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Periodic solutions of electrically heated conductors (**)

1 - Introduction

We study a system of two parabolic equations modelling the heat conduction
in a conductor body, in the presence of the electrical heating due to the Joule ef-
fect. If u denotes the temperature and W is the electric potential, an external va-
riable magnetic field induces the Foucalt currents into the conductor, generating
the so called Joule effect. Our problem consists to resolve a coupled system of no-
nlinear parabolic differential equations for u and W.

We are interested to prove the existence of the weak periodic solutions for the
system

W t 4 div (s (u) ˜W), in S»4V3P(1a)

W(x , t) 4h(x , t), on S»4¯V3P(1b)

W(x , t1v) 4W(x , t), in S , vD0(1c)

ut 2Du4s (u)N˜WN2 1 f (x , t), in S(2a)

u(x , t) 40, on S(2b)

u(x , t1v) 4u(x , t), in S , vD0(2c)

where V is a bounded open set of R N with regular boundary (e.g. C Q boundary)
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A. Moro 2, 00185 Roma, Italy.
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and P»4
R

vZ
is the period interval [0 , v], so that in viewing functions defined in

S, we are imposing the time v-periodicity.
We denote with s (u) the heat depending electric conductivity, while the qua-

dratic term in (2a) represents the Joule heating. We recall that the time indepen-
dent problem, corresponds to the thermistor problem that has been studied by
several authors (see [3], [5], [8]). The study of an evolution system has been enter-
prised in [1], [4], [7], [13], [17], [18].

In [13], a derivation on physical grounds of the thermo-magnetic system (1a)-
(2c) is given. It is worth to note that in the literature, to our knowledges, the stu-
dy of the periodic solutions for a model as (1a)-(2c) is not been treated
previously.

Papers related to the periodicity of the solutions for an electrical heated con-
ductors regard the time-dependent thermistor models.

We are acquainted with the paper [6], [7]. In [6], is studied a system where the
function u depends only on the spatial variable x, while in [7], the function W t does
not appear. We study the system (1a)-(2c) under the following assumptions

(3) s�C(R) : 0 EmGs (j) GM , ( j�R ;

(4) f�L 2 (P ; W 21, 2 (V) ), f (x , t) F0;

(5) h is a t-periodic bounded function and h× is an extension of h to S .

Our approach to the periodicity of the solutions, shall be of static type namely
we look among solutions for which belong to some suitable space of t-periodic func-
tions, rather than to look for a fixed point for the Poincaré period map. For cer-
tain approximating problems, we shall prove the existence of the periodic sol-
utions and derive uniform estimates which allow, passing to the limit, to show the
existence of the periodic solutions for our problem (1a)-(2c).

Lastly, in Section 4, utilizing the results of [19], we will consider the regularity
of the periodic weak solutions for (1a)-(2c).

2 - Principal results

We begin our study solving (1a)-(1c). To this goal, we fix w�L 2 (S) and look
for a function v defined in S which satisfies

vt 4 div (s (w)(˜v1F) )2g , in S(6)

v(x , t) 40, on S(7)

where W4v1h×, F4˜h× and g4 h×t .
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For this reason, introduce the spaces V»4L 2 (P ; W 1, 2 (V) ) and
V0 »4L 2 (P ; W0

1, 2 (V) ), endowed with the norm

VvVV »4 u �
S

Nv(x , t)N2 dx dt1�
S

N˜v(x , t)N2 dx dtv
1

2

.(8)

Then, V is the completation with respect to the norm (8) of C Q (S), while V0 is
the closure in V of C0

Q (S), the space of the periodic functions vanishing near S .
Let W»4W 1, 2 (P ; W0

1, 2 (V) ), be the closure of C0
Q (S) with respect to the

norm

u �
S

Nv(x , t)N2 dx dt1�
S

N˜v(x , t)N2 dx dt1�
S

Nvt (x , t)N2 dx dtv
1

2

.

