Giovanni Cimatti (*)

Forced oscillations in piezoelectric crystals (**)

1-Introduction

In this paper we prove existence and uniqueness of a unique periodic solution for the hyperbolic-elliptic system of partial differential equations, which models the forced oscillations in a piezoelectric viscoelastic body. We refer to [4] for a detailed desciption of the basic equations.

Let Ω, the region occupied by the body, be an open and bounded subset of \boldsymbol{R}^{3} with a boundary Γ of class C^{2}. We denote by n_{k} the unit vector normal to Γ and by $|\Omega|$ the volume of Ω. The forcing term $\boldsymbol{f}(x, t)$ is a function defined in $\Omega \times \boldsymbol{R}^{1}$, periodic in t with period T. To write the relevant equations we define the operators:

$$
\begin{equation*}
(A \boldsymbol{u})_{i}=-\left(a_{i j l m} u_{l, m}\right)_{, j} \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
C \phi=-\left(d_{k l} \phi, l\right)_{, k} \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
D_{i}(\phi, \boldsymbol{u})=-d_{i l} \phi_{, l}+e_{i l m} u_{l, m} \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
E \boldsymbol{u}=-\left(e_{k l m} u_{l, m}\right)_{, k} \quad(B \phi)_{i}=-\left(e_{i j l} \phi_{, l}\right)_{, j} \quad i=1,2,3 . \tag{1.4}
\end{equation*}
$$

[^0]The index summation convention has been used and $\frac{\partial v_{i}}{\partial x_{j}}=v_{i, j}$. The vector D_{i} is the electric induction and $a_{i j l m}$ the fourth order elastic tensor which is assumed to satisfy

$$
\begin{equation*}
a_{i j l m}=a_{l m i j}=a_{j i l m}=a_{i j m l} \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
a_{i j l m} X_{i j} X_{l m} \geqslant \alpha X_{i j} X_{i j}, \quad \alpha>0, \quad X_{i j} \in \boldsymbol{R}^{1}, \quad X_{i j}=X_{j i} \tag{1.6}
\end{equation*}
$$

The third order piezoelectric tensor $e_{i j l}$ and the dielectric tensor $d_{k l}$ obey the conditions:

$$
\begin{gather*}
e_{i j l}=e_{j i l}=e_{i l j} \tag{1.7}\\
d_{k l}=d_{l k}, \quad d_{k l} \xi_{k} \xi_{l} \geqslant \delta|\xi|^{2}, \quad \xi \in \boldsymbol{R}^{3} . \tag{1.8}
\end{gather*}
$$

The elastic displacement and the electric potential are denoted by $\boldsymbol{u}(x, t)$ and $\phi(x, t)$, respectively. We study the following problem: to find $\boldsymbol{u}(x, t)$ and $\phi(x, t)$ such that

$$
\begin{equation*}
\boldsymbol{u}^{\prime \prime}+A \boldsymbol{u}+B \phi+\beta\left(\boldsymbol{u}^{\prime}\right)=\boldsymbol{f} \tag{1.9}
\end{equation*}
$$

$$
\begin{gather*}
\boldsymbol{u}=0 \quad \text { on } \quad \Gamma \tag{1.10}\\
\boldsymbol{u}(x, t)=\boldsymbol{u}(x, t+T) \tag{1.11}\\
C \phi-E \boldsymbol{u}=0 \tag{1.12}\\
D_{k} n_{k}=0 \quad \text { on } \quad \Gamma \tag{1.13}\\
\phi(x, t)=\phi(x, t+T) \tag{1.14}\\
\int_{\Omega} \phi(x, t) d x=0 . \tag{1.15}
\end{gather*}
$$

The body is supposed to be electrically insulated on the boundary and condition (1.13) reflects this fact. The electric potential ϕ is defined apart an arbitrary constant, which is normalized with condition (1.15). The viscosity of the medium is modelled by a continuous strictly monotonic map $\beta(\boldsymbol{\xi})$ from \boldsymbol{R}^{3} to \boldsymbol{R}^{3}, on which we assume: (i) there exists $\delta>0$ and $h>0$ such that $\beta_{i}(\boldsymbol{\xi}) \boldsymbol{\xi}_{i} \geqslant h|\boldsymbol{\xi}|^{\varrho+1}$ if $|\boldsymbol{\xi}| \geqslant \delta$, (ii) there exists $k>0$ and $K>0$ such that $|\beta(\boldsymbol{\xi})| \leqslant K+k|\boldsymbol{\xi}|^{\varrho}$ for all $\boldsymbol{\xi} \in \boldsymbol{R}^{3}, \varrho \geqslant 1$.

