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Holomorphic maps of Hartogs domains

into complex space forms (**)

1 - Introduction and preliminaries

The study of holomorphic and isometric immersions of a Kähler manifold
(M , g) into a finite or infinite dimensional complex space form started with Calabi
[1] to whom we refer for details and further results (see also [2], [4], [5], [7], [8]).
There are three types of complex space forms, depending on the sign of (the con-
stant) holomorphic sectional curvature:

(i) the complex Euclidean space CN , NGQ with the canonical metric deno-
ted by Gcan of zero holomorphic sectional curvature;

(ii) the complex projective space CP N
b (bD0 and NGQ) with the Fubini-Stu-

dy metric denoted by GFS (b) of positive holomorphic sectional curvature 4b;
(iii) the complex hyperbolic space CP N

b (bE0 and NGQ), namely the domain
B%CN given by

B4 m(z1 , z2 , R , zn ) �CNN !
j41

N

NzjN
2 E2

1

b
n

endowed with the hyperbolic metric denoted by Ghyp (b) of negative holomorphic
sectional curvature 4b .

The first important result due to Calabi [1] is the following:
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T h e o r e m 1.1. If a Kähler manifold (M , g) admits a holomorphic and iso-
metric immersion into a complex space form then g is real analytic.

If a Kähler metric g on M is real analytic, then in a neighborhood of every
point p�M , one can introduce a very special Kähler potential Dp for the metric g ,
which Calabi christened diastasis. Recall that a Kähler potential is an analytic

function F defined in a neighborhood of a point p such that v4
i

2
¯¯F , where v

is the Kähler form associated to g . In a complex coordinate system (z) around p
one has:

gab42g g ¯

¯za

,
¯

¯zb
h4

¯ 2 F

¯za ¯zb

.

A Kähler potential is not unique: it is defined up to the sum with the real part
of a holomorphic function. By duplicating the variables z and z a potential F can
be complex analytically continued to a function F

A defined in a neighborhood U of
the diagonal containing (p , p) �N3N (here N denotes the manifold conjugated
of N). The diastasis function is the Kähler potential Dp around p defined by

Dp (q) 4 F
A(q , q)1F

A(p , p)2F
A(p , q)2F

A(q , p).

Since Dp is real analytic one can consider its power series developments:

Dp (z , z) 4 !
j , kF0

ajk z mj zmk .(1)

Here we are using the following convention: we arrange every n-tuple of non-
negative integers as the sequence mj 4 (m1, j , m2, j , R , mn , j )j40, 1 , R

such that

m0 4 (0 , R , 0 ), NmjNGNmj11N , with NmjN4 !
a41

n

ma , j and z mj 4 »
a41

n

(za )ma , j .

E x a m p l e 1.2. Let p be the origin in CN . Then the diastasis at p is given by:

Dp (q) 4Np2qN2 , (q�CN .

E x a m p l e 1.3. Let (Z0 , Z1 , R , ZN ) be the homogeneous coordinates in
CP N

b , bD0 and let p4 [1 , 0 , R , 0 ]. In the affine chart U0 4 ]Z0 c0( endowed

with coordinates (z1 , R , zn ), zj 4
Zj

Z0

the diastasis at p reads as:

Dp (zj , zj ) 4
1

b
log g11b !

j41

n

Nzj N2h .(2)
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If one takes bE0, formula (2) define the diastasis at p of the complex hyperbolic
space CP N

b , bE0.
We are now ready to state the general criterium due to Calabi [1] for a Kähler

manifold to admit a holomorphic and isometric immersion into a complex space
form. This is expressed by Theorem 1.5 and Theorem 1.6 below. First we need the
following:

D e f i n i t i o n 1.4. Let (M , g) be a real analytic Kähler manifold an let p be
a point in M. We say that the Kähler metric g is resolvable of rank N at p if the
Q3Q matrix ajk given by formula (1) is positive semidefinite and of rank N . If
N4Q we say that the Kähler metric g is resolvable of infinite rank.

