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Homogeneous symplectic manifolds

of Poisson-Lie groups (**)

1 - Introduction

Homogeneous symplectic manifolds are, under reasonable conditions, locally
isomorphic to coadjoint orbits and their relation to the theory of unitary irreduci-
ble representations of Lie groups has been very early recognized [13]. This kind
of symplectic manifolds (together with the coadjoint orbits of Lie groups, which
are a special case), is perhaps the most important non-trivial class of geometrical-
ly quantizable symplectic manifolds in the Kirillov-Kostant-Souriau program [12],
[13], [18]. A fundamental ingredient of this approach is the existence of an equiva-
riant momentum map for the symplectic action on the homogeneous symplectic
manifold. Then, it turns out that such a symplectic manifold is a covering space of
a coadjoint orbit of the group. This is essentially a «Hamiltonian» classification of
the homogeneous symplectic manifolds.

Recently, an analogous study but in a different context, has been initiated by
[7], [10], [16] for Poisson-Lie groups acting on Poisson manifolds. In particular, a
correspondence between Poisson homogeneous G-spaces, where G is a Poisson-
Lie group, and Lagrangian subalgebras of the double D(S) of the tangent Lie
bialgebra of G , has been established in [7].

In the present article, we will turn our attention again to the Hamiltonian
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point of view but for Poisson-Lie groups this time. We first establish the exact
Poisson-Lie analog of homogeneous symplectic manifolds: a symplectic manifold
on which a Poisson-Lie group acts transitively through a Poisson action admitting
an equivariant momentum map, in the sense of [14], is a covering space of a dres-
sing orbit of the Poisson-Lie group (see Proposition 2.2 below). For the case of
compact and simple Poisson-Lie groups this results easily from [2], where it is
shown how one can transform a Poisson action of such a Lie group to a symplectic
one. Indeed, under these assumptions for the group and in view of the results of
[2], the symplectic manifold is a covering space of a coadjoint orbit of the group.
But in this case coadjoint and dressing orbits are symplectomorphic. Notice here
that it makes no sense to replace the symplectic manifold by a Poisson one, becau-
se a transitive action of a Poisson-Lie group on a Poisson manifold has never a
momentum map unless the Poisson manifold contains only one symplectic leaf,
therefore is symplectic.

The case of non-equivariant momentum maps needs special attention in the
Poisson-Lie case since, unlike the symplectic case, the lack of equivariance now is
not automatically adjusted. We address this issue in section 3.

We also examine the effects of the Poisson induction procedure, introduced in
[3], on a symplectic manifold which is a homogeneous Hamiltonian space of a
Poisson-Lie group. The result depends on the circumstance and the procedure
leads either to a homogeneous space or to an almost homogeneous space. The la-
ter is introduced in Definition 2.3; actually, this notion emerges naturally in the
induction procedure and its meaning is that the almost homogeneous space is ge-
nerated by a discrete (eventually finite) subset through the action. If this subset
reduces to a point, then we obtain a homogeneous space.

Some examples are finally discussed in section 5. More precisely, we describe si-
tuations in which one can have a transitive Poisson action on a symplectic manifold
admiting a momentum map in the sense of [14], and we give partial solutions to the
difficult problem of equivariance. This progressively leads to a Hamiltonian descrip-
tion of the cells of a Bruhat decomposition for coadjoint orbits of a certain type. We fi-
nally endow a semi-direct product G4K3r V with a Poisson-Lie structure that has
the following property: the corresponding dressing orbits of G in G * can be obtained
by Poisson induction on coadjoint orbits of certain subgroups of K .

Conventions. If (P , p P ) is a Poisson manifold, then p l--l
P : T * PKTP is the

map defined by a(p l--l
P (b) ) 4p P (a , b), (a , b�T * P . Let now s : G3PKP (re-

sp. s : P3GKP) be a left (resp. right) Poisson action of the Poisson-Lie group
(G , p G ) on (P , p P ), and let us denote by s(X) the infinitesimal generator of the
action and by G * the dual group of G . Then, we say that s is Hamiltonian if there
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exists a differentiable map J : PKG *, called momentum mapping, satisfying the
following equation, for each X�S:

s (X) 4p l--l
P (J * X l ) (resp . s (X) 42p l--l

P (J * X r ) ).

In the previous equation X l (resp. X r) is the left (resp. right) invariant 1-form on
G * whose value at the identity is equal to X�S` (S*)* . The momentum mapping
is said to be equivariant, if it is a morphism of Poisson manifolds with respect to
the Poisson structure p P on P and the canonical Poisson structure on the dual
group of the Poisson Lie group (G , p G ). Left and right infinitesimal dressing ac-
tions l : S*K X (G) and r : S*K X (G) of S on G * are defined by

l(j) 4p l--l
G (j l ) and r(j) 42p l--l

G (j r ), (j�S*.