Besides, we assume that

F�L 2 (S) , g�L 2 (S).(9)

Since the existence of the weak solutions for the problem (6)-(7) shall follow
from a result of Browder [2], we define for any v�V the linear functional

A(v) j»4�
S

s (w)(˜v1F) ˜j dx dt , ( j�V0(10)

and the linear operator L : DKV0* that is a closed skew-adjoint extension of the
linear operator L0 defined on C0

Q (S) to V0* by setting

L0 (v) j»4�
S

vt j dx dt , ( j�V0(11)

where the domain D is taken as

D»4 ]v�L 2 (P ; W0
1, 2 (V) ), vt �L 2 (P ; W 21, 2 (V) )( .

The operator L is densely defined on a domain D, with C0
Q (S) %D%V0 .

Finally, let g× �V0* be the linear functional defined by

g×j»4�
S

gj dx dt , ( j�V0 ,(12)
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thus, the problem (6)-(7) becomes

(L1A)(v) 42g×(13)

and we can give the following

D e f i n i t i o n . By a weak periodic solution to (6)-(7), we mean a function
v�D %V0 , such that (13) holds i.e.

�
S

(vt j1s (w)(˜v1F) ˜j1gj) dx dt40, for all j�V0 .(14)

The equation (13) shall be solved appealing to a result of [2], that we recall
below

T h e o r e m 0 ([2]). Let L be a closed, densely defined skew-adjoint linear
operator from a reflexive Banach space X to its dual X * and let A : XKX * be
coercive, monotone and hemicontinuous. Then for any F , g verifying (9) there
exists a weak solution v of (13).

Now, we can prove the following result

T h e o r e m 1. Assume (3)-(5) and (9). Then there exists a weak periodic sol-
ution to (13).

P r o o f To apply the above Browder’s result, we need to verify that the opera-
tor A satisfies:

A(v)( . ) is continuous on V0 .(15)

A : VKV0* is continuous(16)

A is monotone(17)

A is coercive .(18)

The (15) is obtained by means of the Hölder inequality, which implies the
estimate

NA(v) j(x , t)N

GM u �
S

N˜v(x , t)1F(x , t)N2 dx dtv
1

2 u �
S

N˜j(x , t)N2 dx dtv
1

2

(19)

GM u �
S

N˜v(x , t)1F(x , t)N2 dx dtv
1

2

VjVV



145PERIODIC SOLUTIONS OF ELECTRICALLY HEATED CONDUCTORS[5]

by which we deduce that

(20) VA(v)VGM k2(V˜vVL 2 (S) 1VFVL 2 (S) ) GM k2(VvVV 1VFVL 2 (S) ) .

Now, a standard argument (see [9], Thm. 2.1), involves that the operator A is
continuous in V, thus (16) it follows.

To prove (17), we observe that

(A(v1 )2A(v2 ) )(v1 2v2 ) 4�
S

s (w)N˜(v1 2v2 )N2 dx dt20 .

Instead of, the coercivity of A descends from

A(v) v4�
S

s (w)(˜v1F) ˜v dx dt4�
S

s (w)N˜vN2 dx dt

1�
S

s (w) F˜v dx dt .

By the Poincaré inequality, the L 2-norm of v is dominated by the L 2-norm of
˜v for v40 on S , because V is bounded. Thus, the L 2 (S) norm of ˜v is equiva-
lent to the norm (8) for v�V0 . Therefore,

A(v) v2mV˜vVL 2 (S)
2 2MVFVL 2 (S) V˜vVL 2 (S)

2mCVvVV
2 2MVFVL 2 (S) VvVV

by which we get

A(v)
v

VvVV

2mCVvVV 2MVFVL 2 (S) K1Q , as VvVV K1Q .

Finally, it is possible to invoke the result of [2] to conclude that for any
g× �V0* , there exists a v�D such that solves (13). r

The solution is unique because if one had two solutions v1 , v2 , then ˜v1 4˜v2 .
For v1 , v2 �V0 this means v1 4v2 .