T h e o r e m 1.5 (see Calabi [1]). Let (M , g) be a real analytic Kähler mani-
fold.

(i) if g is resolvable of rank N at p�M then it is resolvable of rank N at
every point in M ;

(ii) suppose that M is simply-connected. Then (M , g) admits a holomorphic
and isometric immersion into CN if and only if g is resolvable of rank at
most N ;

(iii) let W : MKCN be a holomorphic and isometric immersion which is full
(i.e. the image W(M) is not contained in any hyperplane of CN ), then N is deter-
mined by the metric g and two such immersions are congruent under the unita-
ry group U(N).

Now, we consider the case of holomorphic immersions into CN
b . Let Dp be the

diastasis relative to a point p�M . Consider the «modified diastasis»
1

b
(e bDp 21)

and its power series development:

1

b
(e bDp 21) 4 !

j , kF0
bjk z mj zmk .(3)

We say that the metric g is b-resolvable of rank N at p , if the Q3Q matrix
bjk given by formula (3) is positive semidefinite and of rank N .

T h e o r e m 1.6 (see Calabi [1]). Let (M , g) be a real analytic Kähler mani-
fold and let b a real number different from 0.

(i) if g is b-resolvable of rank N at p�M then it is resolvable of rank N at
every point in M ;

(ii) suppose that M is simply-connected. Then (M , g) admits a holomorphic and
isometric immersion into CP N

b if and only if g is b-resolvable of rank at most N;
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(iii) let W : MKCP N
b be a holomorphic and isometric immersion which is

full (i.e. the image W(M) is not contained in any hyperplane of CP N
b ). Then N is

determined by the metric g and the constant b and two such immersions are
congruent under the isometry group of CP N

b .

In this paper we study the holomorphic and isometric immersions of a Har-
togs domain (HF , gF ) (see Sect. 2) into a complex space form. The main results of
this paper are contained in Sect. 2 and 3. In Section 2 we give a necessary and
sufficient condition for (HF , gF ) to admit a holomorphic and isometric immersion
into a complex space form (see Theorem 2.1.1 and Theorem 2.2.1). Moreover,
we prove that (HF , gF ) cannot be isometrically immersed either into CN or CP N

b

for bD0 and N finite (see Corollaries 2.1.2 and 2.2.2). The previous result can be
considered as an extension of a result of Calabi [1] (see Remark 2.2.5). In Section
3 we prove that if gF satisfies the Einstein condition then (HF , gF ) is biholomor-
phically isometric to CP 2

21 .

2 - The main results

Let F :[0 , x0 ) K (0 , 1Q] be a non increasing C 2 function from the interval
[0 , x0 ) %R to the extended positive reals (0 , 1Q] (the case x0 41Q is not
excluded). The Hartogs domain corresponding to the function F is the 2-complex
dimensional manifold HF %C2 defined as:

HF 4 ](z1 , z2 ) �C2 NNz1N2 Ex0 , Nz2N2 EF(Nz1N2 )( .(4)

In the hypothesis that F(0) EQ , one can define a real 2-form on HF by

v F 4
i

2
¯¯ log

1

F(Nz1N2 )2Nz2N2
.(5)

T h e o r e m 2.1 (cf. [3]). The following conditions are equivalent:

(i) v F is a Kähler form.

(ii) g xF 8

F
h8E0, (x� [0 , x0 ), (where F 8 denotes the first derivative of F).

(iii) ¯HF , the boundary of HF , is strictly pseudoconvex.

