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Time-dependent vakonomic dynamics

and presymplectic geometry (**)

1 - Introduction

The Dynamics of Lagrangian systems subject to non-holonomic constraints
may be formulated through the so-called vakonomic approach [1], [2]: it consists
in the study of variational problems where the variations are imposed to satisfy
the constraints.

As a matter of fact, every vakonomic problem may be considered as a free va-
riational one associated with an extended Lagrangian incorporating the constrain-
ts through a set of Lagrange multipliers.

By construction such an extended Lagrangian is always singular; all the kno-
wn results regarding degenerate Lagrangians may be therefore applied to the
theory of vakonomic systems.

A first step in this direction has been made by Cariñena and Rañada in [3], fol-
lowed by some other recent papers [4], [5] where the presymplectic constraint al-
gorithm developed by Gotay and Nester [7], [8] is used to study and solve vakono-
mic problems.

Using the time-dependent extension of the Gotay-Nester method proposed in
[11], we generalize the previous works to the time-dependent case. This has been
made possible by the adoption of the geometrical setting provided by the Lagran-
gian and Hamiltonian bundles [9], [10], [11], [12], [13].
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We first present a brief review of the geometrical framework of Lagrangian
and Hamiltonian bundles and of their use in the discussion of presymplectic time-
dependent Lagrangian systems in Section 2.

In Section 3 we illustrate the application of the previous topic to vakonomic
dynamics; the given approach is suitable to describe both regular and singular
Lagrangian systems.

Nevertheless, the most significant results are obtained for systems with regu-
lar Lagrangian, subject to affine kinetic constraints; we focus on this particular
case, showing that the transition to the Hamiltonian setting allows a sort of re-
duction of the problem to a free Hamiltonian one.

We conclude the paper with some illustrative examples: the first is an applica-
tion to classical vakonomic Mechanics; the second shows the possible use of the
proposed approach in economic models, where an explicit time-dependence is al-
ways present; the third and last one is an energy stationarity problem for a sim-
ple analog circuit.

2 - Geometrical preliminaries

2.1 - The Lagrangian and Hamiltonian bundles

Let us consider a Lagrangian system with n degrees of freedom and denote
by Vn11 its configuration space-time. The axiom of absolute time makes Vn11 a fi-
bered manifold over the real line (thought as an Euclidean space), with projection
t : Vn11 KD given by the absolute time function; the first jet-extension j1 (Vn11 )
may be naturally identified with the velocity space of the system. Let us denote by
t , q 1 , R , q n a generic fibered local coordinate system on Vn11 and by
t , q 1 , R , q n , q

. 1 , R , q
. n the induced jet-coordinates on j1 (Vn11 ). The Euler-La-

grange equations associated with the Lagrangian system

d

dt

¯L

¯q
. k

2
¯L

¯q k
40

are known to be invariant under arbitrary transformations of the form

LKL 8 »4L1
df

dt

where f is a smooth function defined on Vn11 and
df

dt
denotes its symbolic time

derivative. For this reason, the Lagrangian L is not a geometrical object associa-
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ted with the given system, being defined up to a gauge. In a recent paper [9], this
situation has been analyzed and a gauge-invariant setup has been developed in
the language of jet-bundle theory.

For later use, we present here a brief review of the subject, in order to provi-
de the reader of the necessary definitions.

The idea is to associate to the given Lagrangian system a double fibration
PK Vn11 KD, where p : PK Vn11 is a principal fiber bundle, with structural
group (D , 1), called the bundle of affine scalars over Vn11 .

The action of the structural group on P will be expressed through the additive
notation

c j (n) »4c(j , n) : D3PKP : c j (n) 4n1j .(2.1)

The properties of the bundle of affine scalars are now summarized:

l every function u : PKD satisfying u(n1j) 4u(n)1j provides a global
trivialization of P, namely an identification of P with the Cartesian product
Vn11 3D;

l the assignment of a trivialization u allows to lift every coordinate system
t , q i on Vn11 to a coordinate system t , q 1 , R , q n , u over P, satisfying the follo-
wing coordinate transformation rules

t 4 t1c , qi4 qi(t , q 1 , R , q n ) , u 4u1 f (t , q 1 , R , q n )(2.2)

l the vector field
¯

¯u
is the fundamental vector field associated to the princi-

pal fibration.

Let us now focus our attention of the fibration PKD and consider its first jet
space j1 (P , D), which we shall refer to local jet-coordinates t , q i , u , q

. i , u
.
, with

transformation laws

t 4 t1c , qi4 qi(t , q) , u 4u1 f (t , q)(2.3a)

q
. i4

¯qi

¯q k
q
. k 1

¯qi

¯t
, u

.
4 u

.
1

¯f

¯q k
q
. k 1

¯f

¯t
»4 u

.
1 f

.
.(2.3b)

It is easy to verify that j1 (P , D) may be considered a subspace of T(P) through
the identification

z� j1 (P , D) ` z4 k ¯

¯t
1q

. i (z)
¯

¯q i
1u

.
(z)

¯

¯u
l

p(z)

.(2.4)
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The geometrical properties of j1 (P , D) come from its jet-bundle structure first: in
particular, it is endowed with

(i) a contact bundle, locally generated by the (n11) 1-forms v 0 4du2u
.

dt
and v i 4dq i 2q

. i dt;
(ii) a fiber differential dv on the Grassman algebra of j1 (P , D) (1), whose ac-

tion on any function f� F( j1 (P , D) ) is described as

dv f4
¯f

¯u
. v 0 1

¯f

¯q
. i

v i .(2.5)

In addition to this, the bundle j1 (P , D) carries two different actions of the
structural group (D , 1), both arising from the principal bundle structure of P
and based on the identification expressed by eq. (2.4). The first one may be defi-
ned as the push-forward c j˜ of the action (2.1); in local coordinates we
have

c j˜ : (t , q i , u , q
. i , u

.
) K (t , q i , u1j , q

. i , u
.
) .(2.6)

The quotient of j1 (P , D) under this action is a (2n12)-dimensional manifold,
which will be denoted by L(Vn11 ). The quotient map makes j1 (P , D) into a prin-
cipal fiber bundle over L(Vn11 ), with structural group (D , 1); L(Vn11 ) results
to be a fiber bundle over Vn11 referred to local coordinates t , q i , q

. i , u
.
.

