but finitely many points of L_{n}. So, by (c) of the definition of $\tau, U \in \tau$.

Case III. Let U contain points of L_{0}, i.e. points of the form $(x, 0)$, where $0<x<1$. Clearly $\left(\operatorname{Int}_{\tau}(U)\right) \neq \phi$ and $\operatorname{Int}_{\tau}\left(\operatorname{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)\right)$ contains $(x, 0) \in L_{0}$. Hence (d) of the definition of τ gives the existence of a positive integer n_{x} such that
(1) $U_{n_{x}}(x, 0) \subset \operatorname{Int}_{\tau}\left(\mathrm{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)\right) \subset \mathrm{Cl}_{\tau}\left(\operatorname{Int}_{\tau}(U)\right)=\left[\operatorname{Int}_{\tau}(U) \cup D\left[\operatorname{Int}_{\tau}(U)\right]\right]$.

By $\left[P_{1}\right],\left\{\left(x, \frac{1}{n}\right)\right\} \subset L_{n} \backslash\left\{\left(0, \frac{1}{n}\right)\right\}$ is open, whence no point of $\left\{\left(x, \frac{1}{n}\right): n \geqslant n_{x}\right\}$ is an accumulation point of $\operatorname{Int}_{\tau}(U)$ which then implies that

$$
\left\{\left(x, \frac{1}{n}\right): n \geqslant n_{x}\right\} \cap D\left[\operatorname{Int}_{\tau}(U)\right]=\phi
$$

Consequently, from (1) and the definition of $U_{n_{x}}(x, 0)$, it follows that $U_{n_{x}}(x, 0)$ c U. So, by (d) of the definition of $\tau, U \in \tau$. Thus in any case $U \in \tau$ and it indicates that $\tau^{\alpha} \subset \tau$. This gives $\tau^{\alpha}=\tau$.

Now we consider the b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$, where $\tau_{1}=\tau_{2}=\tau=$ the topology constructed above.

Result 1) of Ex. 94 in [14], saying that (X, τ) is completely regular, implies that

$$
\left(X, \tau_{1}, \tau_{2}\right)=\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)
$$

is pairwise α-regular. Result 2) of Ex. 94 in [14], saying that (X, τ) is not normal,
implies that

$$
\left(X, \tau_{1}, \tau_{2}\right)=\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)
$$

is not pairwise normal.
Remark 5.1. The purpose of the above two examples can now be summed up as follows:
I. Pairwise α-Hausdorffness \nRightarrow Pairwise α-regularity
II. Pairwise α-regularity \Rightarrow Pairwise α-normality.

It is a natural question whether the reverse implications made in Remark 5.1 will hold or not. Since pac spaces have no role to play in that investigation, we did not pay our attention in that direction for the time being.

6 - Properties of pac spaces

Remark 5.1 raises the pertinent question: Can there be any space where pairwise α-Hausdorffness implies pairwise α-regularity or pairwise α-regularity implies pairwise α-normality? Next two theorems offer a positive answer to this query.

Theorem 6.1. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is both pac and pairwise α-Hausdorff, then it is pairwise α-regular.

Proof. It follows by Theorem 2.1 applied to the space ($X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}$).
Theorem 6.2. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is pac and either τ_{1} is α-regular with respect to τ_{2} or τ_{2} is α-regular with respect to τ_{1}, then $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise α-normal.

Proof. It follows by Theorem 2.2 applied to the space ($X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}$).
Corollary 6.1. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is both pac and pairwise α-regular, then it is pairwise α-normal.

Proof. Obvious.
Corollary 6.2. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is both pac and pairwise α-Hausdorff, then it is pairwise α-normal.

Proof. Follows from Theorem 6.1 and Corollary 6.1.

Replacing « τ_{i}-compact» $(i=1,2)$ by « τ_{i} - α-compact» $(i=1,2)$ in the Definition 2.3 one obtains a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ which may be termed as bi- α-compact space. This notion has been utilized in the theorem to follow.

From Example 3.2. it has been observed that α-compactness for individual topologies does not necessarily imply the pac of a b.t.s.. But pairwise α-Hausdorffness provides a condition for a bi- α-compact space (X, τ_{1}, τ_{2}) to be $p \alpha c$, as seen from the following theorem.

