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MAURIZIO BADII (¥)

Periodic solutions of electrically heated conductors (**)

1 - Introduction

We study a system of two parabolic equations modelling the heat conduction
in a conductor body, in the presence of the electrical heating due to the Joule ef-
fect. If u denotes the temperature and ¢ is the electric potential, an external va-
riable magnetic field induces the Foucalt currents into the conductor, generating
the so called Joule effect. Our problem consists to resolve a coupled system of no-
nlinear parabolic differential equations for » and ¢.

We are interested to prove the existence of the weak periodic solutions for the
system

(1a) @ = div(o(u) Vo), in S:=QxP
(1b) ee, t) = x, t), on X:=0Q xP
(1e) plx, t+w) = ¢z, t), inS,w>0
(2a) u— Au=o(u) |Vo|*+ f(x, t), in S

(2b) w(x, t) =0, on X

(2¢) wlxe, t+ o) =ulx, t), inS,w>0

where Q is a bounded open set of RY with regular boundary (e.g. C * boundary)

(*) Dipartimento di Matematica G. Castelnuovo, Universita di Roma La Sapienza, P.le
A. Moro 2, 00185 Roma, Italy.
(**) Received 14" June 2002 and in revised form 11" October 2002. AMS classification
35D 05, 35 B 10.
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R
and P := _Z is the period interval [0, w], so that in viewing functions defined in
w

S, we are imposing the time w-periodicity.

We denote with o(u) the heat depending electric conductivity, while the qua-
dratic term in (2a) represents the Joule heating. We recall that the time indepen-
dent problem, corresponds to the thermistor problem that has been studied by
several authors (see [3], [5], [8]). The study of an evolution system has been enter-
prised in [1], [4], [7], [13], [17], [18].

In [13], a derivation on physical grounds of the thermo-magnetic system (1a)-
(2¢) is given. It is worth to note that in the literature, to our knowledges, the stu-
dy of the periodic solutions for a model as (1a)-(2c) is not been treated
previously.

Papers related to the periodicity of the solutions for an electrical heated con-
ductors regard the time-dependent thermistor models.

We are acquainted with the paper [6], [7]. In [6], is studied a system where the
function # depends only on the spatial variable x, while in [7], the function ¢, does
not appear. We study the system (1a)-(2c) under the following assumptions

B) oeCR):0<m<o(§)sM,VEeR;
@) feL*(P; W 123(Q)), flx,t) =0;
(5) & is a t-periodic bounded function and I is an extension of % to S.

Our approach to the periodicity of the solutions, shall be of static type namely
we look among solutions for which belong to some suitable space of ¢-periodic func-
tions, rather than to look for a fixed point for the Poincaré period map. For cer-
tain approximating problems, we shall prove the existence of the periodic sol-
utions and derive uniform estimates which allow, passing to the limit, to show the
existence of the periodic solutions for our problem (1a)-(2c).

Lastly, in Section 4, utilizing the results of [19], we will consider the regularity
of the periodic weak solutions for (1a)-(2c).

2 - Principal results

We begin our study solving (1a)-(1c). To this goal, we fix we L%(S) and look
for a function v defined in S which satisfies
(6) v = div(o(w)(Vv + D)) — ¢, in S

(M v(x, t) =0, on X

where ¢ =v+h, ®=Vh and g = h,.
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For this reason, introduce the spaces V:=L2%(P;W'23(Q)) and
Vo := L%(P; W} 2(R)), endowed with the norm

) olly := ( j o, t) |2dwdt + j |Vo(z, t)|2dacdt)2.
S S

Then, V is the completation with respect to the norm (8) of C * (S), while V, is
the closure in V of Cy°(S), the space of the periodic functions vanishing near .

Let W:=W2Y2(P; Wi 2(RQ)), be the closure of Cy"(S) with respect to the
norm

ro |~

(j|v(x, 0 |2dedt + [ Vo, ) |*dedt + [ o, t)|2d.ocdt) .
S S S

Besides, we assume that
9) ®ecL?S), geL*®).