We use a method proposed by G. Prodi in [6] to find the apriori estimates on $\boldsymbol{u}(t)$ needed to prove existence of a periodic solution. The trick lies in definig new
unknown functions $\boldsymbol{v}(t)$ and $\psi(t)$ with zero means with respect to t :

$$
\begin{equation*}
\boldsymbol{v}(t)=\boldsymbol{u}(t)-\overline{\boldsymbol{u}}, \quad \psi(t)=\phi(t)-\bar{\phi} \tag{1.16}
\end{equation*}
$$

Here and hereafter an overbar denotes the mean over one period. Averaging the equations (1.9)-(1.15) over one period we find

$$
\begin{gather*}
A(\overline{\boldsymbol{u}})+B(\bar{\phi})+\bar{\beta}\left(\boldsymbol{v}^{\prime}\right)=\overline{\boldsymbol{f}} \tag{1.17}\\
\overline{\boldsymbol{u}}=0 \quad \text { on } \quad \Gamma \tag{1.18}\\
C(\bar{\phi})-E(\overline{\boldsymbol{u}})=0 \tag{1.19}
\end{gather*}
$$

$$
\begin{gather*}
D_{k}(\bar{\phi}, \overline{\boldsymbol{u}}) n_{k}=0 \quad \text { on } \quad \Gamma \tag{1.20}\\
\int_{\Omega} \bar{\phi}(x) d x=0 . \tag{1.21}
\end{gather*}
$$

It follows that \boldsymbol{v} and ψ satisfy the problem

$$
\begin{equation*}
\boldsymbol{v}^{\prime \prime}+A \boldsymbol{v}+B \psi+\beta\left(\boldsymbol{v}^{\prime}\right)-\bar{\beta}\left(\boldsymbol{v}^{\prime}\right)=\boldsymbol{g} \tag{1.22}
\end{equation*}
$$

(1.23)

$$
\boldsymbol{v}=0 \quad \text { on } \quad \Gamma
$$

$$
\begin{equation*}
C \psi-E \boldsymbol{v}=0 \tag{1.24}
\end{equation*}
$$

$$
\begin{equation*}
D_{k}(\psi, \boldsymbol{v}) n_{k}=0 \quad \text { on } \quad \Gamma \tag{1.25}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Omega} \psi(x, t) d x=0 \tag{1.26}
\end{equation*}
$$

where $\boldsymbol{g}=\boldsymbol{f}-\overline{\boldsymbol{f}}$.

2 - Weak formulation and existence of periodic solution

The scalar product in $L^{2}(\Omega)$ and in $\left(L^{2}(\Omega)\right)^{3}$ is denoted by (,) and the corresponding norm by $\|\|$. Spaces of vector-valued functions are denoted by boldface. If B is a Banach space and $1 \leqslant p<\infty$, the set of functions $u(t)$ with values in B, periodic with period T, such that

$$
\int_{0}^{T}\|u(t)\|_{B}^{p} d t<\infty
$$

is denoted by $\boldsymbol{L}^{p}(T ; B)$. We define the space

$$
V=\left\{\phi \in H^{1}(\Omega), \int_{\Omega} \phi(x, t) d x=0\right\}
$$

and the bilinear forms: $a(\boldsymbol{u}, \boldsymbol{v}), b(\phi, \boldsymbol{u})$ and $c(\phi, \psi)$ on $\boldsymbol{H}_{0}^{1}(\Omega) \times \boldsymbol{H}_{0}^{1}(\Omega)$, $V \times \boldsymbol{H}_{0}^{1}(\Omega)$, and $V \times V$ respectively, by

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{v})=\int_{\Omega} a_{i j l m} u_{l, m} v_{i, j} d x \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& b(\phi, \boldsymbol{u})=\int_{\Omega} e_{i j l} \phi_{, l} u_{i, j} d x \tag{2.2}\\
& c(\phi, \psi)=\int_{\Omega} d_{i j} \phi_{, i} \psi_{, j} d x \tag{2.3}
\end{align*}
$$

They are all bounded and $a(\boldsymbol{u}, \boldsymbol{v}), c(\phi, \psi)$ are also symmetric and coercive by (1.5)-(1.8). The operators

$$
\begin{equation*}
A: \boldsymbol{H}_{0}^{1}(\Omega) \cap \boldsymbol{H}^{2}(\Omega) \rightarrow \boldsymbol{L}^{2}(\Omega) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
C: V \cap H^{2}(\Omega) \rightarrow L^{2}(\Omega) \tag{2.5}
\end{equation*}
$$

defined in (1.1) and (1.2) correspond to $a(\boldsymbol{u}, \boldsymbol{v})$ and $c(\phi, \psi)$. The operators

$$
\begin{equation*}
B: V \cap H^{2}(\Omega) \rightarrow \boldsymbol{L}^{2}(\Omega), \quad E: \boldsymbol{H}_{0}^{1}(\Omega) \cap \boldsymbol{H}^{2}(\Omega) \rightarrow L^{2}(\Omega), \tag{2.6}
\end{equation*}
$$

defined in (1.4), correspond to $b(\phi, \boldsymbol{u})$ via

$$
\begin{equation*}
(B \phi, \boldsymbol{u})=b(\phi, \boldsymbol{u})=(E \boldsymbol{u}, \phi) \tag{2.7}
\end{equation*}
$$