The second action is obtained adding to any z� j1 (P , D) a multiple of the fun-

damental vector field over P, namely zKz1j
¯

¯u
; it is represented as

f j : (t , q i , u , q
. i , u

.
) K (t , q i , u , q

. i , u
.
1j) .(2.7)

Once again, the quotient of j1 (P , D) under (2.7) is a (2n12)-dimensional mani-
fold, which will be denoted by L c (Vn11 ). The quotient map makes j1 (P , D) into a
principal fiber bundle over L c (Vn11 ) with structural group (D , 1); L c (Vn11 ) is a
fiber bundle over Vn11 with local coordinates t , q i , u , q

. i.
Finally we observe that the two actions (2.6) and (2.7) commute and can be

therefore used to induce a group action on the quotient space generated by the
other. This makes both L(Vn11 ) and L c (Vn11 ) into a principal fiber bundle over a
«double quotient» space, which is easily identified with the first jet space

(1) For a detailed description the reader is referred to [9].
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j1 (Vn11 ). The situation is best represented by the following commutative dia-
gram

j1 (P , D) K L c (Vn11 )

I I(2.8)

L(Vn11 ) K j1 (Vn11 )

where all arrows represent principal fibrations. The bundles L(Vn11 ) K j1 (Vn11 )
and L c (Vn11 ) K j1 (Vn11 ) will be respectively denoted Lagrangian and co-La-
grangian bundles over j1 (Vn11 ).

The geometric environment introduced so far is sufficient to develop a gauge-
invariant formulation of Lagrangian Mechanics. This is achieved replacing the
concept of Lagrangian function by the one of Lagrangian section, namely a sec-
tion l : j1 (Vn11 ) K L(Vn11 ) of the Lagrangian bundle. The outcome is a scheme
where the assignment of a trivialization of P determines a local description of l of
the form

u
.

4L(t , q i , q
. i )(2.9)

namely in terms of a Lagrangian function L(t , q i , q
. i ) over j1 (Vn11 ). As soon as

the trivialization is changed, the representation (2.9) undergoes the transforma-
tion laws

u
.

4 u
.
1 f

.
4L(t , q i , q

. i )1 f
.

»4L 8 (t , q i , q
. i )(2.10)

which involves a gauge equivalent Lagrangian function. We also remark that any
Lagrangian section l defines a trivialization W×l »4 u

.
2L(t , q , q

.
) of the bundle

j1 (P , D) K L c (Vn11 ).
The importance of the concept of Lagrangian section consists in inducing a

connection 1-form u l on the bundle j1 (P , D) K L(Vn11 ), which plays a crucial ro-
le in the transition from Lagrangian to Hamiltonian dynamics. The 1-form u l is
defined through the action of the fiber differential on the trivialization W×l ,
namely

u l »4dv W×l 4v 0 2
¯L

¯q
. i

v i .(2.11)

A similar reasoning can be followed using the manifold PK Vn11 as a starting
point and taking its first jet space j1 (P , Vn11 ) into account. Given local coordina-
tes t , q i , u on P, we denote by t , q i , u , p0 , pi the induced fibered local coordinate
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system, subject to transformation laws

t 4 t1c , qi4 qi(t , q 1 , R , q n ) , u 4u1 f (t , q 1 , R , q n )(2.12a)

p0 4p0 1
¯f

¯t
1 gpk 1

¯f

¯q k h ¯q k

¯ t
, pi 4 gpk 1

¯f

¯q k h ¯q k

¯qi
.(2.12b)

The jet space structure endows j1 (P , Vn11 ) with the canonical contact 1-form U,
locally written as

U4du2p0 dt2pi dq i(2.13)

and henceforth called the Liouville 1-form. The latter has the nature of a connec-
tion 1-form of the bundle j1 (P , Vn11 ) K H (Vn11 ).

Moreover, j1 (P , Vn11 ) is a submanifold of the cotangent space T *(P),
through the identification

h� j1 (P , Vn11 ) ` h4 [du2p0 (h) dt2pi (h) dq i ]p(h) .(2.14)

Finally, the manifold j1 (P , Vn11 ) carries two different actions of the structu-
ral group (D , 1), both defined on the basis of identification (2.14). The first is de-
fined as the pull-back (c 2j )* of (the inverse of) the action (2.1) and can be writ-
ten as

c j*: (t , q i , u , p0 , pi ) K (t , q i , u1j , pi , p0 ) .(2.15)

The quotient of j1 (P , Vn11 ) under this action is a (2n12)-dimensional manifold
H (Vn11 ) and j1 (P , Vn11 ) K H (Vn11 ) is a principal fiber bundle, with structural
group (D , 1). H (Vn11 ) K Vn11 results to be an affine bundle, modelled on
T *(Vn11 ), locally described by the coordinate system t , q i , p0 , pi .

The second action is obtained subtracting to any h� j1 (P , Vn11 ) a multiple of
the invariant 1-form dt, namely hKh2jdt, and can be expressed as

f j : (t , q i , u , p0 , pi ) K (t , q i , u , pi , p0 1j) .(2.16)

The quotient of j1 (P , Vn11 ) under (2.16) will be denoted H c (Vn11 ). It results to
be a fiber bundle over Vn11 , with coordinates (t , q i , u , p0 ); moreover,
j1 (P , Vn11 ) K H c (Vn11 ) is a principal fiber bundle with structural group (D , 1).

As in the Lagrangian case, the above described actions commute: thus we can
define a «double quotient» space P(Vn11 ), henceforth called the phase space, ob-
tained by quotient of either H (Vn11 ) or H c (Vn11 ) under the corresponding
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group action. The situation is summarized into the following commutative dia-
gram

j1 (P , Vn11 ) K Hc (Vn11 )

I I(2.17)

H(Vn11 ) K P(Vn11 )

where all arrows denote principal fibrations. The bundles H (Vn11 ) KP(Vn11 )
and H c (Vn11 ) KP(Vn11 ) will be respectively called the Hamiltonian and co-
Hamiltonian bundles over P(Vn11 ). Every section h : P(Vn11 ) K H (Vn11 ) will
be called Hamiltonian section.

We remark that the differential 2dU is the pull-back of a closed 2-form

V»4dp0 Rdt1dpi Rdq i(2.18)

which endows H (Vn11 ) with a symplectic structure. This is the framework where
a time-dependent formulation of Hamiltonian dynamics may be developed
[10].