Since the existence of the weak solutions for the problem (6)-(7) shall follow
from a result of Browder [2], we define for any veV the linear functional

10) A(w) E:= jo(w)(w + @) VEdedt, VEeV,
S

and the linear operator L : D— V;* that is a closed skew-adjoint extension of the
linear operator L, defined on Cy”(S) to Vi* by setting

11) Lo(w) E:= Jvtgdxdt, VEeV,
S

where the domain D is taken as
D:={veL*(P; Wg3(Q)), v,e L*(P; W 12(Q))}.

The operator L is densely defined on a domain D, with Cy*(S)cDcV,.
Finally, let g € Vi be the linear functional defined by

(12) GEi= fggdxdt, VEeV,,
S
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thus, the problem (6)-(7) becomes
(13) (L+A)w)=—g

and we can give the following

Definition. By a weak periodic solution to (6)-(7), we mean a function
veD cV,, such that (13) holds 1i.e.

14) j(vtg +o(w)(Vo + @) VE + g&) dedt =0,  for all Ee V.
S

The equation (13) shall be solved appealing to a result of [2], that we recall
below

Theorem 0 ([2]). Let L be a closed, densely defined skew-adjoint linear
operator from a reflexive Banach space X to its dual X* and let A : X—X* be
coercive, monotone and hemicontinuous. Then for any @, g verifying (9) there
exists a weak solution v of (13).

Now, we can prove the following result

Theorem 1. Assume (3)-(5) and (9). Then there exists a weak periodic sol-
ution to (13).

Proof To apply the above Browder’s result, we need to verify that the opera-
tor A satisfies:

(15) A(v)(.) is continuous on V.
(16) A : V=V is continuous
am A is monotone

18) A is coercive .

The (15) is obtained by means of the Hélder inequality, which implies the
estimate

|A(v) &, 1) |

2

(19) sM( [ Ve, ) + o, t)|2dxdt)2 ( [ Ve, t)|2dgcdt)
S S

sM( [ Vo, ) + o, & |2dxdt)2 [E[
S
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by which we deduce that

20) AWl < MV2(IVellp2s) + 19]n2s) < MV2 (Rl + [Bllzzs) -

Now, a standard argument (see [9], Thm. 2.1), involves that the operator A is
continuous in V, thus (16) it follows.
To prove (17), we observe that

(A@r) = A@W))(w1 = v2) = [ () | V(03— v3) [*dwdt 20.
S

Instead of, the coercivity of A descends from

A@) v = [o(w)(Vo + @) Vodedt = [o(w) |Vo|*dedt
S S

+ Jo(w) dVodxdt .
s

By the Poincaré inequality, the L2norm of v is dominated by the L2norm of
Vo for v =0 on X, because 2 is bounded. Thus, the LZ2(S) norm of Vv is equiva-
lent to the norm (8) for veV,. Therefore,

A) v Zm| Vol zs) — M@l [Voll2s)
= mCllfy — Ml|Dl,2s) ol

by which we get

v
A(v) e z mClllly — M| @[z — + 0, as [ply— + .
v
Finally, it is possible to invoke the result of [2] to conclude that for any
g €V, there exists a veD such that solves (13). =

The solution is unique because if one had two solutions v;, v, then Vv, = Vu,.
For v, v, €V, this means v; = v,.
Thus, ¢ is a weak periodic solution of

(21) @,=div(o(w) V), in S
(22) o(x, t) = h(x, t), on X
(23) oz, t+w)=q¢x,t), inS

corrisponding to w.