Theorem 6.3. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is both bi- α-compact and pairwise α Hausdorff, then it is pac.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bi- α-compact space which is also pairwise α Hausdorff. Consequently, $\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)$ is bi-compact and pairwise Hausdorff. So, by Theorem 2.3, $\tau_{1}^{\alpha}=\tau_{2}^{\alpha}$. Now, the compactness of $\left(X, \tau_{1}^{\alpha}\right)$ and the equality $\tau_{1}^{\alpha}=\tau_{2}^{\alpha}$ together lead to the pairwise compactness of $\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)$, that is the pac of (X, τ_{1}, τ_{2}).

Corollary 6.3. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is both bi- α-compact and pairwise α Hausdorff then
(i) $\left(X, \tau_{1}, \tau_{2}\right)$ is $p \alpha c$
(ii) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise α-regular
(iii) $\left(X, \tau_{1}, \tau_{2}\right)$ pairwise α-normal.

Proof. Follows from Theorems 6.3, 6.1 and Corollary 6.1.
We draw an end to our present treatment of pac space after the following results (Theorem 6.4 and Corollary 6.4) which establish an interconnection among bi-Hausdorffness, pairwise α-Hausdorffness and the pac.

Fukutake [4] introduced the notion of bi-Hausdorffness of a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ (see Definition 2.8). In view of the observation made at page 5 , the notion bi-Hausdorffness can be rephrased as bi- α-Hausdorffness.

The bi- α-Hausdorffness does not, in general, imply pairwise α-Hausdorffness as seen in the following example.

Example 6.1. In the b.t.s. of Example 4.1, take $\tau_{2}=\{G \subset R: R \backslash G$ is finite or $0 \in R \backslash G\}$, which is a modification of Example 24 in [14]. Clearly $\left(R, \tau_{1}\right)$ is Hausdorff and hence α-Hausdorff. To show that $\left(R, \tau_{2}\right)$ is also α-Hausdorff we observe:

If $x, y(\neq x) \in R$ and $x \neq 0, y \neq 0$, then take $U, V \in \tau_{2}$, where $U=\{x\}$ and $V=\{y\}$, so that $U \cap V=\phi$. If $x=0, y \neq 0$, then we take $V=\{y\}$ and $U=R \backslash V$ so that $U, V \in \tau_{2}, x \in U, y \in V$ and $U \cap V=\phi$. Thus, in any case two distinct poin-
ts are strongly separated in $\left(R, \tau_{2}\right)$. Hence $\left(R, \tau_{2}\right)$ is Hausdorff and so it is α-Hausdorff.

On the other hand, that (R, τ_{1}, τ_{2}) is not pairwise α-Hausdorff can be checked as follows:

Take two points $x, y \in R$ with $x=0$. Let $U \in \tau_{2}^{\alpha}, V \in \tau_{1}^{\alpha}$ such that $x \in U$ and $y \in V$. Now $\operatorname{Int}_{\tau_{2}}(U) \neq \phi$ and $\operatorname{Int}_{\tau_{1}}(V) \neq \phi$. The following cases are to be considered.

Case 1. Let $0 \notin \operatorname{Int}_{\tau_{2}}(U)$. Then, by definition of $\tau_{2}, \operatorname{Int}_{\tau_{2}}(U) \cup\{0\}$ is a $\tau_{2^{-}}$ closed set containing $\operatorname{Int}_{\tau_{2}}(U)$. Since $\mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(U)\right)$ is the smallest closed set containing $\operatorname{Int}_{\tau_{2}}(U)$, we obtain

$$
\begin{align*}
& \mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(U)\right) \subset \operatorname{Int}_{\tau_{2}}(U) \cup\{0\} \tag{2}\\
& \Rightarrow \operatorname{Int}_{\tau_{2}}\left(\mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(U)\right)\right) \subset \operatorname{Int}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(U) \cup\{0\}\right) .
\end{align*}
$$

The following subcases now deserve consideration.

Subcase (i). Suppose $\operatorname{Int}_{\tau_{2}}(U) \cup\{0\} \in \tau_{2}$. Then, by definition of τ_{2}, $R \backslash\left[\operatorname{Int}_{\tau_{2}}(U) \cup\{0\}\right]$ is finite, whence it follows that $R \backslash\left[\operatorname{Int}_{\tau_{2}}(U)\right]$ is finite. Therefore $\operatorname{Int}_{\tau_{2}}(U)$ and, a fortiori, U contain all but a finite number of elements of R.