Similarly, one defines infinitesimal left and right dressing actions of S on G *. In
the case where the vector fields l(j) (or, equivalently, r(j)) are complete for all j

�S*, we have left and right actions of (G *, p G * ) on (G , p G ) denoted also by l

and r respectively, and we say that (G , p G ) is a complete Poisson-Lie
group.

2 - The equivariant Poisson-Lie case

In the symplectic context, the following is well known. Let (M , v) be a sym-
plectic manifold and s : G3MKM a symplectic action admitting the momentum
mapping J : MKS*, that is the infinitesimal generator of the action correspon-
ding to the element X�S is equal to the Hamiltonian vector field corresponding
to the function J * X�C Q (M), where we regard the pull-back J * as a linear map
SKC Q (M). Assume that the momentum map is equivariant, that is J i s g

4Coad ( g) i J , (g�G and that the action s is transitive. Then:

T h e o r e m 2.1 ([13]). Under the assumptions above, there exists an element
m 0 �S* such that M be a covering space of the coadjoint orbit Om 0

4G Qm 0 and
J : MK Om 0

be a morphism of Hamiltonian G-spaces.

When the momentum map J is not equivariant, one can consider the bilinear
map g : S3SKC Q (M) given by g(X , Y) 4 ]J * X , J * Y(2J *[X , Y], which is a
constant function on M for each X , Y�S and defines a 2-cocycle S3SKR . This
completely determines a central extension S

A of the Lie algebra S and a symplectic
action on M of the connected and simply connected Lie group GA whose Lie alge-
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bra is S
A. This action admits now an equivariant momentum map and the Theorem

2.1 can be applied.
We consider now a symplectic manifold P , where the symplectic structure is

described by a non-degenerate Poisson tensor p P , a Poisson-Lie group (G , p G )
and a left Poisson action s : G3PKP . We make the assumption that the action
s admits an equivariant momentum map J : PKG *. In that case, one says that
(P , p P ) is a Hamiltonian Poisson-Lie G-space. One has:

P r o p o s i t i o n 2.2. If the action s is transitive, then there exists an element
u0 �G * such that the symplectic manifold P be a covering space of the left dres-
sing orbit O l

u0
of u0 and the map J : PK O l

u0
be a morphism of Hamiltonian

Poisson-Lie G-spaces.

P r o o f . Let p0 �P and u0 4J(p0 ) �G *. Then, by the equivariance (and infi-
nitesimal equivariance) of the momentum mapping, we find that J : PK O l

u0
is a

surjective submersion, where O l
u0

is the left dressing orbit of u0 .
Consider now the equation Tp J(v) 40 for v�Tp P . One can write v

4s (X)p , X�S because P is homogeneous space of G . Then l(X)(J(p) ) 40 and
consequently (J * X l )(s (Y)p ) 40 for each Y�S . Using again the fact that P is ho-
mogeneous and that J : PK O l

u0
is a surjective submersion, we have the re-

sult. r

If we write P4G/Gp0
and O l

u0
4G/Gu0

, where Gp0
and Gu0

are the isotropy sub-
groups of p0 and u0 for the corresponding actions, then the map J : PK O l

u0
can

be writen as J( [ g]p0
) 4 [ g]u0

, where [ g]p0
and [ g]u0

denote the equivalence classes
of g�G under the equivalence relations defined by the subgroups Gp0

and Gu0
.

Furthermore, one has Gp0
%Gu0

and the fibre of J is exactly Gu0
/Gp0

.
There exists a generalization of the notion of homogeneous space which arises

naturally in the induction procedure, as we will see later. We give the following
definition:

D e f i n i t i o n 2.3. Let P be a differentiable manifold on which the Lie group
G acts smoothly. We will say that P is an almost homogeneous space of G if the-
re exists a discrete subset S%P such that G QS4P .

Otherwise stated, P is almost homogeneous, if the set of G-orbits in P is di-
screte. In particular, when S is a one-point set, P is homogeneous.

Assume now that (P , p P ) is a symplectic manifold which is an almost homoge-
neous space of the Poisson-Lie group (G , p G ) for a left Hamiltonian Poisson ac-
tion of G on P . Then, it is immediate from Proposition 2.2 that all the open orbits
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of G in P are covering spaces of left dressing orbits of G in G *. In particular, if
the topology on S , viewed as a quotient space P/G , is the discrete one, then the
manifold P if «foliated» by a discrete set of open submanifolds, each of them is a
covering space of a left dressing orbit in G *.