146 MAURIZIO BADII [6]
3 - Existence of periodic solutions

The direct approach to the solvibility of (2a)-(2¢) with the usual energy estimates,
encounters a difficulty due to the presence of the quadratic term |Vg |2, as we only
know that | Vg |2 e L1(S). For this reason, it is necessary to consider a sequence of

N
approximating problems. Set p(x;, &, ...xy) = E x?, for (x;, &, ...xy) e RY, for
each ne N we define ot

= if pla) 2
@) pu(x)=n, if p(x) =n
=px), if px) <n

and consider the approximating problems for we L%(S)

(25) uy — Au = o(w) p, (Vo) + f(x, ), in S
(26) w(x, t) =0, on X
@27 w(x, t+w)=ulx,t), in S

where p,(Vg)eL! (S).
We prove the result

Theorem 2. Under the assumptions (3)-(5) and (24), for each n there are
weak periodic solutions to (25)-(27), where ¢ solves (21)-(23).

Proof. The weak periodic solution to (25)-(27) is a function » € D c V|, such
that

[ &+ Vu Ve~ (o) p, (Vo) +fa, ) O dwdi =0, VEeV,.
S

holds.
Setting

L(u) € = jutz;dxdt;
S

Au) €= jwvgdmt
S
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and

K, &= [(0(w) p, (Vo) +f(a, 1)) Cduds
s

for any uwe D, £ e V), we can again apply the Browder result, to extablish that for
any K, e V{* there exists a solution w e D of

(28) L+Au)=K,. =

Let
U:={£eL*S): &l < R},
we define the nonlinear operator @ on U by
D(w) =u

where u is a weak periodic solution of the problem (25)-(27), so @ is a well-defined
mapping.

Lemma 3. The nonlinear operator @ is continuous on U and maps U into
itself.

Proof. Let w,e U be such that w,—w in L2(S) and show that u,—u in
L%(S). Let ¢, u; be the weak periodic solutions to

(29) @ = div(o(w,) Vi), in S
(30) @iplx, t) =hix, ), on ¥
(31) prle, t+w)=g(x,t), in S
(32) U — Auy, = o(wy) p, (Vo) + f(x, t), in §
(33) wp(x, t) =0, on ¥
(34) wp(x, t+ w) =u(x, t), in S.

As a weak formulation of (29)-(31) and (32)-(34) we take

@r—h, we L*(P; Wy ()
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and

(35) J(—@két+a(wk) Vo, VO dedt =0, Ve WHE(P; Wi3(Q)).
s

respectively

[(uclit Vo Ve~ (0(w) p. (Vo) + fla, ) ©) dwdi = 0,
@6) s

VEeWh2(P; Wi 2(Q)).
The weak maximum principle implies that

37 mSin M, t) <q@pe, t) < mgx h(x,t), VteP and a.e. in Q.
Chosen & =h— ¢, as test function in (35), one has

[—oeth—@udedt+ [ow) Vo, V0 - ) dedt =0,
S S

which implies

[

1(d
Efd_ J(¢k—h)2dxdt+J Jht(h—wk)dxdt
0 tQ 0 Q

+j fo(wk)vgothdxdt:j Ja(wk)|Vq0k|2dmdt.
0 Q 0 Q
Using the Young inequality, one obtains

1 1(
Ef Jo(wk)|Vg0k|2dacdt$ 3 J f|ht|2dxdt
) 0o

1 L
02 09

(Here and throughout, C denotes a generie positive constant independent of k and »).
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Therefore

w

(38) [ [1Vgu2dwdt<cC.
Q

0

Combining (37) with (38), we get the energy estimate
0st<ow

(39) sup j|(pk(x,t)|2dx+JJ|V¢k|2dxdtSC.
o 0 Q

By (39) and (29) follow that ¢, is bounded in L2(P; W ~12(Q)). Since ¢ ,—heD
and it is bounded with respect to the norm of D, then ¢ ,—¢ in L%(P; W2(Q))
(passing to subsequences if necessary) and by [12], ¢ ,— ¢ in L2(S) where ¢ is a
weak periodic solution to (21)-(23). We prove that Vg, — Ve in L2(S). In fact,
choosing &= ¢, — ¢ in (85) as a test function, we have