Thus, W is a weak periodic solution of

W t 4 div (s (w) ˜W), in S(21)

W(x , t) 4h(x , t), on S(22)

W(x , t1v) 4W(x , t), in S(23)

corrisponding to w .
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3 - Existence of periodic solutions

The direct approach to the solvibility of (2a)-(2c) with the usual energy estimates,
encounters a difficulty due to the presence of the quadratic term N˜WN2, as we only
know that N˜WN2�L 1 (S). For this reason, it is necessary to consider a sequence of

approximating problems. Set p(x1 , x2 , RxN) 4 !
i41

N

xi
2 , for (x1 , x2 , RxN) �R N, for

each n�N we define

pn (x)4n ,

4p(x) ,

if p(x) 2n

if p(x) En
(24)

and consider the approximating problems for w�L 2 (S)

ut 2Du4s (w) pn (˜W)1 f (x , t), in S(25)

u(x , t) 40, on S(26)

u(x , t1v) 4u(x , t), in S(27)

where pn (˜W) �L 1 (S).
We prove the result

T h e o r e m 2. Under the assumptions (3)-(5) and (24), for each n there are
weak periodic solutions to (25)-(27), where W solves (21)-(23).

P r o o f . The weak periodic solution to (25)-(27) is a function u�D%V0 such
that

�
S

(ut z1˜u ˜z2 (s (w) pn (˜W)1 f (x , t) ) z) dx dt40, ( z�V0 .

holds.
Setting

L(u) z4�
S

ut z dx dt ;

A(u) z4�
S

˜u ˜z dx dt
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and

Kn z4�
S

(s (w) pn (˜W)1 f (x , t) ) z dx dt

for any u�D, z�V0 , we can again apply the Browder result, to extablish that for
any Kn �V0* there exists a solution u�D of

(L1A)(u) 4Kn . r(28)

Let

U»4 ]j�L 2 (S) : VjVL 2 (S) GR( ,

we define the nonlinear operator F on U by

F(w) 4u

where u is a weak periodic solution of the problem (25)-(27), so F is a well-defined
mapping.

L e m m a 3. The nonlinear operator F is continuous on U and maps U into
itself.

P r o o f . Let wk �U be such that wk Kw in L 2 (S) and show that uk Ku in
L 2 (S). Let W k , uk be the weak periodic solutions to

W kt 4 div (s (wk ) ˜W k ), in S(29)

W k (x , t) 4h(x , t), on S(30)

W k (x , t1v) 4W k (x , t), in S(31)

ukt 2Duk 4s (wk ) pn (˜W k )1 f (x , t), in S(32)

uk (x , t) 40, on S(33)

uk (x , t1v) 4u(x , t), in S .(34)

As a weak formulation of (29)-(31) and (32)-(34) we take

W k 2h , uk �L 2 (P ; W0
1, 2 (V) )
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and

�
S

(2W k z t 1s (wk ) ˜W k ˜z) dx dt40, ( z�W 1, 2 (P ; W0
1, 2 (V) ) .(35)

respectively

�
S

(2uk z t 1˜uk ˜z2 (s (wk ) pn (˜W k )1 f (x , t) ) z) dx dt40,

( z�W 1, 2 (P ; W0
1, 2 (V) ).

(36)

The weak maximum principle implies that

min
S

h(x , t) GW k (x , t) G max
S

h(x , t), ( t�P and a.e. in V.(37)

Chosen z4h2W k as test function in (35), one has

�
S

2W k (h2W k )t dx dt1�
S

s (wk ) ˜W k ˜(h2W k ) dx dt40,

which implies

1

2
�

0

v
d

dt
�

V

(W k 2h)2 dx dt1�
0

v

�
V

ht (h2W k ) dx dt

1�
0

v

�
V

s (wk ) ˜W k ˜h dx dt4�
0

v

�
V

s (wk )N˜W kN2 dx dt .