Finally, a map between j1 (P , D) and j1 (P , Vn11 ) may be set up, observing
that every Lagrangian section l induces the connection 1-form u l on the first, whi-
le the second is endowed with the canonical 1-form U. Then, it is easy to prove
that there exists an unique map L : j1 (P , D) K j1 (P , Vn11 ), fibered over P, such
that L*(U) 4u l; this is called Legendre transformation [9], [10], [13].

2.2 - Presymplectic time-dependent Lagrangian systems

In [11], the geometrical properties of the Lagrangian bundle L(Vn11 ) have
been investigated; as a consequence, a mathematical setting suitable for the study
of degenerate time-dependent Lagrangian systems has been developed. For later
use, we briefly outline the basic aspects of the theory.

First of all, we recall that the assignment of a Lagrangian section l induces
the following geometrical objects on the manifold L(Vn11 ):

l a trivialization W l »4 u
.
2L(t , q i , q

. i ) of the principal fiber bundle L(Vn11 )
K j1 (Vn11 );

l a smooth connection of L(Vn11 ) K j1 (Vn11 ), whose connection 1-form is
given by the differential dW l 4du

.
2dL; the related horizontal lift associates with

every vector field X4X 0 ¯

¯t
1X i ¯

¯q i
1X

.
i ¯

¯q
. i

�D 1 ( j1 (Vn11 ) ) a corresponding

vector field Xl on L(Vn11 ), invariant under the action of the structural group
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gi.e., under the 1-parameter group of diffeomorphisms generated by
¯

¯u
. h and

expressed locally as

Xl 4X 0 ¯

¯t
1X i ¯

¯q i
1X

.
i ¯

¯q
. i

1X(L)
¯

¯u
. ;(2.19)

l a (1 , 1 )-tensor field JA on L(Vn11 ), having local expression

JA 4v i 7 u ¯L

¯q
. i

¯

¯u
. 1

¯

¯q
. i
v(2.20)

where the notation v i »4dq i 2q
. i dt i41, R , n for the pull-back to L(Vn11 ) of

the contact 1-forms on j1 (Vn11 ) has been preserved; it is immediate to see that JA

is p-related to the fundamental tensor J4v i 7
¯

¯q
. i

of j1 (Vn11 );

l an exact 2-form V
A

l on L(Vn11 ), expressed in local fibered coordinates as

V
A

l »4du
.
Rdt1d u ¯L

¯q
. i
vRv i 2

¯L

¯q
. i

dq
. i Rdt ;(2.21)

under the regularity assumption rank
V

¯ 2 L

¯q
. i ¯q

. j V
4n, it is a straightforward mat-

ter to verify that the 2-form (2.21) has maximal rank, thus endowing the bundle
L(Vn11 ) with a symplectic structure; when this is the case, following the standard
terminology, the section l is said to be a regular Lagrangian section; on the con-
trary, when the regularity hypothesis is violated, but V

A
l has constant rank every-

where, the 2-form (2.21) is presymplectic; in such a circumstance, we shall call l a
degenerate (or singular) Lagrangian section; furthermore, denoting by V l »

4d uL dt1
¯L

¯q
. i

v iv the Poincaré-Cartan 2-form associated with the Lagrangian

function L(t , q i , q
. i ) on j1 (Vn11 ), we have V l 4 l *(VAl ).

By means of the 2-form V
A

l and of the above mentioned trivialization W l , we
may construct the equations of motion directly on the Lagrangian bundle
L(Vn11 ). The algorithm is based on the search for vector fields ZA �D 1 (L(Vn11 ) )
satisfying the requirement

ZA 2l V
A

l 42dW l .(2.22)

In [11] the problem (2.22) has been proved to be mathematically equivalent to the



123TIME-DEPENDENT VAKONOMIC DYNAMICS...[9]

standard one formulated on j1 (Vn11 ), both in the regular and in the singular case,
relying on the cosymplectic (precosymplectic) structure (V l , dt) through the
equations

Z2l V l 40 , aZ , dtb 41(2.23)

with unknown Z�D 1 ( j1 (Vn11 ) ). Indeed, eq. (2.22) admits a solution if and only if
eqs. (2.23) do and the solutions of both problems are related in a natural way. Mo-
re precisely, if Z solves eqs. (2.23) on a submanifold N% j1 (Vn11 ), its horizontal
lift Zl (see eq. (2.19)) satisfies eq. (2.22) on the submanifold p21 (N) % L(Vn11 ).
Conversely, any solution of eq. (2.22) on a submanifold M% L(Vn11 ) is necessarily
the horizontal lift Zl of a field Z solving eqs. (2.23) on p(M) % j1 (Vn11 ).

The advantages of formulating the problem of motion on L(Vn11 ) through
eq. (2.22) consist in the possibility of implementing the presymplectic constraint
algorithm developed by Gotay and co-workers [6], [7], also for time-dependent
singular Lagrangians.

First of all, in the present geometrical context, the constraint algorithm gene-
rates a decreasing sequence of constraint manifolds

L(Vn11 ) JM0 JM1 JM2 JR ,(2.24)

each embedded in the previous one, where

M0 4 ]z� L(Vn11 ) N u
.

4L(p(z) )((2.25)

is the surface image of the Lagrangian section l and, for kF1, we have

Mk 4 ]z�Mk21 N dW l (z) � (T(Mk21 ) )Y(,(2.26)

or, equivalently,

Mk 4 ]z�Mk21 N aTMk21
» , dW l b(z) 40(;(2.27)

here Y : T(L(Vn11 ) ) KT *(L(Vn11 ) ) denotes the map Y(X) 4X Y »4X2l V
A

l , and
TMk

» indicates the presymplectic complement of TMk with respect to V
A

l .
The constraint algorithm is said to stabilize if and only if there exists an inte-

ger kF0 such that Mk11 4Mk and dim Mk D0. This means that eq. (2.22) posses-
ses at least one differential solution along the final constraint manifold M»4Mk

and that such a manifold is automatically maximal.
Now, whenever the constraint algorithm stabilizes, thus ensuring the solvabili-

ty of the equations of motion at least in the differential sense, there is still one
question left: we should determine what solutions are kinematically admissible.
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This is known in literature as the SODE problem and has been solved in [11] in
the time-dependent case under the «so-called» assumption of admissibility of the
Lagrangian section l; the reader is referred to it for the details of the below
summary.