We assume:

$$
\begin{equation*}
\boldsymbol{f}(t) \in L^{\frac{\varrho+1}{\varrho}}\left(T ; \boldsymbol{L}^{\frac{\varrho+1}{\varrho}}(\Omega)\right) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
a_{i j l m} \in L^{\infty}(\Omega), \quad e_{i j l} \in L^{\infty}(\Omega), \quad d_{i j} \in L^{\infty}(\Omega) \tag{2.9}
\end{equation*}
$$

and intend (1.6) and (1.8) to hold a.e. in Ω. The weak formulation of problem
(1.17)-(1.26) is the following: to find \boldsymbol{v}, ψ and $\overline{\boldsymbol{u}}, \bar{\phi}$ such that
(2.10)

$$
\boldsymbol{v}(t) \in L^{\infty}\left(T ; \boldsymbol{H}_{0}^{1}(\Omega)\right)
$$

$$
\begin{equation*}
\boldsymbol{v}^{\prime}(t) \in L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right) \cap L^{\infty}\left(T ; \boldsymbol{L}^{2}(\Omega)\right) \tag{2.11}
\end{equation*}
$$

(2.12)

$$
\overline{\boldsymbol{v}}=0
$$

(2.13) $\quad\left(\boldsymbol{v}^{\prime \prime}(t), \boldsymbol{v}\right)+a(\mathbf{v}(t), \boldsymbol{v})+b(\psi(t), \boldsymbol{v})+\left(\beta\left(\mathbf{v}^{\prime}\right)-\bar{\beta}\left(\boldsymbol{v}^{\prime}\right), \boldsymbol{v}\right)=(\boldsymbol{g}(t), \boldsymbol{v})$
for all $\boldsymbol{v} \in \boldsymbol{L}^{\varrho+1}(\Omega) \cap \boldsymbol{H}_{0}^{1}(\Omega)$

$$
\begin{equation*}
\psi(t) \in L^{\infty}(T ; V) \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
c(\psi(t), \eta)=b(\eta, \boldsymbol{v}(t)) \tag{2.15}
\end{equation*}
$$

for all $\eta \in V$

$$
\begin{equation*}
\overline{\boldsymbol{u}} \in \boldsymbol{H}_{0}^{1, \frac{\varrho+1}{\varrho}}(\Omega) \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
a(\overline{\boldsymbol{u}}, \boldsymbol{w})+b(\bar{\phi}, \boldsymbol{w})+\left(\bar{\beta}\left(\boldsymbol{v}^{\prime}\right), \boldsymbol{w}\right)=(\overline{\boldsymbol{f}}, \boldsymbol{w}) \tag{2.18}
\end{equation*}
$$

for all $\boldsymbol{w} \in \boldsymbol{L}^{\rho+1}(\Omega) \cap \boldsymbol{H}_{0}^{1}(\Omega)$

$$
\begin{equation*}
c(\bar{\phi}, \eta)=b(\eta, \overline{\boldsymbol{u}}) \tag{2.19}
\end{equation*}
$$

for all $\eta \in H^{1, \varrho+1}(\Omega)$ such that $\int_{\Omega} \eta d x=0$.
Instead of (2.13) and (2.15) we can take, as an equivalent weak formulation,
(2.20)

$$
\begin{gathered}
\int_{0}^{T}\left\{-\left(\boldsymbol{v}^{\prime}(t), \boldsymbol{\gamma}^{\prime}(t)\right)+a(\boldsymbol{v}(t), \boldsymbol{\gamma}(t))+b(\psi(t), \boldsymbol{\gamma}(t))+\left(\beta\left(\boldsymbol{v}^{\prime}\right)-\bar{\beta}\left(\boldsymbol{v}^{\prime}\right), \boldsymbol{\gamma}(t)\right)\right\} d t \\
=\int_{0}^{T}(\boldsymbol{g}(t), \boldsymbol{\gamma}(t)) d t
\end{gathered}
$$

for all $\quad \boldsymbol{\gamma}(t) \in L^{\infty}\left(T ; \boldsymbol{H}_{0}^{1}(\Omega)\right) \cap L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right), \quad \boldsymbol{\gamma}^{\prime}(t) \in L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right)$ $\cap L^{\infty}\left(T ; L^{2}(\Omega)\right)$

$$
\begin{equation*}
\int_{0}^{T}\{c(\psi(t), \zeta(t))-b(\zeta(t), \boldsymbol{v}(t))\} d t=0 \tag{2.21}
\end{equation*}
$$

for all $\zeta(t) \in L^{2}(T, V)$.
Theorem. There exists one and only one solution to problem (2.10)(2.21).