Using the Young inequality, one obtains

1

2
�

0

v

�
V

s (wk )N˜W kN2 dx dtG
1

2
�

0

v

�
V

NhtN2 dx dt

1
1

2
�

0

v

�
V

N(W k 2h)N2 dx dt1
1

2
�

0

v

�
V

s (wk )N˜hN2 dx dtGC .

(Here and throughout, C denotes a generic positive constant independent of k and n).
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Therefore

�
0

v

�
V

N˜W kN2 dx dtGC .(38)

Combining (37) with (38), we get the energy estimate

sup
0 G tGv

�
V

NW k (x , t)N2 dx1�
0

v

�
V

N˜W kN2 dx dtGC .(39)

By (39) and (29) follow that W kt is bounded in L 2 (P ; W 21, 2 (V) ). Since W k2h�D
and it is bounded with respect to the norm of D , then W k �W in L 2 (P ; W 1, 2 (V) )
(passing to subsequences if necessary) and by [12], W k KW in L 2 (S) where W is a
weak periodic solution to (21)-(23). We prove that ˜W k K˜W in L 2 (S). In fact,
choosing z4W k 2W in (35) as a test function, we have

�
0

v

�
V

2W k (W k 2W)t dx dt1�
0

v

�
V

s (wk ) ˜W k ˜(W k 2W) dx dt40 ,

hence

2
1

2
�

0

v
d

dt
�

V

(W k 2W)2 dx dt1�
0

v

�
V

W t (W k 2W) dx dt

1�
0

v

�
V

s (wk )N˜(W k 2W)N2 dx dt42�
0

v

�
V

s (wk ) ˜W˜(W k 2W) dx dt ,

this implies that

�
0

v

�
V

s (wk )N˜(W k 2W)N2 dx dt42�
0

v

�
V

W t (W k 2W) dx dt

2�
0

v

�
V

s (wk ) ˜W˜(W k 2W) dx dt .

Therefore,

�
0

v

�
V

N˜(W k 2W)N2 dx dtK0
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because of the weak convergence of s (wk ) ˜(W k 2W) �0 in (L 2 (S) )N . . Moreo-
ver,

pn (˜W k ) Kpn (˜W), in L 1 (S).

Now, we pass to consider the problem (32)-(34). If choose z4uk in (36), we infer
that

�
0

v

�
V

N˜ukN2 dx dt1�
0

v

�
V

nMuk dx dt1
1

2e
�

0

v

�
V

f (x , t)2 dx dt1
e

2
�

0

v

�
V

uk
2 dx dt ,

because of the Young inequality and s (wk ) pn (˜W k ) 1nM.
An iterated application of Young’s and Poincaré’s inequalities gives us

�
0

v

�
V

N˜ukN2 dx dt1
(nM)2

2e
NSN1e�

0

v

�
V

uk
2 dx dt1

1

2e
�

0

v

�
V

f (x , t)2 dx dt .

and

�
0

v

�
V

N˜ukN2 dx dt1
(nM)2

2e
NSN1eC�

0

v

�
V

N˜ukN2 dx dt1
1

2e
�

0

v

�
V

f (x , t)2 dx dt ,

which implies

�
0

v

�
V

N˜ukN2 dx dt1C

by which it follows that

�
0

v

�
V

uk
2 dx dt1�

0

v

�
V

N˜ukN2 dx dt1C ,(40)

this estimate yields that F(U) %U .
As done above, uk is bounded in D and uk F0 by a comparison argument, hen-

ce there exists a subsequence denoted again uk such that uk �u in D and by a re-
sult of [12], uk Ku in L 2 (S) where u is the weak solution of (25)-(27) correspon-
ding to w and W .
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Hence, has been proven that

W k KW , in L 2 (S)(41)

˜W k K˜W , in L 2 (S)(42)

uk Ku , in L 2 (S)(43)