In order to make the definition of admissibility clear, let us consider the invo-
lutive distribution (2) D»4ker V l OV( j1 (Vn11 ) ) %T( j1 (Vn11 ) ), V l denoting the
Poincaré-Cartan 2-form on j1 (Vn11 ) generated by l, and V( j1 (Vn11 ) ) being the
vertical bundle associated with the fibration j1 (Vn11 ) K Vn11. A Lagrangian sec-
tion l : j1 (Vn11 ) K L(Vn11 ) is called admissible if and only if the leaf space 4»

4 j1 (Vn11 ) /D of the foliation generated by D admits a manifold structure such
that the canonical projection r : j1 (Vn11 ) K4 is a submersion.

Whenever this is the case, we can lift D to the horizontal distribution Dl

%T(L(Vn11 ) ), obtaining a quotient space 7»4 L(Vn11 ) /Dl with a manifold struc-
ture and such that the canonical projection j : L(Vn11 ) K7 is a submersion. Mo-
re specifically, 7 is a principal fiber bundle over 4, whose structural group is iso-
morphic to (D , 1).

Moreover, it is easily seen that there exist a presymplectic 2-form Vl over 7

and a trivialization Wl of the principal fiber bundle p : 7K4, such that V
A

l

4j*(Vl ) and W l 4j*(Wl ).
Therefore, a reduced problem of motion on the quotient space 7, consisting in

the search for vector fields Z �D 1 (7) satisfying the requirement

Z2l Vl 42dWl(2.28)

may be set-up.
The reduced problem (2.28) is intimately related to the primary problem

(2.22). Indeed, an Equivalence Theorem, stating that eq. (2.22) admits a differen-
tial solution along some final constraint manifold M if and only if eq. (2.28) do, has
been proved.

The importance of the Equivalence Theorem consists in ensuring the existence
of semi-prolongable solutions of (2.22), namely solutions projecting to 7 modulo
the vertical bundle V(L(Vn11 ) ) associated with the fibration L(Vn11 ) K Vn11 .
The latters play a crucial role in the solution of the SODE problem; the argument
is based on the following facts:

i) the restriction DlNM is an involutive distribution in TM, foliating M; the cor-

(2) We suppose systematically that rank
V

¯
2 L

¯q
. i

¯q
. j V

4rEn const.. This ensures that
the rank of D is constant everywhere.
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responding leaf space 8»4M/DlNM is a submanifold embedded in 7 and the indu-
ced projection j M : MK8 is a submersion;

ii) given a vector field X�D 1 (M) solving eq. (2.22), then JA(X) �D 1 (M).
As a consequence, it has been proved that, for any semi-prolongable solution X

�D 1 (M) of eq. (2.22) there exists a unique point nX in each leaf of the foliation of
M generated by DlNM where X is (p-related to) a SODE.

The union SX of all the points nX results to be a submanifold of M, diffeomor-
phic to the leaf space 8, along which X uniquely splits in the sum X4 X1V with
X �TSX and V�DlNS[X]

. By construction, X is the unique vector field solving
eq. (2.22) along SX and p-related to a SODE (i.e. kinematically admissible).

We finally recall that two semi-prolongable solutions X and Y of (2.22) are said
to be JA-equivalent whenever JA(X) 4 JA(Y). In this case the associated submanifol-
ds SX and SY coincide and we have X 4 Y.

3 - Vakonomic dynamics

3.1 - Vakonomic systems

Let us now subject the Lagrangian system introduced in § 2.1 to a set of non-
holonomic constraints, thought as a submanifold A of j1 (Vn11 ), fibered over Vn11

and described in terms of a set of r functions on j1 (Vn11 ), as

g s (t , q i , q
. i ) 40 , with rank u ¯g s

¯q
. i
v4r(3.1)

Vakonomic Dynamics is aimed at studying the evolution of the system making use
of a constrained variational principle. Indeed, in the vakonomic formulation, ad-
missible motions of the system are singled out as extremals of the functional

g(t) K�
t0

t1

L(g
.
(t) ) dt(3.2)

where g(t) : [t0 , t1] K Vn11 are sections — joining two any fixed points — whose
first-jet extensions g

.
(t) : [t0 , t1] K j1 (Vn11 ) satisfy the constraints, and whose (fir-

st-jet extensions of the) allowed deformations are also requested to lie on A.
It has been shown (see, for example, [1], [2], [14]) that a section g(t)

4 (t , q i (t) ) is a vakonomic solution of motion if and only if there exist r functions
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l s : [t0 , t1] KD, satisfying together with g(t) the set of equations

(3.3a)
d

dt
u ¯L

¯q
. i
v2

¯L

¯q i
42l su d

dt
u ¯g s

¯q
. i
v2

¯g s

¯q i v2
dl s

dt

¯g s

¯q
. i

i41,R,n

g s (g
.
(t) ) 40 s41, R , r .(3.3b)

As a matter of fact, it is also known that vakonomic equations of motion (3.3) may
be derived as Euler-Lagrange equations of the free variational problem based on
the functional

�
t0

t1

(L1l s g s) dt .(3.4)

The latter involves the extended Lagrangian L(t , q i , q
. i , l s , l

.
s ) 4L(t , q i , q

. i )
1l s g s (t , q i , q

. i ), depending on additional variables l s , l
.

s . In the following we
shall focus our attention on this last point.

3.2 - The extended presymplectic framework

As already mentioned, eqs. (3.3) may be viewed as Euler-Lagrange equations
generated by a unconditioned variational problem.

Clearly, the Lagrangian L appearing in the functional (3.4) is always singular,
at least in the variables l

.
s .

Therefore, the geometrical approach to degenerate time-dependent Lagran-
gians outlined in § 2.2 suitably applies to the situation.

In the next subsection, we shall deal with the topic in a particular but signifi-
cant case for several applications.

Before doing this, we need to spend a few words to introduce the extended
geometrical framework where the procedure will be worked up.

To this end, let us consider the Cartesian product P3Dr between the bundle
of affine scalars P and Dr. The reason for this choice will appear clearer in the
subsequent discussion.