Proof. We apply the Faedo-Galerkin method. Let $\left\{\boldsymbol{w}_{k}\right\}$ be a sequence of functions of class $C_{0}^{\infty}(\Omega)$ free and total in $\boldsymbol{H}_{0}^{1}(\Omega) \cap \boldsymbol{L}^{\rho+1}(\Omega)$. For each m we define an approximate solution

$$
\boldsymbol{v}_{m}(t)=\sum_{k=1}^{m} c_{m k}(t) \boldsymbol{w}_{k}
$$

and determine $\psi_{m}(t) \in V$ as the unique solution to the following problem

$$
\begin{equation*}
\psi_{m}(t) \in V \quad c\left(\psi_{m}(t), \eta\right)=b\left(\eta, \boldsymbol{v}_{m}(t)\right) \tag{2.22}
\end{equation*}
$$

for all $\eta \in V$. The coefficients $c_{m k}(t)$ are computed with the system of ordinary differential equations

$$
\begin{equation*}
\left(\boldsymbol{v}_{m}^{\prime \prime}(t), \boldsymbol{w}_{k}\right)+\alpha\left(\boldsymbol{v}_{m}(t), \boldsymbol{w}_{k}\right)+b\left(\psi_{m}(t), \boldsymbol{w}_{k}\right)+\left(\beta\left(\boldsymbol{v}_{m}^{\prime}\right)-\bar{\beta}\left(\boldsymbol{v}_{m}^{\prime}\right), \boldsymbol{w}_{k}\right)=\left(\boldsymbol{g}(t), \boldsymbol{w}_{k}\right) . \tag{2.23}
\end{equation*}
$$

To prove that there exists one and only one solution to the system (2.22), (2.23) we apply the Leray-Schauder method, considering the following auxiliary problem P_{λ} containing the parameter $\lambda \in[0,1]$:

$$
\begin{gather*}
=\lambda\left(\boldsymbol{v}_{m}^{\prime}(t), \boldsymbol{w}_{k}\right)-\lambda\left(\beta\left(\boldsymbol{v}_{m}^{\prime}\right)-\bar{\beta}\left(\boldsymbol{v}_{m}^{\prime}\right), \boldsymbol{w}_{k}\right)+\left(\boldsymbol{g}(t), \boldsymbol{w}_{k}\right), k=1,2, \ldots, m . \tag{2.24}\\
\psi_{m}(t) \in V \quad c\left(\psi_{m}(t), \eta\right)=b\left(\eta, \boldsymbol{v}_{m}(t)\right) .
\end{gather*}
$$

If $\lambda=0$ the linear system P_{o} has one and only one solution periodic of period T. Resonance phenomena are in fact excluded by the presence of the dissipative term $\left(\boldsymbol{v}_{m}^{\prime}(t), \boldsymbol{w}_{k}\right)$. Since all possible periodic solutions of period T of problems P_{λ} are «a priori» bounded indipendently of λ, we conclude that problem P_{1}, i.e. (2.22), (2.23), admits one and only one periodic solution of period T. Moreover, in-
tegrating (2.23) over one period and taking into account that $\overline{\boldsymbol{g}}=0$, we obtain

$$
a\left(\overline{\boldsymbol{v}}_{m}, \boldsymbol{w}_{k}\right)+b\left(\bar{\psi}_{m}, \boldsymbol{w}_{k}\right)=0 .
$$

By (2.22) this implies

$$
a\left(\overline{\boldsymbol{v}}_{m}, \overline{\boldsymbol{v}}_{m}\right)+c\left(\bar{\psi}_{m}, \bar{\psi}_{m}\right)=0,
$$

hence $\overline{\boldsymbol{v}}_{m}=0$. We proceed to find an apriori estimate for $\left\{\boldsymbol{v}_{m}^{\prime}(t)\right\}$. Taking the time derivative in (2.22) and choosing $\eta=\psi_{m}(t)$ in the resulting equation, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} c\left(\psi_{m}(t), \psi_{m}(t)\right)=b\left(\psi_{m}(t), \boldsymbol{v}_{m}^{\prime}(t)\right) \tag{2.25}
\end{equation*}
$$

Let us multiply (2.23) by $c_{m k}^{\prime}(t)$, add for $k=1, \ldots m$ and recall (2.25). Defining

$$
\begin{equation*}
\xi_{m}(t)=\frac{1}{2}\left\|\boldsymbol{v}_{m}^{\prime}(t)\right\|^{2}+\frac{1}{2} a\left(\boldsymbol{v}_{m}(t), \boldsymbol{v}_{m}(t)\right)+\frac{1}{2} c\left(\psi_{m}(t), \psi_{m}(t)\right) \tag{2.26}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\xi_{m}^{\prime}(t)+\left(\beta\left(\boldsymbol{v}_{m}^{\prime}(t)\right)-\bar{\beta}\left(\boldsymbol{v}_{m}^{\prime}\right), \boldsymbol{v}_{m}^{\prime}(t)\right)=\left(\boldsymbol{g}(t), \boldsymbol{v}_{m}^{\prime}(t)\right) \tag{2.27}
\end{equation*}
$$

and, integrating over one period,

$$
\begin{equation*}
\int_{0}^{T}\left(\beta\left(\boldsymbol{v}_{m}^{\prime}(t)\right), \boldsymbol{v}_{m}^{\prime}(t)\right) d t=\int_{0}^{T}\left(\boldsymbol{g}(t), \boldsymbol{v}_{m}^{\prime}(t)\right) d t \tag{2.28}
\end{equation*}
$$