˜uk �˜u , in L 2 (S)(44)

wk Kw , in L 2 (S)(45)

s (wk ) Ks (w), in L 2 (S)(46)

pn (˜W k ) Kpn (˜W), in L 1 (S).(47)

This show the continuity of the operator F in L 2 (S). In fact, uk 4F(wk ) stron-
gly converges to u4F(w) in L 2 (S). r

The compact imbedding of D into L 2 (S) implies that F is compact, so by the
Schauder fixed point theorem, F has a fixed point uk 4F(uk ). Hence, we are able
to prove our main

T h e o r e m 4. Assume (3)-(5) and (24). Then there exists a weak periodic sol-
ution to (1a)-(2c).

P r o o f . For each n there is a weak periodic solution W n , un of the system

W nt 4 div (s (un ) ˜W n ), in S(48)

W n (x , t) 4h(x , t), on S(49)

W n (x , t1v) 4W n (x , t), in S(50)

unt 2Dun 4s (un ) pn (˜W n )1 f (x , t), in S(51)

un (x , t) 40, on S(52)

un (x , t1v) 4un (x , t), in S(53)

�
S

(2W n z t 1s (un ) ˜W n ˜z) dx dt40, ( z�W 1, 2 (P ; W0
1, 2 (V) ).(54)

�
S

(2un z t 1˜un ˜z2 (s (un ) pn (˜W n )1 f (x , t) ) z) dx dt40,

( z�W 1, 2 (P ; W0
1, 2 (V) ).

(55)
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Summing (48) up (51) and using g W n
2

2
1un 2

h 2

2
h1

as a test function, one
has

1

2
�

0

v
d

dt
�

V

g W n
2

2
1un 2

h 2

2
h12

dx dt1�
0

v

�
V

hhtg W n
2

2
1un 2

h 2

2
h1

dx dt

G�
0

v

�
V

(Dun 1W n div (s (un ) ˜W n )(56)

1s (un )N˜W nN2 1 f (x , t) ) g W n
2

2
1un 2

h 2

2
h1

dx dt ,

since s (un ) pn (˜W n ) Gs (un )N˜W nN2 . We observe that W n div (s (un ) ˜W n )
1s (un )N˜W nN2 4 div (W n s (un ) ˜W n ) hence by (56) we obtain

�
0

v

�
V

hhtg W n
2

2
1un 2

h 2

2
h1

dx dtG

2�
0

v

�
]unFM1(

˜un ˜ g W n
2

2
1un 2

h 2

2
h dx dt

2�
0

v

�
]unFM1(

s (un ) W n ˜W n ˜ g W n
2

2
1un 2

h 2

2
h dx dt

1�
0

v

�
V

f (x , t) g W n
2

2
1un 2

h 2

2
h1

dx dt ,

where we set M1 4ess sup
S

g h 2

2
2

W n
2

2
h .

Then,

�
0

v

�
]unFM1(

N˜unN2 dx dtG2�
0

v

�
]unFM1(

˜un W n ˜W n dx dt

1�
0

v

�
]unFM1(

˜un h˜h dx dt2�
0

v

�
]unFM1(

s (un ) W n
2 N˜W nN2 dx dt
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2�
0

v

�
]unFM1(

s (un ) W n ˜W n ˜un dx dt1�
0

v

�
]unFM1(

s (un ) W n ˜W n h˜h dx dt

1�
0

v

�
]unFM1(

f (x , t) g W n
2

2
1un 2

h 2

2
h dx dt2�

0

v

�
]unFM1(

hhtg W n
2

2
1un 2

h 2

2
h dx dt .

Now,

�
0

v

�
]unFM1(

N˜unN2 dx dtG2�
0

v

�
]unFM1(

(W n ˜W n 2h˜h1s (un ) W n ˜W n ) ˜un dx dt

2�
0

v

�
]unFM1(

s (un ) W n
2 N˜W nN2 dx dt1�

0

v

�
]unFM1(

s (un ) W n ˜W n h˜h dx dt

1�
0

v

�
]unFM1(

f (x , t) g W n
2

2
1un 2

h 2

2
h dx dt2�

0

v

�
]unFM1(

hhtg W n
2

2
1un 2

h 2

2
h dx dt .