P r o o f . Let v F 4
i

2
!

j , k41

2

gab dzaRdzb be the expression of the Kähler form
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v F in the (global) coordinates (z1 , z2 ). A simple calculation shows that

g1 1 4
2HF 82HNz1N

2 F 91Nz1N
2 F 82

H 2 N
x4Nz1N2

,

g1 2 4g2 1 4
2F 8

H 2
z1 z2N

x4Nz1N2
,

g2 24
F

H 2 N
x4Nz1N2

,

where H is the real valued function on HF defined by H(z1 , z2 ) 4F(Nz1N2 )
2Nz2N2 . It follows that:

det gab4g1 1 g2 2 2Ng1 2N
2 42

F 2

H 3 g xF 8

F
h8N

x4Nz1N2
.(6)

The form v F is Kähler if and only if the matrix gab is positive definite and, since
g2 2D0, this is the case if and only if detgabD0. By (6) this condition turns out to be
equivalent to condition (ii) in Proposition 2.1. This shows the equivalence between
(i) and (ii). The equivalence between (ii) and (iii) can be found in [3]. r

In the sequel we will suppose v F is a Kähler form and will denote by gF the
corresponding Kähler metric on HF . Furthermore, we will suppose that gF is real
analytic. Let p4 (0 , 0 ) be the origin in C2 . Then the diastasis at p , globally defi-
ned in HF 3HF, is given by:

Dp (z , z) 4 log
1

F(Nz1N2 )2Nz2N2
.(7)

2.1. - Holomorphic immersions into CN

Define

C(r 1 , r 2 ) 4 log
1

F(r 1 )2r 2

.(8)

Since by hypothesis F is real analytic function it follows that the function C is real
analytic in the open set

](r 1 , r 2 ) �R2 Nr 1 Ekx0 , r 2 EkF(r 1 )(.
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Hence (8) can be expanded in power series

C(r 1 , r 2 ) 4 !
j , k40

1Q

cjk r 1
j r 2

k 4 !
j , k40

1Q
¯ j1kC

¯r 1
j r 2

k (p) r 1
j r 2

k .(9)

Therefore,

Dp (z , z) 4C(Nz1N2 , Nz2N2 ) 4 !
j , k40

1Q

cjk Nz1N2 j Nz2N2k .

Consequently, the Q3Q matrix ajk given by formula (1) is diagonal, more preci-
sely ajk 4d jk cmj

, where mj 4 (m1, j , m2, j ) (with the notation at page 2). Since HF

is simply-connected (even contractible) by Theorem 1.5 one easily gets:

T h e o r e m 2.1.1. The Hartogs domain HF endowed with the Kähler metric
gF admits a holomorphic and isometric full immersion into CN , NGQ iff N
among the cjk’s, given by (9), are positive and all other are zero.

C o r o l l a r y 2.1.2. The Hartogs domain (HF , gF ) cannot admit a holomor-
phic and isometric map into CN for N finite.

P r o o f . Suppose that there exists a holomorphic and isometric immersion of
(HF , gF ) into CN with N finite. Then, by Theorem 2.1.1 only finitely many cjk’s
would be strictly greater than zero. On the other hand,

c0k 4
¯k C

¯r 2
k

(p) 4 (F(0) )2k D0 (k ,

which gives the desired contradiction. r

R e m a r k 2.1.3. Theorem 2.1.1 gives an infinite number of conditions which
involve the derivatives of all orders of the function F at x40. For example c10 F0

is equivalent to
¯C

¯r 1

(p) 42
F 8 (0)

F(0)
F0, which is automatically satisfied being

F(0) D0 and being F a non increasing function. The first non trivial condition co-
mes from c20 F0. In fact

c20 4
¯2 C

¯r 1
2

(p) 4
(F 8 (0) )2 2F 9 (0) F(0)

F(0)2
F0,
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i.e.

F 9 (0) G
(F 8 (0) )2

F(0)
.(10)

E x a m p l e 2.1.4. Let F(x) 4e 2x , x� [0 , 1Q). It is immediate to verify that
condition (ii) in Proposition 2.1 is satisfied and hence v F is a Kähler form on HF .
This domain is considered also in [3], p. 451 and it is called the Spring
domain.