By assumption (i) we find easily that there exists a constant C_{1} such that

$$
\begin{equation*}
\int_{0}^{T}\left\|\boldsymbol{v}_{m}^{\prime}(t)\right\|_{\boldsymbol{L}^{++1}(\Omega)}^{\varrho+1} d t \leqslant C_{1} . \tag{2.29}
\end{equation*}
$$

Since $\overline{\boldsymbol{v}}_{m}=0$ we have also

$$
\begin{equation*}
\max _{t \in[0, T]}\left\|\boldsymbol{v}_{m}(t)\right\|_{\boldsymbol{L}^{\rho+1}(\Omega)} \leqslant C_{2} . \tag{2.30}
\end{equation*}
$$

The easy proof of estimate (2.30) is the main reason for adopting the present method. Let us multiply (2.23) by $c_{m k}(t)$, sum over k and integrate over one
period. We obtain

$$
\begin{align*}
& \int_{0}^{T}\left\{-\left\|\boldsymbol{v}_{m}^{\prime}(t)\right\|^{2}+a\left(\boldsymbol{v}_{m}(t), \boldsymbol{v}_{m}(t)\right)+c\left(\psi_{m}(t), \psi_{m}(t)\right)+\left(\beta\left(\boldsymbol{v}_{m}^{\prime}(t), \boldsymbol{v}_{m}(t)\right)\right\} d t\right. \tag{2.31}\\
&=\int_{0}^{T}\left(\boldsymbol{g}(t), \boldsymbol{v}_{m}(t)\right) d t
\end{align*}
$$

Use has been made of (2.22) with $\eta=\psi_{m}(t)$. Then (1.7), (1.9) and assumption (ii) yield, by the Hoelder inequality,

$$
\begin{align*}
& \alpha\left\|\boldsymbol{v}_{m}\right\|_{L^{2}\left(T ; \boldsymbol{H}_{0}^{1}(\Omega)\right)}^{2}+d\left\|\psi_{m}(t)\right\|_{L^{2}(T ; V)}^{2} \leqslant\left\|\boldsymbol{v}_{m}^{\prime}\right\|_{L^{2}\left(T ; L^{2}(\Omega)\right)}^{2}+K|\Omega|^{\frac{1}{2}} T^{\frac{1}{2}}\left\|\boldsymbol{v}_{m}\right\|_{L^{2}\left(T ; \boldsymbol{L}^{2}(\Omega)\right)} \tag{2.32}\\
& +k\left\|v_{m}^{\prime}\right\|\left\|_{L^{\varrho+1}\left(T ; \boldsymbol{L}^{\rho+1}(\Omega)\right)}\right\| \boldsymbol{v}_{m}\left\|_{L^{\varrho+1}\left(T ; \boldsymbol{L}^{\rho+1}(\Omega)\right)}+\right\| \boldsymbol{g}\left\|_{L^{\frac{\rho+1}{e}}} \frac{{ }^{\frac{\rho+1}{e}}\left(T ; \boldsymbol{L}^{\frac{\rho+1}{\varrho}}(\Omega)\right)}{}\right\| \boldsymbol{v}_{m} \|_{L^{\varrho+1}\left(T ; \boldsymbol{L}^{\rho+1}(\Omega)\right)} .
\end{align*}
$$

Recalling (2.29) and (2.30) we find

$$
\begin{equation*}
\int_{0}^{T}\left\|\boldsymbol{v}_{m}(t)\right\|_{\boldsymbol{H}_{0}^{1}(\Omega)}^{2} \leqslant C_{3} \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T}\left\|\psi_{m}(t)\right\|_{V}^{2} d t \leqslant C_{4} . \tag{2.34}
\end{equation*}
$$

Let us integrate (2.27) over an arbitrary interval [$\tau, t]$ and then integrate again the resulting equation, with respect to τ, over an interval of periodicity. We obtain

$$
T \xi_{m}(t)+\int_{0}^{T} \int_{\tau}^{t}\left(\beta\left(\boldsymbol{v}_{m}^{\prime}(\lambda)\right), \boldsymbol{v}_{m}^{\prime}(\lambda)\right) d \lambda d \tau
$$

$$
\begin{equation*}
=\int_{0}^{T}\left\{\xi_{m}(\tau)+\int_{\tau}^{t}\left(\bar{\beta}\left(\boldsymbol{v}_{m}^{\prime}\right), \boldsymbol{v}_{m}^{\prime}(\lambda)\right) d \lambda+\int_{\tau}^{t}\left(\boldsymbol{g}(\lambda), \boldsymbol{v}_{m}^{\prime}(\lambda)\right) d \lambda\right\} d \tau \tag{2.35}
\end{equation*}
$$