[ [~ouoi—gndedt+ [ [oGw) Vg, Vg, —g) dudt =0,
0 Q 0 Q

hence

1(d 3
—EJ’EJ’((pk—(p)dedtJrff(pt(q)k—(p)dacdt
0 o 00

+ f Jo(wk)|V(¢k—¢)|2dxdt= - f Jo(wk)V¢V(¢k—¢) dvdt,
0 Q 0 Q
this implies that

mﬁ(wk) V(g — @) |dedt = — fuf@t(%—(p) dac dt
0 Q 0o

- j ja(wkwfpvwk—cp) da dt.
0 Q

Therefore,

[

f f | V(@) — @) |*daedt—0
Q

0
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because of the weak convergence of o(wy) V(g — ¢)—0 in (L%(S))":. Moreo-
ver,

P.(Vo ) —=p,(Ve), in L(S).

Now, we pass to consider the problem (32)-(34). If choose ¢ = u,, in (36), we infer
that

w w w w

1
J J|Vuk|2dxdt§ J JnMukdacdt—F o J Jf(ac, t?dadt + 2 f Ju,fdxdt,
0 Q 0 Q 80 Q 0 Q

because of the Young inequality and o(wy) p,(Ve ;) = nM.
An iterated application of Young’s and Poincaré’s inequalities gives us

w

MZ
ffwumdxdté ()
0 Q

2¢

w 1 w
18| +effu,§dxdt+—fff(x, £P dee dt.
0 Q 280 Q

and

w

waumdxdtg
Q

0

(nM)*
2¢

w 1 [
|S| +eCJ J|Vu,c|2dacdt+ o J ff(x,t)zdxdt,
02 “0 g
which implies
H|Vuk|2dxdt§c
02

by which it follows that

(40) jwju,fddefjwukﬁdxdtgc,
0 Q 0 Q

this estimate yields that &(U)cU.

As done above, u;, is bounded in D and u; = 0 by a comparison argument, hen-
ce there exists a subsequence denoted again u;, such that u;,—wu in D and by a re-
sult of [12], u,—>u in L2(S) where u is the weak solution of (25)-(27) correspon-
ding to w and ¢.
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Hence, has been proven that

(41) P9, in L*(S)
(42) Vo, — Vo, in L2(S)
(43) Wy —> U, in L2(S)
(44) Vu,,—Vu, in L2(S)
(45) Wy, —> W, in L2(S)
(46) o(wy) = o(w), in L%(S)
(47) Pn(Vo ) = p.(Vo), in L'(S).

This show the continuity of the operator @ in L2(S). In fact, u;, = @(w,) stron-
gly converges to u = @®(w) in L*(S). =

The compact imbedding of D into L?(S) implies that @ is compact, so by the
Schauder fixed point theorem, @ has a fixed point u;, = @(u,;). Hence, we are able
to prove our main

Theorem 4. Assume (3)-(5) and (24). Then there exists a weak periodic sol-
ution to (1a)-(2c¢).

Proof. For each n there is a weak periodic solution ¢,, u, of the system

(48) @ =div(o(u,) Ve ,.), in S
(49) @ (x, 1) = h(x, 1), on X
(50) @.x, t+w)=¢,(, 1), in S
(51) Uy — Au, = 0(u,) p, (Vo) + fla, 1), inS
(562) u,(x, t) =0, on X
(53) u,(x, t+w) =u,(x, t), in S

64 (gLt olw,) Ve, V0) dudi =0, VW (P; Wi Q).
S

[~ &t Y, Ve = (0(w,) p, (Vg ) + £, 1) ©) dedt =0,
(55) S

VEe WL2(P; Wh2(Q)).
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2 2

.
Summing (48) up (51) and using ( (02” +u, — ?) as a test function, one

has

1 2 B2\ 2 i 2 B2\
—fif(ﬂ b, — —) dxdt+ffhht(ﬂ +un——) due dt
J\%2 2 g 2 2

(56) < j f (At + @ 1div (0(u,) Vo)
0 Q

(pZ ]’L2 +
+o(u,) |V, |+ flx, t))(7” +u, — 7) dxdt,

since o(u,) p,(Vo,) <o(u,)|Ve,|*. We observe that ¢,div(o(w,) Ve,)