We refer P3Dr to local coordinates t , q i , u , l s , obeying the transformation
laws

t 4 t1c , qi4 qi(t , q k ) , u 4u1 f (t , q k ) , ls4 ls (l g ) .(3.5)

Obviously, P3Dr is still fibered over the real line through the absolute-time fun-
ction t. Then, we may consider the associated first-jet bundle j1 (P3Dr , D), endo-
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wed with jet-coordinates t , q i , u , l s , q
. i , u

.
, l

.
s , subject to the transformation laws

expressed by eqs. (3.5) together with the relations

q
. i4

¯qi

¯q k
q
. k 1

¯qi

¯t
, u

.
4 u

.
1

¯f

¯q k
q
. k 1

¯f

¯t
, l

.
s4

¯ls

¯l g

l
.

g .(3.6)

In addition to this, the following natural identification holds:

j1 (P3Dr , D) C j1 (P , D)3TDr .(3.7)

Moreover, we notice that the manifold P3Dr inherits from P a principal fiber
bundle structure over the Cartesian product Vn11 3Dr ; the group actions (2.6),
(2.7) may be lifted to the bundle j1 (P3Dr , D) in a natural way.

The quotient spaces of j1 (P3Dr , D) with respect to (the lift of) the actions
(2.6) and (2.7) will be denoted by L(Vn11 3Dr ) and L c (Vn11 3Dr ) respectively.
Once again, the following identifications are straightforward

L(Vn11 3Dr ) C L(Vn11 )3TDr , Lc (Vn11 3Dr ) C L c (Vn11 )3TDr .(3.8)

Actions (2.6) and (2.7) commute. Therefore, we may follow a procedure similar to
the one adopted in § 2.1 and make both L(Vn11 3Dr ) and L c (Vn11 3Dr ) into
principal fiber bundles over a double quotient space, easily identified with the fir-
st-jet bundle j1 (Vn11 3Dr , D) C j1 (Vn11 )3TDr.

The situation is summarized into the following commutative diagram

j1 (P3Dr , D) K L c (Vn11 3Dr )

I I(3.9)

L(Vn11 3Dr ) K j1 (Vn11 3Dr , D)

representing the analogous of (2.8) in the present «extended» geometrical
context.

In a totally similar way, the Hamiltonian counterpart of this framework is
achieved starting from the fibration P3Dr K Vn11 3Dr, taking its first-jet bun-
dle j1 (P3Dr , Vn11 3Dr ) into account and repeating the arguments pointed out
in § 2.1.

Omitting the straightforward details, we let the reader verify that the resul-
ting situation is summarized into the commutative diagram

j1 (P3Dr , Vn11 3Dr ) K H c (Vn11 3Dr )

I I(3.10)

H(Vn11 3Dr ) K P(Vn11 3Dr )
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where, once again, all arrows indicate principal fibrations, whose structural
groups are isomorphic to (D , 1).

We refer j1 (P3Dr , Vn11 3Dr ) to jet-coordinates t , q i , u , l s , p0 , pi , p s, sub-
ject to the transformations laws (3.5) together with

(3.11) p04p01
¯f

¯t
1gpk1

¯f

¯q k h ¯q k

¯t
, pi4gpk1

¯f

¯q k h ¯q k

¯qi
, ps4pg

¯l g

¯ls

.

Then, we obtain the straightforward identifications

j1 (P3Dr , Vn11 3Dr ) C j1 (P , Vn11 )3T * Dr(3.12a)

and

(3.12b) H (Vn113Dr)CH (Vn11)3T *Dr, H c (Vn113Dr)CH c (Vn11)3T *Dr.

Let us now return to the extended Lagrangian bundle L(Vn11 3Dr ). Any section
l : j1 (Vn11 3Dr , D) K L(Vn11 3Dr ) will be called extended Lagrangian sec-
tion.

In particular, we may consider l of the form

u
.

4L(t , q i , q
. i , l s , l

.
s ) 4L(t , q i , q

. i )1l s g s (t , q i , q
. i )(3.13)

involving a function L like the one appearing in the functional (3.4).
As pointed out in § 2.2, every such l bears:

l a trivialization W l »4 u
.
2L(t , q i , q

. i , l s , l
.

s ) of the principal fiber bundle
L(Vn11 3Dr ) K j1 (Vn11 3Dr , D);

l a horizontal lift associating with every vector field X4X 0 ¯

¯t
1X i ¯

¯q i

1Xs

¯

¯l s

1X
.

i ¯

¯q
. i

1X
.

s

¯

¯l
.

s

�D 1 ( j1 (Vn11 3Dr , D) ) a corresponding vector

field Xl on L(Vn11 3Dr ), expressed locally as

Xl 4X 0 ¯

¯t
1X i ¯

¯q i
1Xs

¯

¯l s

1X
.

i ¯

¯q
. i

1X
.

s

¯

¯l
.

s

1X(L)
¯

¯u
.(3.14)

l a (1 , 1 )-tensor field JA on L(Vn11 3Dr ), having local expression

JA 4v i 7 uu ¯L

¯q
. i

1l s

¯g s

¯q
. i
v ¯

¯u
. 1

¯

¯q
. i
v1v s7

¯

¯l
.

s

(3.15)

where v s »4dl s2l
.

s dt, s41, R , r;
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l an exact 2-form V
A

l on L(Vn11 3Dr ), expressed in local fibered coordinates
as

V
A

l »4du
.
Rdt1d u ¯L

¯q
. i

1l s

¯g s

¯q
. i
vRv i 2 u ¯L

¯q
. i

1l s

¯g s

¯q
. i
v dq

. i Rdt .(3.16)

Once again, we may implement an extended problem of motion consisting in the
search for vector fields ZA �D 1 (L(Vn11 3Dr ) ) satisfying the requirement

ZA 2l V
A

l 42dW l .(3.17)

It is a straightforward matter to see that solving eqs (3.3) is mathematically equi-
valent to find kinematically admissible (SODE) solutions ZA of (3.17).

3.3 - The case of affine constraints

The constraint algorithm outlined in § 2.2 applies to the study of problem
(3.17), whatever the choice of L and g s is.

In this subsection we shall examine systems described by a regular Lagran-
gian L(t , q , q

.
) and subject to affine non-holonomic constraints, expressed as

g s (t , q , q
.
) 4g s

i (t , q) q
. i 1g s

0 (t , q) .(3.18)

As we shall see, these are common requirements in many applications. An explicit
example of a more general system with a degenerate Lagrangian is proposed
in § 4.