The left hand side in (2.35) is estimated from below using (ii), whereas the right hand side can be majorized using (2.29), (2.30) and (2.33). Therefore, there exists a constant C_{5} such that

$$
\begin{equation*}
\max _{t \in[0, T]}\left\{\left\|\boldsymbol{v}_{m}^{\prime}(t)\right\|^{2}+\left\|\boldsymbol{v}_{m}(t)\right\|_{\boldsymbol{H}_{0}^{1}(\Omega)}^{2}+\left\|\psi_{m}(t)\right\|_{V}^{2}\right\} \leqslant C_{5} \tag{2.36}
\end{equation*}
$$

All constants C_{i} depends only on the data. It follows that from $\left\{\boldsymbol{v}_{m}\right\}$ and $\left\{\psi_{m}\right\}$ it
is possible to extract two subsequences, not relabelled, such that

$$
\begin{equation*}
\boldsymbol{v}_{m} \rightarrow \boldsymbol{v} \quad \text { weak } * \text { in } L^{\infty}\left(T ; \boldsymbol{H}_{0}^{1}(\Omega)\right) \tag{2.37}
\end{equation*}
$$

(2.38) $\quad \boldsymbol{v}_{m}^{\prime} \rightarrow \boldsymbol{v}^{\prime}$ weak * in $L^{\infty}\left(T ; \boldsymbol{L}^{2}(\Omega)\right)$ and weakly in $L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right)$

$$
\begin{equation*}
\psi_{m} \rightarrow \psi \text { in } L^{2}(T ; V) \text { weakly. } \tag{2.39}
\end{equation*}
$$

In addition, by (ii), there exists \boldsymbol{h} such that:

$$
\begin{equation*}
\beta\left(\boldsymbol{v}_{m}^{\prime}\right) \rightarrow \boldsymbol{h} \text { weakly in } L^{\frac{\varrho+1}{\varrho}}\left(T ; \boldsymbol{L}^{\frac{\varrho+1}{\varrho}}(\Omega)\right) \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\beta}\left(\boldsymbol{v}_{m}^{\prime}\right) \rightarrow \overline{\boldsymbol{h}} \text { weakly in } \boldsymbol{L}^{\frac{\varrho+1}{\varrho}}(\Omega) \tag{2.41}
\end{equation*}
$$

By the assumed properties of $\left\{\boldsymbol{w}_{k}\right\}$ we have, recalling (2.23):
(2.42)

$$
\int_{0}^{T}\left\{-\left(\boldsymbol{v}^{\prime}(t), \boldsymbol{\gamma}^{\prime}(t)\right)+a(\boldsymbol{v}(t), \boldsymbol{\gamma}(t))+b(\psi(t), \boldsymbol{\gamma}(t))+(\boldsymbol{h}(t)-\overline{\boldsymbol{h}}, \boldsymbol{\gamma}(t))\right\} d t
$$

$$
=\int_{0}^{T}(\boldsymbol{g}(t), \boldsymbol{\gamma}(t)) d t
$$

for all $\boldsymbol{\gamma}(t) \in L^{\infty}\left(T ; \boldsymbol{H}_{0}^{1}(\Omega)\right)$ and $\boldsymbol{\gamma}^{\prime}(t) \in L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right) \cap L^{\infty}\left(T ; \boldsymbol{L}^{2}(\Omega)\right)$. From (2.23) we obtain, by (2.39),

$$
\begin{equation*}
c(\psi(t), \eta)=b(\eta, \boldsymbol{v}(t)) \tag{2.43}
\end{equation*}
$$

for all $\eta \in V$. It remains to prove that

$$
\boldsymbol{h}(t)=\beta\left(\boldsymbol{v}^{\prime}(t)\right) .
$$

Taking formally the time derivative in (2.43), setting $\eta=\psi(t)$ in the resulting equation and $\boldsymbol{\gamma}(t)=\boldsymbol{v}^{\prime}(t)$ in (2.42), we obtain, by periodicity,

$$
\begin{equation*}
\int_{0}^{T}\left(\boldsymbol{h}(t)-\overline{\boldsymbol{h}}, \boldsymbol{v}^{\prime}(t)\right) d t=\int_{0}^{T}\left(\boldsymbol{g}(t), \boldsymbol{v}^{\prime}(t)\right) d t . \tag{2.44}
\end{equation*}
$$