+o(u,) |V, |*=div(g,o(u,) V¢,) hence by (56) we obtain

[

2 2\t
thht(%’ +un—%) de dt <
0 Q

2

w

2 h2
_f J Vu”V(Z" +un—?)dacdt
0 {unle}
w %L hz
_J J’ O(“?Z)(p?ZV(p'VLV(% +u’)’l_ ?) dxdt
0 {un;Ml}

[ 2

@ h*\*
+Ofgjf(x, t)(T" +u, — ?) dadt,

2 (;02
where we set M, = ess sup(— -z )
N 2 2
Then,

f f |Vun|2dacdt$—f J Vu, ¢, Vo, ddt

0 {u, =M} 0 {w, =M}

+J J Vunthdxdt—f J o(u,) @2 |V, |*dedt

0 {u,=M;} 0 {u, =M}
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[

—J f a(un)qoanonVundmdtJrJ f o(u,) ¢, Vo, hVhdxdt

0 {unZMl} 0 {ZL,,ZMl}
’ : & g : n?
+f f f(x,t)(& +un——)dacdt—J J hht(ﬂ +un——)dacdt.
2 2 2 2
0 {w,=M} 0 {u, =M}

Now,

w

f J |Vun|2dacdt$ —J J (9. Vo, —hVh+o(u,) ¢,Ve,) Vu,dxdt

0 {un,?Ml} 0 {lLrLZMl}

—f J a(un)¢i|v¢n|2dxdt+f J o) @, Ve, Whdadt
0 {u,=M;} 0 {u, =M}
@ 2 X ot 2 2
+J j f(x,t)(ﬂ +un——)dxdt—J J hht((’; +un——)dacdt.
2 2 2 2
0 {w,=M} 0 {u, =M}

By the Holder and the Poincaré inequalities, we have

w 1 w
J j |Vun|2dxdts%f j(q)anan—th+o(un)goanan)zdxdt

0 {w,=M} 0 {w,=M;}

[

0 {uw,=M;} 0 {w, =M}
1) » (p2 9
+j f 0(un)g0nV(pnthdacdt+J f f(ac,t)(;" - 7)dmdt
0 {u,=M;} 0 {u, =M}

1 0] ®
+ — f f fle, 0P dudt + gj j | Vu, |* dee di
2e 2

0 {u, =M} 0 {u, =M}

1 w [}
+—f J (hh, ) dee dt + £J f | Vi, | 2 dee it
2¢e 2

0 {u, =M} 0 {u, =M}

w

2 2
—f j hht((p” . h—)dxdt.
2 2

0 {u,=M;}
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Finally, one has

(1— g —gc)j j |V, | da dt

0 {un,aMl}

1 w
sz_J f (@0, Y, —hVh+ o) ¢, Ve, dedt
&

0 {u,=M;}
—f J a(un)¢i|V¢n|2dxdt+J J o) @, Ve, Whdaedt
0 {unZMl} 0 {unZMl}
+f f f, t)(ﬂ - —)dacdt+ —f f Fe, £ dae dt
2 2 2
0 {un?Ml} 0 {un?Ml}
1 w w 2 h2
+—j j (hht)zdmdt—J j hht( Pu _ —)dmdt.
e 2 2
0 {u'rLBMl} 0 {u'rIBMl}
That is
57) f f |V, |?dedt < C.
0 {unaMl}

When 0 < u, < M, multiplying (51) by u, one has

ff|Vun|2dxdts f jo(un)pn(v%)undxdmfJf(x, £) w, dar dt
0 Q 0 Q 0 Q

68 <mM| ||V, 2dedt+ Ejjf(x,t)dedtJr Ejf|un|2dxdt
0 Q 0 Q 0 Q

w

1 1
<SMMC+ f ff(x, t)* de dt + EM12|3|-
0 Q



[15] PERIODIC SOLUTIONS OF ELECTRICALLY HEATED CONDUCTORS 155

From (56) and (68) follow that

jijumdxdtsc,
Q

0

hence
(59) [ [ui, dxdm”wumdxdtsc.
00 0o

Now we turn our attention to show the precompactness of u, in L2(S). Following
(18], we define u, .(x, t) =u,(x, t + 1), for 0 <7 < w with u, € L(S), then inte-
grate (51) over (¢, t+ t) to get

t+7

60) w0, ) —w(w, 1) = [ (du, +0(u,) p,(V9,) + [z, ) ds.
13

Taking the scalar product of the formula (60) with (u, ,—w,)” and integrating
over (0, w — 1), one establishes that (see [18])