Subcase (ii). Suppose $\operatorname{Int}_{\tau_{2}}(U) \cup\{0\} \notin \tau_{2}$. Then $\operatorname{Int}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(U) \cup\{0\}\right)$ $=\operatorname{Int}_{\tau_{2}}(U)$. Hence (2) gives
$\operatorname{Int}_{\tau_{2}}\left(\mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(U)\right)\right) \subset \operatorname{Int}_{\tau_{2}}(U) \subset U$,
$\Rightarrow U=\operatorname{Int}_{\tau_{2}}\left(\mathrm{Cl}_{\tau_{2}}\left(\operatorname{Int}_{\tau_{2}}(U)\right)\right.$, by α-ness of U,
$\Rightarrow U \in \tau_{2}, \quad 0 \in U$,
$\Rightarrow U$ contains, by definition of τ_{2}, all but a finite number of elements of R.

Case II. Suppose $0 \in \operatorname{Int}_{\tau_{2}}(U)$. Then the definition of τ_{2} gives that $\operatorname{Int}_{\tau_{2}}(U)$ and hence U contains all but a finite number of elements of R. Thus, in any case U contains all but a finite number of elements of R.

Again, $\operatorname{Int}_{\tau_{1}}(V) \neq \phi \Rightarrow V$ contains an open interval. Hence V is infinite. From this we infer that $U \cap V \neq \phi$. Hence (R, τ_{1}, τ_{2}) is not pairwise α-Hausdorff.

Theorem 6.4. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is both pac and bi-a-Hausdorff, then it is pairwise α-Hausdorff.

Proof. Let (X, τ_{1}, τ_{2}) be a pac space which is also bi- α-Hausdorff. Consequently, $\left(X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}\right)$ is pairwise compact and bi-Hausdorff. So, by Theorem 2.4, $\tau_{1}^{\alpha}=\tau_{2}^{\alpha}$. Now, the Hausdorffness of $\left(X, \tau_{1}^{\alpha}\right)$ and the equality $\tau_{1}^{\alpha}=\tau_{2}^{\alpha}$ together lead to the pairwise Hausdorffness of ($X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}$) which, in its turn, implies that (X, τ_{1}, τ_{2}) is pairwise α-Hausdorff.

Corollary 6.4. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is both pac bi- α-Hausdorff then
(i) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise α-Hausdorff
(ii) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise α-regular
(iii) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise α-normal.

Proof. Follows from Theorem 6.4, 6.1 and Corollary 6.1.
Aknowledgement. The authors are thankful to the referee for his valuable suggestions to improve the original form of this paper.

References

[1] J. Dontchev, An answer to a question of Mršević and Reilly, Questions Answers Gen. Topology 12 (1994), 205-207.
[2] J. Dugundji, Topology, Allyn and Bacon Inc., Boston 1966.
[3] P. Fletcher, H. B. Hoyle III and C. W. Patty, The comparison of topologies, Duke Math. J. 36 (1969), 325-331.
[4] T. Fukutake, On some separation properties on bitopological spaces, Kyungpook Math. J. 27 (1987), 115-125.
[5] D. S. Janković and I. L. Reilly, On semiseparation properties, Indian J. Pure Appl. Math. 16 (1985), 957-964.
[6] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
[7] S. N. Maheswari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11 (1980), 209-214.
[8] S. N. Maheswari and S. S. Thakur, On α-compact spaces, Bull. Inst. Math. Acad. Sinica 13 (1985), 341-347.
[9] O. NÅJSTAD, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
[10] T. Noiri, On α-continuous functions, Časopis Pešt. Math. 109 (1984), 118126.
[11] T. Noiri and G. Di Maio, Properties of α-compact spaces, Rend. Circ. Mat. Palermo Suppl. (2) 18 (1988), 359-369.
[12] W. J. Pervin, Foundations of general topology, Academic Press, New York 1964.
[13] A. K. SEn and P. Bhattacharyya, Bitopological nowhere locally compact spaces, Kyungpook Math. J. 35 (1995), 297-309.
[14] L. A. Steen and J. A. Seebach Jr., Counterexamples in topology, Holt, Rinehart and Winston Inc., New York 1970.
[15] J. D. Weston, On the comparison of topologies, J. London Math. Soc. 32 (1957), 342-354.

Abstract

The concept of α-compactness [8] in single topological spaces has been generalized to bitopological spaces introduced by Kelly [6]. Some new bitopological separation axioms have been introduced to interpret the properties of α-compact spaces in the bitopological setting. Apart from this parallel to, some pertinent questions of the existing literature in respect to compactness have been solved. Profuse examples have been provided in support of every statement made in the form of Definition, Lemma or Remark.

[^0]: ${ }^{(*)}$ Dept. of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India.
 (**) Received April $15^{\text {th }}$ and in revised form July 31 ${ }^{\text {st }}$, 2002. 2001-AMS classification 54 D.