To prove rigorously (2.44) we note that we have, in the distributional sense,

$$
\begin{equation*}
\boldsymbol{v}^{\prime \prime}+A \boldsymbol{v}+B \psi+\boldsymbol{h}-\overline{\boldsymbol{h}}=\boldsymbol{g} \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
C \psi=E \boldsymbol{v} \tag{2.46}
\end{equation*}
$$

If $\varrho_{n}(t)$ is a regularizing sequence of even periodic functions of period T and * denotes the corresponding convolution on the circle, we find

$$
\boldsymbol{v}^{\prime} * \varrho_{n} * \varrho_{n} \in C^{\infty}\left(T ; L^{\varrho+1}(\Omega)\right) .
$$

Hence

$$
\int_{0}^{T}\left(\boldsymbol{v}^{\prime \prime}, \boldsymbol{v}^{\prime} * \varrho_{n} * \varrho_{n}\right) d t=0, \quad \int_{0}^{T}\left(A \boldsymbol{v}, \boldsymbol{v}^{\prime} * \varrho_{n} * \varrho_{n}\right) d t=0
$$

From (2.46) we obtain
$\int_{0}^{T}\left(B \psi, \boldsymbol{v}^{\prime} * \varrho_{n} * \varrho_{n}\right) d t=\int_{0}^{T}\left(E \boldsymbol{v}^{\prime} * \varrho_{n} * \varrho_{n}, \psi\right) d t=\int_{0}^{T}\left(C \psi^{\prime} * \varrho_{n} * \varrho_{n}, \psi\right) d t=0$.
Consequently, by (2.45)

$$
\begin{equation*}
\int_{0}^{T}\left(\boldsymbol{h}(t)-\overline{\boldsymbol{h}}, \boldsymbol{v}^{\prime} * \varrho_{n} * \varrho_{n}\right) d t=\int_{0}^{T}\left(\boldsymbol{g}(t), \boldsymbol{v}^{\prime} * \varrho_{n} * \varrho_{n}\right) d t \tag{2.47}
\end{equation*}
$$

Letting $n \rightarrow \infty$ we arrive at (2.44) and, since

$$
\int_{0}^{T}\left(\overline{\boldsymbol{h}}, \boldsymbol{v}^{\prime}(t)\right) d t=0
$$

we get also

$$
\begin{equation*}
\int_{0}^{T}\left(\boldsymbol{h}(t), \boldsymbol{v}^{\prime}(t)\right) d t=\int_{0}^{T}\left(\boldsymbol{g}(t), \boldsymbol{v}^{\prime}(t)\right) d t \tag{2.48}
\end{equation*}
$$

From (2.28) we obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{0}^{T}\left(\beta\left(\boldsymbol{v}_{m}^{\prime}(t)\right), \boldsymbol{v}_{m}^{\prime}(t)\right) d t=\int_{0}^{T}\left(\boldsymbol{h}(t), \boldsymbol{v}^{\prime}(t)\right) d t \tag{2.49}
\end{equation*}
$$

Let $\boldsymbol{w}(t) \in L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right)$. By monotonicity we have

$$
\int_{0}^{T}\left(\beta\left(\boldsymbol{v}_{m}^{\prime}(t)\right)-\beta(\boldsymbol{w}(t)), \boldsymbol{v}_{m}^{\prime}(t)-\boldsymbol{w}(t)\right) d t \geqslant 0
$$

and, by (2.49),

$$
\int_{0}^{T}\left(\boldsymbol{h}(t)-\beta(\boldsymbol{w}(t)), \boldsymbol{v}^{\prime}(t)-\boldsymbol{w}(t)\right) d t \geqslant 0
$$

Setting $\boldsymbol{w}(t)=\boldsymbol{v}^{\prime}(t)-\lambda \boldsymbol{w}_{1}(t)$, with $\lambda \geqslant 0$, and letting $\lambda \rightarrow 0+$, we obtain

$$
\int_{0}^{T}\left(\boldsymbol{h}(t)-\beta\left(\boldsymbol{v}^{\prime}(t)\right), \boldsymbol{w}_{1}(t)\right) d t \geqslant 0
$$

for all $\boldsymbol{w}_{1}(t) \in L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right)$. Hence

$$
\int_{0}^{T}\left(\boldsymbol{h}(t)-\beta\left(\boldsymbol{v}^{\prime}(t)\right), \boldsymbol{w}_{1}(t)\right) d t=0
$$

and we conclude that $\boldsymbol{h}(t)=\beta\left(\boldsymbol{v}^{\prime}(t)\right)$ as required.
We prove uniqueness. Let $\boldsymbol{v}_{1}, \psi_{1}$ and $\boldsymbol{v}_{2}, \psi_{2}$ be two solutions and define

$$
\boldsymbol{w}=\boldsymbol{v}_{1}-\boldsymbol{v}_{2}, \quad \zeta=\psi_{1}-\psi_{2}
$$