TII((“"J —u,)” Pdedt=C’ r%
Q

0

where C shall be a constant independent of 7 and n. An analogous calculation to
what was been done in [18], yields

w—-T

1
[ [, ~w)Pdedt=Cr ey
0 Q

Using a result of [14], we conclude that u,—u , in L%(S). Proceeding as in the
proof of Lemma 3, it is possible to show that ¢,—¢ and V¢p,— Ve in
L%(S).

Passing to the limit in (54) and (55), one establishes that

@ —heL?(P; WH3(RQ)), wueL*(P; Wi(Q))

and

[(=wt:+ o) VovE) dudt =0,
S

I(—uCtnL VuVe — (o(u) | Vo |? + f(x, 1)) §) dedt =0,
s
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for all e WH2(P; WH2(R)). ie. ¢, u are periodic solutions to (1a)-(2¢) since

o(u,) Ve, |*=0ou,) |V, — @) |*+20u,) Vo, Ve —o(u,) | Vel|?,

which gives us

[o) Ve, [2dzdt— [o(u) |Vg|*dudt.
S S

This conclude the prove.

4 - Regularity

The results in [19] on the regularity of the weak solutions, for the time-depen-
dent thermistor problem, allow to get LZ(P x ) estimates for u, ¢ and Vu, V.
We recall a few papers concerning the regularity of the solutions for problems anal-
ogous to (1a)-(2¢) (see [10]-[11], [15]-[16] and [19]). In [19], one proves the regulari-
ty of the weak solutions, by means of a priori estimates in the Campanato spaces
L%"(Q), (0 <u <n + 2) for which the DeGiorgi-Nash-Moser’s estimate and a mo-
dified Poincaré’s inequality, play an essential role. We mention the results of Yin
without details.

We say that ue L>*(Q),(0 <u<n+2) if ueL?(Q) and is such that

1/2
[u]zy,,,Q,;( sup Q”‘J' f |u—u20,g|2dz < +

20eQ,0<o<r Qo)

where z = (x,t) e R" ",
Q.(zp) :={xeR": |x —xy| <r}X (to— 1%, to]
and

1

) m J udz, |Q,-(20) | = meas Q,(2).
(%o

Q(29)

Uz, v -

L%*(Q) is a Banach space with the norm

llle, i, 0, = (el + (33, 1, 072

The local regularity is obtained, proving that for any region @ with dist(@, X) >0,
one has Vg € L**(Q) where u = n + 2a, for some a e (0, 1). Since any function in
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L~ (Q) is a multiplier for L*"(Q), (0 <u <n + 2) and ¢ is bounded by the maxi-
mum principle, set U = u + ¢?/2, where u is a weak solutions of (2a), we can rewri-

te this equation as follows

Thus,

U, — AU = div((o(u) — 1) V) + f(x, 1).

fite, ) =(o(w) - 1) pg, e L>(Q), i=1,..,n

and assuming fe L2“~?" we get Vue L>*(Q),(2 <u <n + 2) (see [19]), which
implies a local estimate in L2(2 x P) for Vu. Once we have this result, we can pro-
ceed as in ([19], Lemmas 2.4 and 2.6), to show that u, o e L2“*%(Q), (n<u<n
+ 2). This gives us the local regularity of the solutions in the Holder class, that is u,
peC»“?(Q x P) for a=(u—mn)/2, (see also [11], Thm. 6.29).
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stor model, seeking a solution in a suitable space of t-periodic functions. Finally, we com-
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