By the Hölder and the Poincaré inequalities, we have

�
0

v

�
]unFM1(

N˜unN2 dx dtG
1

2e
�

0

v

�
]unFM1(

(W n ˜W n 2h˜h1s (un ) W n ˜W n )2 dx dt

1
e

2
�

0

v

�
]unFM1(

N˜unN2 dx dt2�
0

v

�
]unFM1(

s (un ) W n
2 N˜W nN2 dx dt

1�
0

v

�
]unFM1(

s (un ) W n ˜W n h˜h dx dt1�
0

v

�
]unFM1(

f (x , t) g W n
2

2
2

h 2

2
h dx dt

1
1

2e
�

0

v

�
]unFM1(

f (x , t)2 dx dt1
eC

2
�

0

v

�
]unFM1(

N˜unN2 dx dt

1
1

2e
�

0

v

�
]unFM1(

(hht )2 dx dt1
eC

2
�

0

v

�
]unFM1(

N˜unN2 dx dt

2�
0

v

�
]unFM1(

hhtg W n
2

2
2

h 2

2
h dx dt .
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Finally, one has

g12
e

2
2eCh�

0

v

�
]unFM1(

N˜unN2 dx dt

G
1

2e
�

0

v

�
]unFM1(

(W n ˜W n 2h˜h1s (un ) W n ˜W n )2 dx dt

2�
0

v

�
]unFM1(

s (un ) W n
2 N˜W nN2 dx dt1�

0

v

�
]unFM1(

s (un ) W n ˜W n h˜h dx dt

1�
0

v

�
]unFM1(

f (x , t) g W n
2

2
2

h 2

2
h dx dt1

1

2e
�

0

v

�
]unFM1(

f (x , t)2 dx dt

1
1

2e
�

0

v

�
]unFM1(

(hht )2 dx dt2�
0

v

�
]unFM1(

hhtg W n
2

2
2

h 2

2
h dx dt .

That is

�
0

v

�
]unFM1(

N˜unN2 dx dtGC .(57)

When 0 Gun GM1 , multiplying (51) by un one has

�
0

v

�
V

N˜unN2 dx dtG�
0

v

�
V

s (un ) pn (˜W n ) un dx dt1�
0

v

�
V

f (x , t) un dx dt

(58) GM1 M�
0

v

�
V

N˜W nN2 dx dt1
1

2
�

0

v

�
V

f (x , t)2 dx dt1
1

2
�

0

v

�
V

NunN2 dx dt

GM1 MC1
1

2
�

0

v

�
V

f (x , t)2 dx dt1
1

2
M1

2 NSN .



155PERIODIC SOLUTIONS OF ELECTRICALLY HEATED CONDUCTORS[15]

From (56) and (58) follow that

�
0

v

�
V

N˜unN2 dx dtGC ,

hence

�
0

v

�
V

un
2 (x , t) dx dt1�

0

v

�
V

N˜unN2 dx dtGC .(59)

Now we turn our attention to show the precompactness of un in L 2 (S). Following
[18], we define un , t (x , t) 4un (x , t1t), for 0 EtEv with un �L 2 (S), then inte-
grate (51) over (t , t1t) to get

un , t (x , t)2un (x , t) 4 �
t

t1t

(Dun 1s (un ) pn (˜W n )1 f (x , s) ) ds .(60)

Taking the scalar product of the formula (60) with (un , t2un )2 and integrating
over (0 , v2t), one establishes that (see [18])

�
0

v2t

�
V

( (un , t2un )2 )2 dx dt1C 8 t
1

2

where C shall be a constant independent of h and n. An analogous calculation to
what was been done in [18], yields

�
0

v2t

�
V

( (un , t2un )1 )2 dx dt1C 8 t
1

2 .