By difference we have

$$
\int_{0}^{T}\left\{-\left(\boldsymbol{w}^{\prime}(t), \boldsymbol{\gamma}^{\prime}(t)\right)+a(\boldsymbol{w}(t), \boldsymbol{\gamma}(t))\right.
$$

$$
\left.+b(\zeta(t), \boldsymbol{\gamma}(t))+\left(\beta\left(\boldsymbol{v}_{1}^{\prime}(t)\right)-\beta\left(\boldsymbol{v}_{2}^{\prime}(t)\right)-\bar{\beta}\left(\boldsymbol{v}_{1}^{\prime}\right)+\bar{\beta}\left(\boldsymbol{v}_{2}^{\prime}\right), \boldsymbol{\gamma}(t)\right)\right\} d t=0
$$

for all $\boldsymbol{\gamma}(t) \in L^{\infty}\left(T ; \boldsymbol{H}_{0}^{1}(\Omega)\right)$, and $\boldsymbol{\gamma}^{\prime}(t) \in L^{\varrho+1}\left(T ; \boldsymbol{L}^{\varrho+1}(\Omega)\right) \cap L^{\infty}\left(T ; \boldsymbol{L}^{2}(\Omega)\right)$ and, again by difference from (2.43),

$$
\begin{equation*}
c(\zeta(t), \eta)=b(\eta, \boldsymbol{w}(t)) \tag{2.50}
\end{equation*}
$$

for all $\eta \in V$. Reasoning as in the proof of (2.44) we obtain

$$
\begin{equation*}
\int_{0}^{T}\left(\beta\left(\boldsymbol{v}_{1}^{\prime}(t)\right)-\beta\left(\boldsymbol{v}_{2}^{\prime}(t)\right), \boldsymbol{v}_{1}^{\prime}(t)-\boldsymbol{v}_{2}^{\prime}(t)\right) d t=0 \tag{2.51}
\end{equation*}
$$

By the strict monotonicity of β it follows $\boldsymbol{v}_{1}^{\prime}(t)=\boldsymbol{v}_{2}^{\prime}(t)$. On the other hand, $\overline{\boldsymbol{v}}_{1}=\overline{\boldsymbol{v}}_{2}$ $=0$, hence $\boldsymbol{v}_{1}(t)=\boldsymbol{v}_{2}(t)$. From (2.50) we have
(2.52)

$$
c(\zeta(t), \zeta(t))=0
$$

Thus $\psi_{1}(t)=\psi_{2}(t)$. It remains to prove that problem (2.16)-(2.19) has one and only one solution. We use the L^{p}-theory for elliptic system with $p \in(1,2)$, referring for more details to [1] and [8] page 201. This theory can be applied to (2.16)(2.19) if we recall that Γ is of class C^{2} and that

$$
\overline{\boldsymbol{f}}-\bar{\beta}\left(\boldsymbol{v}^{\prime}\right) \in L^{\frac{\varrho+1}{\varrho}}(\Omega)
$$

The need to solve an elliptic problem with the left hand side in L^{p} with $p \in(1,2)$ is inherent to the present method and has relevant consequences. If, for example, Γ is not of class C^{2} but only lipschitzian, uniqueness fails (see the example given in [6]); this in turn implies cases of nonuniqueness for the problem as a whole.

References

[1] S. Agmon, The L^{p} approach to the Dirichlet problem I. Regularity theorems, Ann. Sc. Norm. Sup. Pisa 13 (1959), 405-448.
[2] L. Amerio, Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi periodici o limitati, Ann. Mat. Pura Appl. 39 (1955), 97-119.
[3] L. Amerio and G. Prouse, Almost-periodic functions and functional equations, Van Nostrand, New York-Toronto, Ont.-Melbourne 1971.
[4] A. C. Eringen and G. A. Maugin, Electrodynamics of continua I. Foundations and solid media, Springer-Verlag, New York 1990.
[5] J. L. Lions, Quelques méthodes des résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris 1969.
[6] G. Prodi, Soluzioni periodiche dell'equazione delle onde con termine dissipativo non-lineare, Rend. Sem. Mat. Univ. Padova 36 (1966), 37-49.
[7] G. Prouse, Soluzioni periodiche dell'equazione delle onde non omogenea con termine dissipativo quadratico, Ricerche Mat. 13 (1964), 261-280.
[8] G. T. Troianiello, Elliptic differential equations and obstacle problems, Plenum Press, New York 1987.

[^1]
[^0]: (*) Department of Mathematics, University of Pisa, Via Buonarroti 2, 56100 Pisa, Italy.
 (**) Received May $9^{\text {th }}, 2002$, and in revised form September $11^{\text {th }} 2002$. AMS classification 35 B 10, 35 M 10.

[^1]: Abstract
 A theorem of existence and uniqueness of forced periodic solutions in a piezoelectric viscoelastic body is proved.