The function C given by (8) reads, in this case, as:

C(r 1 , r 2 ) 42 log (e 2r 1 2r 2 ) 4r 1 1!
j40

1Q

!
k41

1Q k j21

j!
r 1

j r 2
k .

Then c00 4cj0 40, (jD2, c10 41, and

cjk D0, (jF0, (kD1.

Therefore, by Theorem 2.1.1, the Spring domain admits a holomorphic and iso-
metric immersion into CQ .

E x a m p l e 2.1.5. Consider the function F(x) 4e 2x 12, x� [0 , 1 ). Since

g xF 8

F
h842

112e x (12x)

(112e x )2
E0, (x� [0 , 1 ),

it follows that the condition (ii) in Proposition 2.1 is satisfied and gF is a Kähler
metric on HF . On the other hand,

F 9 (0) 41 D
1

3
4

(F 8 (0) )2

F(0)
.

Therefore condition (10) is not satisfied, and so (HF , gF ) cannot be holomorphical-
ly and isometrically immersed into CN for any NGQ .

2.2. - Holomorphic immersions into CP N
b

Define the function

C(r 1 , r 2 ) 4
1

b
(F(r 1 )2r 2 )2b 21,(11)
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which is real analytic on the open set

](r 1 , r 2 ) �R2 Nr 1 Ekx0 , r 2 EkF(r 1 )( .

It follows that

Dp (z , z) 4 !
j , k41

1Q

cjk Nz1N2 j Nz1N2k

where cjk 4
¯C j1k

¯r 1
j r 2

k
(p). Consequently the Q3Q matrix bjk given by formula (3)

is diagonal, more precisely bjk 4d jk cmj
where mj 4 (m1 j , m2 j ). Since HF is simply-

connected by Theorem 1.6 one gets:

T h e o r e m 2.2.1. The Hartogs domain HF endowed with the Kähler metric
gF admits a holomorphic and isometric full immersion into CP N

b , NGQ iff N
among the cjk’s, given by formula (3), are positive and all other are zero.

C o r o l l a r y 2.2.2. The Hartogs domain (HF , gF ) cannot admit a holomor-
phic and isometric immersion into the finite dimensional complex projective
space, CP N

b (bD0 and N finite).

P r o o f . Suppose that there exists a holomorphic and isometric immersion of
(HF , gF ) into the complex projective space CP N

bD0 with N finite. Then, by Theo-
rem 2.2.1 only finitely many cjk’s would be strictly greater than zero. On the other

hand, it is immediate to verify that c0k 4
¯k C

¯r 2
k

(p) D0, (k , the desired contradic-
tion. r

E x a m p l e 2.2.3. Let b41 and F(x) 4e 2x , x� [0 , 1Q). The function C
given by (11) reads as:

C(r 1 , r 2 ) 4
1

e 2r 1 2r 2

21 4 !
j , k40

1Q (k11) j

j!
r 1

j r 2
k .

Thus cjk D0, (j , k and, by Theorem 2.2.1, the Spring domain admits a holomor-
phic and isometric map in CP Q

1 .

R e m a r k 2.2.4. Let b421. The function C given by (11) reads as:

C(r 1 , r 2 ) 411r 2 2F(r 1 ) 411r 2 2 !
j40

1Q

Fj r 1
j ,
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where

Fj 4
¯ jF

¯x j
(0).

Then the matrix bjk given by formula (3) is positive semidefinite iff Fj G0. So, for
example the Spring domain cannot admit a holomorphic and isometric immersion
into the hyperbolic space CP N

bE0 for any NGQ , since the second derivative of
e 2x at 0 is negative.

R e m a r k 2.2.5. Observe that if F(x) 412x then (HF , gF ) is equal to the 2-
dimensional hyperbolic space CP 2

21 . Thus, Corollaries 2.1.2 and 2.2.2 can be consi-
dered as a generalization of a result due to Calabi [1] Theorem 13, which asserts
that CP 2

21 cannot admit a holomorphic and isometric immersion into CN and CN
b

for bD0 and N finite.