Using a result of [14], we conclude that un Ku , in L 2 (S). Proceeding as in the
proof of Lemma 3, it is possible to show that W n KW and ˜W n K˜W in
L 2 (S).

Passing to the limit in (54) and (55), one establishes that

W2h�L 2 (P ; W0
1, 2 (V) ), u�L 2 (P ; W0

1, 2 (V) )

and

�
S

(2Wz t 1s (u) ˜W˜z) dx dt40,

�
S

(2uz t 1˜u˜z2 (s (u)N˜WN2 1 f (x , t) ) z) dx dt40,
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for all z�W 1, 2 (P ; W0
1, 2 (V) ). i.e. W , u are periodic solutions to (1a)-(2c) since

s (un )N˜W nN2 4s (un )N˜(W n 2W)N2 12s (un ) ˜W n ˜W2s (un )N˜WN2 ,

which gives us

�
S

s (un )N˜W nN2 dx dtK�
S

s (u)N˜WN2 dx dt .

This conclude the prove.

4 - Regularity

The results in [19] on the regularity of the weak solutions, for the time-depen-
dent thermistor problem, allow to get L 2 (P3V) estimates for u , W and ˜u , ˜W .
We recall a few papers concerning the regularity of the solutions for problems anal-
ogous to (1a)-(2c) (see [10]-[11], [15]-[16] and [19]). In [19], one proves the regulari-
ty of the weak solutions, by means of a priori estimates in the Campanato spaces
L 2, m (Q), (0 GmEn12) for which the DeGiorgi-Nash-Moser’s estimate and a mo-
dified Poincaré’s inequality, play an essential role. We mention the results of Yin
without details.

We say that u�L 2, m (Q), (0 GmEn12) if u�L 2 (Q) and is such that

[u]2, m , Qr
4 u sup

z0�Q , 0 ErEr
r2m� �

Qr (z0 )

Nu2uz0 , rN2 dzv1/2

E1Q

where z4 (x , t) �R n11 ,

Qr (z0 ) »4 ]x�R n : Nx2x0NEr(3 (t0 2r 2 , t0 ]

and

uz0 , r »4
1

NQr (z0 )N
� �

Qr (z0 )

udz , NQr (z0 )N4meas Qr (z0 ).

L 2, m (Q) is a Banach space with the norm

VuV2, m , Qr
4 (VuVL 2 (Qr )

2 1 [u]2, m , Qr
2 )1/2 .

The local regularity is obtained, proving that for any region Q with dist(Q , S) D0,
one has ˜W�L 2, m (Q) where m4n12a , for some a� (0 , 1 ). Since any function in
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L Q (Q) is a multiplier for L 2, m (Q), (0 GmEn12) and W is bounded by the maxi-
mum principle, set U4u1W 2 /2 , where u is a weak solutions of (2a), we can rewri-
te this equation as follows

Ut 2DU4 div ( (s (u)21) W˜W)1 f (x , t).

Thus,

fi (x , t) 4 (s (u)21) WW xi
�L 2, m (Q), i41, R , n

and assuming f�L 2,(m22)1 , we get ˜u�L 2, m (Q), (2 EmEn12) (see [19]), which
implies a local estimate in L 2 (V3P) for ˜u . Once we have this result, we can pro-
ceed as in ([19], Lemmas 2.4 and 2.6), to show that u , W�L 2, m12 (Q), (nEmEn
12). This gives us the local regularity of the solutions in the Hölder class, that is u ,
W�C a , a/2 (V3P) for a4 (m2n) /2 , (see also [11], Thm. 6.29).
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S u m m a r y

This paper studies the existence of the periodic solutions for a time-dependent thermi-
stor model, seeking a solution in a suitable space of t-periodic functions. Finally, we com-
ment the regularity of the periodic solutions by means of estimates in the Campanato
spaces.

* * *