Lagrangian formalism. Under the stated assumptions, it is a straightforward
matter to see that the 2-form (3.16), associated with the extended Lagrangian sec-
tion (3.13), is presymplectic. In fact, its kernel is locally generated by the 2r vec-
tor fields

¯

¯l s

2a ij g s
i

¯

¯q
. j

2a ij g s
i u ¯L

¯q
. j

1l g g g
j v ¯

¯u
. ,

¯

¯l
.

s

(3.19)

where a ij indicates the inverse matrix of aij »4
¯ 2 L

¯q
. i ¯q

. j
. Then, we may apply the

presymplectic algorithm outlined in § 2.2.
In this connection, as pointed out in [11], there is no loss in generality in

looking for solutions of (3.17) only on the surface M0 »4 ]z� L(Vn11 3Dr )Nu
.

4L(p(z) )(, image of the section (3.13); in fact, every solution is automatically tangent
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to M0 and also invariant under transport along the fibers of L(Vn113 Dr ).
A direct calculation shows that the constraint algorithm stabilizes at the first

step, singling out the final constraint manifold M»4M1 4 ]z�M0 Ng s (z) 40(,
where we denoted again by g s the pull-back of the functions (3.18) on L(Vn11

3Dr ). Taking the first identification (3.8) into account, it is easily seen that M is
(locally) diffeomorphic to the Cartesian product A 3TDr.

A direct application of the contents of §2.2 shows that the solution of the equa-
tions of motion (3.17) is provided by the vector fields ZA �D 1 (M) of the
form

ZA 4Z1Z(L)
¯

¯u
.(3.20a)

with

Z4
¯

¯t
1q

. i ¯

¯q i
1Zs

¯

¯l s

1Z
.

i ¯

¯q
. i

1Z
.

s

¯

¯l
.

s

(3.20b)

the components Zs and Z
.

i having explicit expression

Zs (t , q i , l s , q
. i ) 4bsgg ¯g g

k

¯t
q
. k 1

¯g g
0

¯t
1

¯g g
k

¯q i
q
. k q

. i 1
¯g g

0

¯q i
q
. i 1F i g g

i h(3.20c)

and

Z
.

i (t , q i , l s , q
. i ) 42a ij Zs g s

j 1F i(3.20d)

where

F i (t , q i , l s , q
. i )

4a iju ¯L

¯q j
2

¯ 2 L

¯t¯q
. j

2
¯ 2 L

¯q k ¯q
. j

q
. k 2l sg ¯g s

j

¯t
1

¯g s
j

¯q k
q
. k 2

¯g s

¯q j
hv(3.20e)

and bgs is the inverse matrix of b gs4a ij g s
i g g

j .
In conclusion, there exists a whole family of solutions for eq. (2.22) along M,

provided by the vector fields ZA �D 1 (M) satisfying requirements (3.20); as a con-
sequence, the only arbitrariness in the description of any such ZA is placed in the
components Z

.
s (t , q , l , q

.
, l

.
).

Moreover, under the stated assumptions, the Lagrangian section (3.13) is al-
ways admissible in the sense of § 2.2. More precisely, the regularity condition
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V

¯ 2 L

¯q
. i ¯q

. j V
c0 implies that both involutive distributions D and Dl are locally

spanned by the vector fields
¯

¯l
.

s

, s41, R , r (considered as fields on j1 (Vn11

3Dr , D) and L(Vn11 3Dr ) respectively). What is more, taking identifications
(3.7) and (3.8) into account again, the leaf spaces 4»4 j1 (Vn11 3Dr , D) /D, 7»

4 L(Vn11 3Dr ) /Dl and 8»4M/DlNM are respectively diffeomorphic to j1 (Vn11 )
3Dr, L(Vn11 )3Dr and A 3Dr. We refer 7 to natural local coordinates
t , q , q

.
, u

.
, l.

We remark that all solutions (3.20) are prolongable (i.e. they project to the
quotient space 7 [8]) and are JA-equivalent. Then, following § 2.2 (see [11] for more
details), we may associate with the whole family of solutions (3.20) a unique sub-
manifold S%M on which each of them is a SODE. More in detail, it is easily seen
that the submanifold S is the image space of the map (section) a : 8KM locally
expressed as (t , q i , q

. i , l s ) K (t , q i , q
. i , l s , l

.
s4Zs (t , q , q

.
, l) ).

Finally, still referring to [11], it is a straightforward matter to see that
eq. (2.22) admits a unique SODE solution ZA along S; the latter is of the form

(3.20a) with Z4 Z1Z(Zs )
¯

¯l
.

s

, being

Z 4
¯

¯t
1q

. i ¯

¯q i
1Zs

¯

¯l s

1Z
.

i ¯

¯q
. i

(3.21)

and the components Zs and Z
.

i obeying eqs. (3.20c, d).
Hamiltonian formalism. A Hamiltonian description of the given system may

be set up implementing the Legendre transformation induced by the extended
Lagrangian section (3.13). To this end, we observe that the connection 1-form u l

(see eq. (2.11)) assumes the local expression

u l 4v 0 2 u ¯L

¯q
. i

1l s g s
i v v i(3.22)

while j1 (P3Dr , Vn11 3Dr ) is endowed with the canonical contact 1-form U, lo-
cally described as

U4du2p0 dt2pi dq i 2p s dl s .(3.23)

As briefly reminded at the end of § 2.1, the Legendre transformation is defined as
the unique map L : j1 (P3Dr , D) K j1 (P3Dr , Vn11 3Dr ), fibered over P3Dr,
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satisfying L*(U) 4u l . A direct calculation shows that L is locally represented
as

p0 4 u
.
2u ¯L

¯q
. i

1l s g s
i v q

. i , pi 4 u ¯L

¯q
. i

1l s g s
i v , p s40 .(3.24)

It is straightforward to check that L induces a corresponding map L
A : L(Vn11

3Dr ) K H (Vn11 3Dr ), still described by eqs. (3.24).
As a matter of fact, the reader may easily verify that:
a) the image space P»4 L

A(L(Vn11 3Dr ) ) is a submanifold of H (Vn11 3Dr ),
locally defined by the equations p s40;

b) L
A is a submersion on its image and its fibers are connected submanifolds of

L(Vn11 3Dr ).

Being the above properties verified, following the standard terminology, the
extended Lagrangian section l is said almost regular [7].