3 - The Einstein condition

T h e o r e m 3.1. Let HF be a Hartogs domain with strictly pseudoconvex
boundary endowed with its Kähler metric gF given by Theorem 2.1. Suppose that
gF is Einstein. Then (HF , gF ) is biholomorphically isometric to the 2-complex
hyperbolic space CP 2

21 .

We first prove an elementary lemma

L e m m a 3.2. Let f be a holomorphic function on an open set U%C contai-
ning the origin. Suppose that there exists a real analytic function f :(2x0 , x0 )
KR such that Nf(z)N2 4 f (NzN2 ). Then f(z) reduces to the constant f(0).

P r o o f . Let f(z) 4 !
j40

1Q

aj z j be the power series expansion of f at the origin,

and f (x) 4 !
l40

1Q

bl x l be the Taylor expansion of f at the origin. By hypothesis,

!
j , k40

1Q

aj ak z jzk 4 !
l40

1Q

bl NzN2 l ,

which implies that all the terms of the form aj ak z jzk with jck , are zero. It follo-
ws that aj 40 for jD0, and so the result. r
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P r o o f o f T h e o r e m 3.1. If gF is Kähler-Einstein, then

r v F
42i¯¯ log det gab4lv F 4l

i

2
¯¯ log

1

H
42

i

2
¯¯ log H l ,(12)

where l is the scalar curvature and r v F
is the Ricci form (see [6]). Thus

¯¯ log(H
2

l

2 det gjk ) 40.

Since the domain HF is simply connected there exists a holomorphic function f on
HF such that

H
2

l

2 det gjk 4NfN2 .

Therefore, by formula (6) above, one gets:

NfN2 42
F 2

H
l

2
13

g xF 8

F
h8N

x4Nz1N2
42

(F 81Nz1N
2 F 9 ) F2Nz1N

2 F 82

H
l

2
13

8N
x4Nz1N2

.

Since the Kähler metric gF is Einstein it is also real analytic and hence the
function F is real analytic in (2x0 , x0 ). By Lemma 3.2, being f holomorphic, one
can deduce that the function f equals a constant, say C . Therefore

(F 81Nz1N
2 F 9 ) F2Nz1 N2 F 82

H
l

2
13

42C 2 .(13)

Observe that the numerator of (13) depends only on Nz1N2 , while the denominator
depends also on Nz2N2 . Then formula (13) makes sense if and only if l426
and

(F 81xF 9 ) F2xF 82 42C 2 , (x� (2x0 , x0 ).(14)

Taking the first derivative of (14) at zero one gets 2F(0) F 9(0)40. Since F(0)c0,
it follows that F 9 (0) 40. Taking the higher order derivatives of (14) at zero one
obtains

0 4
¯k ( (F 81xF 9 ) F2xF 82 )

¯x k
(0) 4 (k11) F(0)

¯k F

¯x k
(0), kF1,

and so
¯k F

¯x k
(0) 40. Using again the analyticity of F one immediately obtains
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that F(x) 4a2bx , where a and b are positive constants. Then the map

W : HF KCP 2
21 :(z1 , z2 ) O uo b

a
z1 , o 1

a
z2v

is the desired biholomorphism satisfying

W*(Ghyp (21) ) 4gF . r
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A b s t r a c t

Let HF be a Hartogs domain with strictly pseudoconvex boundary endowed with its
natural Kähler metric gF (see Sect. 2). Following Calabi [1] we give necessary and suffi-
cient conditions for (HF , gF ) to admit a holomorphic and isometric map into a finite or
infinite dimensional complex space form. Moreover we prove that, if gF is Einstein, then
(HF , gF ) is biholomorphically isometric to the unit ball endowed with the hyperbolic
metric.

* * *
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