Peter V. Danchev (*)

A new simple proof of the W. May's claim:
 $F G$ determines $G / G_{0}\left({ }^{* *}\right)$

The goal of the present paper is to give a smooth confirmation only in group terms of an old-standing statement of May, argued via another method in [1], which asserts the following (the notions and notations are the same as in [1]):

Theorem (W. May, 1969). Suppose G is an abelian group with torsion part G_{0}, and suppose F is a field of arbitrary characteristic. Then $F G \cong F H$ as F-algebras for any group H implies $G / G_{0} \cong H / H_{0}$.

Proof. It is no harm in presuming that $F G=F H$. Thus, if $V(F G)$ and $V(F H)$ denote the normalized groups of units in $F G$ and $F H$ respectively, we extract $V(F G)=V(F H)$. On the other hand the canonical map

$$
G \rightarrow G / G_{0}
$$

induces a group homomorphism $V(F G) \rightarrow V\left(F\left(G / G_{0}\right)\right)=G / G_{0}$ with the whole kernel $\left[1+I\left(F G ; G_{0}\right)\right] \cap V(F G)$, where $I\left(F G ; G_{0}\right)$ is the relative augmentation ideal of $F G$ with respect to G_{0}. That is why

$$
V(F G)=G\left(\left[1+I\left(F G ; G_{0}\right)\right] \cap V(F G)\right) .
$$

By the same token $V(F H)=H\left(\left[1+I\left(F H ; H_{0}\right)\right] \cap V(F H)\right)$.
Thus $G\left(\left[1+I\left(F G ; G_{0}\right)\right] \cap V(F G)\right)=H\left(\left[1+I\left(F H ; H_{0}\right)\right] \cap V(F H)\right)$. Moreover, $\left[1+I\left(F G ; G_{0}\right)\right] \cap V(F G)=\left[1+I\left(F H ; H_{0}\right)\right] \cap V(F H)$. In fact, foremost let the field F possess positive characteristic, for instance, $\operatorname{char}(F)=p \neq 0$. Then it is a

[^0]routine matter to see that
$$
[V(F G)]_{p}=1+I\left(F G ; G_{p}\right)=1+I\left(F H ; H_{p}\right)=[V(F H)]_{p},
$$
i.e.
$$
I\left(F G ; G_{p}\right)=I\left(F H ; H_{p}\right)
$$
hence
$$
F\left(G / G_{p}\right) \cong F G / I\left(F G ; G_{p}\right)=F H / I\left(F H ; H_{p}\right) \cong F\left(H / H_{p}\right)
$$

That is why, without loss of generality, we can assume in this case that

$$
G_{p}=H_{p}=1 \quad \text { since } \quad G / G_{p} /\left(G / G_{p}\right)_{0} \cong G / G_{0}
$$

similaily for H.
Thus $F G$ and $F H$ are both semisimple, including and the situation when $\operatorname{char}(F) \neq 0$. Certainly, $G_{0} \subseteq[V(F H)]_{0}$. But when $F H$ is semisimple, i.e. H_{0} has no element of order char (F), it holds valid that $[V(F H)]_{0}=V\left(F H_{0}\right)$. Really, because the support of each element from $V(F H)$ is finite, we may presume that H is finitely generated and thus that $H=H_{0} \times K$, where H_{0} is finite and K is torsion-free. For a field R, the symbol R * will designate its multiplicative group. Consequently $V\left(F H_{0}\right) \times F^{*}=F_{1}^{*} \times \ldots \times F_{m}^{*}$ for fields F_{1}, \ldots, F_{m} that lie in $F H_{0}$ and which are finite algebraic extensions of F, and so

$$
V(F H) \times F^{*}=V\left(F_{1} K\right) \times F_{1}^{*} \times \ldots \times V\left(F_{m} K\right) \times F_{m}^{*} .
$$

Furthermore,

$$
\begin{aligned}
V(F H) \times F^{*} & =V\left(F_{1} K\right) \times \ldots \times V\left(F_{m} K\right) \times V\left(F H_{0}\right) \times F^{*} \\
& =\underbrace{K \times \ldots \times K}_{m \text { times }} \times V\left(F H_{0}\right) \times F^{*},
\end{aligned}
$$

that ensures

$$
[V(F H)]_{0}=V\left(F H_{0}\right),
$$

as claimed. Therefore, we obviously yield

$$
\left[1+I\left(F G ; G_{0}\right)\right] \cap V(F G) \subseteq\left[1+I\left(F H ; H_{0}\right)\right] \cap V(F H)
$$

By a reason of symmetry and analogous arguments, the right relation \supseteq is fulfilled as well, so we have extracted the desired equality.

Finally, we detect,

$$
\begin{aligned}
& G / G_{0} \cong V(F G) /\left(\left[1+I\left(F G ; G_{0}\right)\right] \cap V(F G)\right) \\
= & V(F H) /\left(\left[1+I\left(F H ; H_{0}\right)\right] \cap V(F H)\right) \cong H / H_{0},
\end{aligned}
$$

which completes the proof in general after all.

References

[1] W. May, Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969), 139-149.

Abstract

An easy group approach is used in this brief article to confirm once again the classical result of W. L. May (Trans. Amer. Math. Soc., 1969) that the factor-group G / G_{0} of the abelian group G modulo its torsion subgroup G_{0} may be retrieved from the group algebra $F G$ over an arbitrary field F.

[^0]: (*) 13, General Kutuzov Street, block 7, floor 2, apartment 4, 4003 Plovdiv, Bulgaria.
 (**) Received $2^{\text {nd }}$ April 2002. AMS classification 20 C $07,16 \mathrm{~S} 34,16 \mathrm{U} 60,20 \mathrm{~K} 10$.