The restriction of the 2-form 2dU to the submanifold P gives rise to a pre-
symplectic structure whose local expression is

V× 4dp0 Rdt1dpi Rdq i .(3.25)

Moreover:
(i) the first relation (3.12b) shows that the submanifold P is locally identified

with the Cartesian product H (Vn11 )3Dr ; the latter inherits a principal fiber
bundle structure over P(Vn11 )3Dr in a natural way;

(ii) the regularity condition det
V

¯ 2 L

¯q
. i ¯q

. j V
c0 ensures the local invertibility of

the relations pi 4 u ¯L

¯q
. i

1l s g s
i v in terms of q

. i 4 q
. i (t , q k , pk , l s );

(iii) the image of M0 under the map L
A may be locally viewed as the image spa-

ce P0 of a corresponding section h× : P(Vn11 )3Dr K H (Vn11 )3Dr, expressed
as

p0 42H(t , q k , pk , l g ) »4L2 u ¯L

¯q
. i

1l s g s
i v q

. i (t , q k , pk , l g )(3.26)

(iv) strictly associated with the section (3.26) there is the trivialization s×h »4p0

1H of the bundle H (Vn11 )3Dr KP(Vn11 )3Dr.
On the basis of the stated results, we may construct a problem of motion on P
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through the equation

Z×2l V×42ds×h(3.27)

with unknown Z× �D 1 (P).
Once again, the problem (3.27) may be studied by means of the presymplectic

constraint algorithm. As in the Lagrangian case, we may look for solutions of
(3.27) only on the surface P0 »4 ]z�PNs h (z) 40(, image of the section h×.

The Equivalence Theorem [8] — obviously adapted to the present context —
implies that the constraint algorithm stops at the first step again, singling out the
final constraint manifold P1 »4 ]z�P0 NaTP0

» , ds h b(z) 40( (see eq. (2.27)).

A direct calculation shows that locally TP0
»4Span { ¯

¯l g

} and, as a conse-

quence, the submanifold P1 is locally described as

xg »4
¯s h

¯l g

42g g
i q

. i (t , q k , pk , l s )2g g
0 40 ,(3.28)

Assuming that the condition det
V

¯xg

¯l s
V

c0 is satisfied everywhere (3), eqs. (3.28)

may be locally solved with respect to the l s , i.e. l s4l s (t , q i , pi ). This allows to
give a local representation of the submanifold P1 as the image space of a map
hA : P(Vn11 ) KP, described by the relations

l s4l s (t , q i , pi ) , p0 42H(t , q i , pi ) »42H(t , q i , pi , l s (t , q i , pi ) ).(3.29)

As a consequence, the problem (3.27) may be pulled-back on P(Vn11 ), since
eq. (3.27) implies

Z×2l hA*(V×) 40, aZ×, dtb 41(3.30)

on P1 (CP(Vn11 )). Noticing that hA*(V×) 42dHRdt1dpi Rdq i, eqs. (3.30) de-
scribe a standard Hamiltonian system associated with the Hamiltonian H on the
phase space P(Vn11 ).

It follows that eqs. (3.30) admit as unique solution the Hamiltonian flow

Z× 4
¯

¯t
1

¯H

¯pi

¯

¯q i
2

¯H

¯q i

¯

¯pi

.(3.31)

(3) Such a condition is always verified when the Lagrangian is quadratic in the vari-
ables q

. i.
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We notice that, passing to the Hamiltonian context, a sort of reduction of the pro-
blem is possible: indeed, the degrees of freedom of the system have been reduced
from n1r to n. A striking aspect of the above result is the possibility of applying
all the standard methods of free Hamiltonian systems such as Hamilton-Jacobi
theory, Marsden-Weinstein reduction etc.

R e m a r k . Following [4] and adapting the argument to the present context, it
is easy to prove that P1 defines a set of second class constraints and that the ca-
nonical Poisson Bracket on P1 is exactly the restriction of the Dirac bracket defi-
ned on H (Vn11 3Dr ).

4 - Examples

E x a m p l e 1. Consider a homogeneous disk of radius R and mass m rolling
without sliding on a horizontal plane and constrained to remain vertical. Introdu-
ce coordinates x, y, W and u where x and y indicate the position of the center of
mass, W denotes the angle between the tangent of the disk at the point of contact
and the x-axis and u the angle of rotation of the disk around its center. A time-de-

pendent viscous resistance force F42
1

2
b(t) vp acts on each point p of the

disk.
We are interested in finding the evolutions of the disk which make the work of

the resistance force between any two instants t0 and t1

�
t0

t1
1

2
b(t)gx. 2 1y

. 2 1I1 W
. 2 1I2 u

.
2h dt

stationary. I1 and I2 denote the moments of inertia (normalized by the constant
density of the disk).

The constraints due to the rolling condition are

g1 »4 x
.
2Ru

.
cosW40 , g2 »4 y

.
2Ru

.
sin W40 .

The above constrained variational problem may be handled as a free one associa-
ted with the extended Lagrangian

L4
1

2
b(t)gx. 2 1y

. 2 1I1 W
. 2 1I2 u

.
2h1l 1 g1 1l 2 g2 .

Following the procedure described in § 3.3, the constraint algorithm stabilizes on
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the final constraint manifold g1 4g2 40 where there exists a whole family of sol-
utions of the form (3.20) with

Z
.

1 42
1

b
Z1 2

b 8

b
x
.

(4.1a)

Z
.

2 42
1

b
Z2 2

b 8

b
y
.

(4.1b)

Z
.

3 4
1

bI1

g2b 8 I1 W
.

1l 1 Ru
.

sin W2l 2 Ru
.

cos Wh(4.1c)

Z
.

4 4
1

bI2

gR cos WZ1 1R sin WZ2 2b 8 I2 u
.
2l 1 RW

.
sin W1l 2 RW

.
cos Wh(4.1d)

Z1 4bRW
.

u
.

sin W1
1

I2 1R 2
[2b 8x

.
(I2 1R 2 sin2 W)1RI2 b 8u

.
cos W

1b 8 R 2 y
.

cos W sin W1l 1 R 2 W
.

cos W sin W2l 2 R 2W
.

cos2 W]

(4.1e)

Z2 42bRW
.

u
.

cos W1
1

I2 1R 2
[2b 8y

.
(I2 1R 2 cos2 W)1RI2 b 8u

.
sin W

1b 8 R 2 x
.

cos W sin W2l 2 R 2 W
.

cos W sin W1l 1 R 2W
.

sin2 W]

(4.1f)

where everything must be evaluated on the final constraint manifold g1 4g2

40.
According to § 3.3 there exists a unique submanifold S: l

.
1 2Z1 40, l

.
2 2Z2 40

of the constraint manifold where the SODE solution given by (the corresponding
of) eq. (3.21) is unique. Eqs. (4.1) yield the evolution laws for the unknowns x(t),
y(t), W(t), u(t), l 1 (t) and l 2 (t).

E x a m p l e 2. In the following example we shall apply the proposed geo-
metrical construction to a simple economic model. Given two firms, we denote by
q 1, q 2 the amount of goods produced by each of them and by q

. 1, q
. 2 their rate of

production.
Under the hypothesis that the law ruling the unitary cost of production is

e bt 1

2
A i q

. i, i41, 2 (A i 4const ., b= constant discount rate), the functional expres-
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sing the total cost of production between two instants t0, t1 is

C4�
t0

t1

e bt 1

2
[A 1 (q

. 1 )2 1A 2 (q
. 2 )2 ] dt .(4.2)

We are interested in finding the stationary points of the total cost functional (4.2)
subject to the following constraint

g»4 q
. 2 2D1B(q 1 1q 2 )(4.3)

where D and B are suitable constants.
The constraint (4.3) could be meant as a law imposition aimed at reducing the

rate of production of the second firm in order to stop the production when the
percentage B of the total production equals the assigned quantity D.

The extended Lagrangian associated with the problem is now

L4e bt 1

2
[A 1 (q

. 1 )2 1A 2 (q
. 2 )2 ]1lg .

The final constraint manifold is described by the equation g40, where there
exists a whole family of solutions of the form (3.20) with

Z4e 2bt A 2 [B(q
. 1 1q

. 2 )1bq
. 2 ]1lB(4.4a)

Z
.

1 4bq
. 1 1

lBe bt

A 1
(4.4b)

Z
.

2 42B(q
. 1 1q

. 2 )(4.4c)

where, once again, everything must be evaluated on the final constraint manifold
g40.

As above, S : l
.
2Z40 is the unique submanifold of the final constraint mani-

fold where the SODE solution given by (the corresponding of) eq. (3.21) is
unique.

The Hamiltonian description of the problem may be achieved by implementing
the Legendre transformation (3.24) and following the subsequent discussion. Lea-
ving the details to the reader, it is a straightforward matter to see that the «redu-
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Figure 1. – Circuit of Example 3.

ced» Hamiltonian (3.29) is expressed as

H(t , q 1 , q 2 , p1 , p2 ) 4
p1

2 e bt

2A 1
1p2 [D2B(q 1 1q 2 )]2

e 2bt A 2

2
[D2B(q 1 1q 2 )]2

yielding the corresponding Hamilton equations

q
. 1 4

p1 e bt

A 1
, q

. 2 4D2B(q 1 1q 2 ), p
.

1 4 p
.

2 4B[p2 2e 2bt A 2 (D2B(q 1 1q 2 ) )] .

The latters are simpler to solve than their Lagrangian counterpart (4.4), since
they can be decoupled more easily.

E x a m p l e 3. In this last example we present a system whose Lagrangian is
degenerate, in order to show how the machinery works in its full generality; for
simplicity, we deal with a time-independent problem.

Consider an analog circuit composed by a voltage generator coupled to a load
through a transformer as illustrated in Fig. 1 where: R1 and R2 denote resistors,
L1 and L2 the self-inductances of the two solenoids, M the mutual-inductance bet-
ween them and e the e.m.f. supplied by a generator.

The circuit is ruled by the Kirchoff laws

g1 »4e2R1 I1 2L1 I
.

1 2MI
.

2 40(4.5a)

g2 »4R2 I2 1L2 I
.

2 1MI
.

1 40(4.5b)

where I1 and I2 are the currents circulating in the loops 1 and 2 respect-
ively.

Considering eqs. (4.5) as imposed kinetic constraints, our problem is to find
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the stationary points of the total thermal energy

E4�
t0

t1y (e2L1 I
.

1 2MI
.

2 )2

R1

1
(L2 I

.
2 1MI

.
1 )2

R2

z dt

dissipated by the resistors between any two instants t0 , t1 (4).
The associated extended Lagrangian is

L4
(e2L1 I

.
1 2MI

.
2 )2

R1

1
(L2 I

.
2 1MI

.
1 )2

R2

1l 1 g1 1l 2 g2 .

Following the procedure briefly outlined in § 2.2, we obtain:
l the constraint algorithm stops at the third step singling out a final con-

straint manifold M»4M3 , described by the Cartesian equations

g1 40, g2 40, l 1 422I1 , MR2 l 2 1R1 L2 l 1 40,

MR2 I
.

2 1R1 R2 I1 2L2 R1 I
.

1 40

l the discussion of the SODE problem identifies a unique submanifold S%M,
defined by the additional equations

e
.
4R1 I

.
1 2

MR2

L2

I
.

2 1 gL1 2
M 2

L2
h aI1 , l

.
1 422 I

.
1 , l

.
2 42 I

.
2 12

R1

M
I1

where there exists a unique SODE solution of the form (3.20a) with Z4 Z

1Z(e
.
)

¯

¯e
. 1Z(l

.
1 )

¯

¯l
.

1

1Z(l
.

2 )
¯

¯l
.

2

, being

Z 4
¯

¯t
1I

.
1

¯

¯I1

1I
.

2
¯

¯I2

1e
. ¯

¯e

1l
.

1
¯

¯l 1

1l
.

2
¯

¯l 2

1aI1
¯

¯I
.

1

2
1

L2

(R2 I
.

2 1MaI1 )
¯

¯I
.

2

(4) The choice of using the expression
V 2

R
instead of RI 2 for the power dissipated by the

resistors is made in order to have a non-linear (and thus totally singular) extended
Lagrangian.
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with

a»4
R1 R2

2

R2 M 2 1R1 L2
2

.
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A b s t r a c t

Vakonomic systems may be considered singular Lagrangian ones, using the multi-
pliers as additional variables. The recent geometrical approach to degenerate Lagran-
gians, developed in the framework of Lagrangian bundles, is here applied to the study of
time-dependent vakonomic dynamics. Some illustrative applications to Mechanics, Eco-
nomy and analog circuits are given.

* * *