As an example, let us discuss the following situation coming from the comple-
tely symplectic setting. We take P4R 2 equipped with its canonical symplectic
structure and G equal to the semidirect product between K4R1

x (non-zero
positive real numbers) and V4R through the representation KKGL(V) given by

rK
1

r
[4]. Then, (r , a) Q (x , y) 4 grx ,

1

r
y1ah is a symplectic action which

admits the equivariant momentum map J : PKS*`R 2 given by J(x , y)
4 (2xy , x). Using the induction techniques of [4] for coadjoint orbits of semidi-
rect products, one easily finds that the only coadjoint orbits of G are either a point
or the cotangent bundle T * V`R 2 with its canonical symplectic structure. On the
other hand, the space P is almost homogeneous since it is generated by the set
S4 ](21, 0 ), (0 , 0 ), (1 , 0 )( through the action of G . Furthermore, there exist
two open orbits in P , the open half-planes P64R6

x 3R . According to the pre-
vious discussion on almost homogeneous spaces, P6 coincide with coadjoint orbits
of G . Apparently, nothing can be said about the G-orbit of (0 , 0 ) which coincides
with the y-axis and therfore is 1-dimensional.

3 - The non-equivariant Poisson-Lie case

We are now placed in the case where the Poisson action s : G3PKP admits
a non-equivariant momentum map J : PKG *. Without loss of generality, we can
assume that there exists a point x0 �P such that J(x0 ) 4e *, the identity of G *; let
g4J* p P (x0 ) �L 2 S*. For each X , Y�S , we consider the function m(X , Y)
�C Q (P) defined by

m(X , Y) 4p P (J * X l , J * Y l )2J *(p G * (X l , Y l ) ) .(3.1)

The function m(X , Y) controls the equivariance of J because m(X , Y) 40 forall
X , Y�S if and only if J is equivariant.

Let now p J 4p G * 1g r . Then, it can be proved [14] that J : (P , p P )
K (G *, p J ) is a Poisson map. But this means that

m(X , Y)(p) 4 (Ad (J(p)21 ) g)(X , Y), (X , Y�S , p�P .

We see that if g is Ad-invariant, then m(X , Y) is a constant function on P . But the-
re is more than this:
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P r o p o s i t i o n 3.1. If g is Ad-invariant, then g is a real-valued 2-cocycle on
the Lie algebra S.

We refer the reader to [5] for the proof of this proposition. Assuming now that
g is Ad-invariant, let us consider the central extension of the Lie bialgebra S defi-
ned by the cocycle g and the zero derivation on S*. For the reader’s convenience,
we recall from [6] that a central extension of a Lie bialgebra S is an exact sequen-
ce 0 KRK

i
S×K

j
SK0, such that i and j be morphisms of Lie bialgebras and i(R)

be contained in the center of S×. If Z 2 (S , R) and D er(S*) stand for the space of
real-valued 2-cocycles over S and the space of derivations on the Lie algebra S*,
then such an extension is completely determined by a pair of elements (g , f )
�Z 2 (S , R)3 D er(S*) which are Drinfeld-compatible:

f *( [X , Y] )2 [ f *(X), Y]2 [X , f *(Y) ] 4coad (g l--l(X) )(Y)2coad (g l--l(Y) )(X).(3.2)

Returning to our case, the pair (g4J* p P (x0 ), f40) defines actually a cen-
tral extension of S because the Ad-invariance of g gives the Drinfeld-compatibility
with f40. If S× is the extended Lie bialgebra, we have an infinitesimal left action
s×: S× K X (P) given by s×(X , a) 4s (X). This action is Poisson giving thus rise to a
Poisson action, still denoted by s×, of the connected and simply connected Poisson-
Lie group G× having S× as tangent Lie bialgebra, on the Poisson manifold (P , p P ).
Under the isomorphism G× ` GA 3R , where GA is the universal covering space of G ,
one has:

T h e o r e m 3.2. The differentiable map J× : PK G×* given by

J×(p) 4 (J(p), 1 ), (p�P(3.3)

is an equivariant momentum map for the Poisson action s×.

P r o o f . We first note that the Poisson structure on G×*`G *3R is given by

p G×* (v , a) 4p G * (v)1ag r (v), ((v , a) � G×*.

The rest of the proof consists of a calculation of the function m(X , Y) for the mo-
mentum map J× and it is ommited here. r

4 - Poisson induction of homogeneous symplectic manifolds

Symplectic induction is a procedure by means of which one can induce, from
precise initial data, symplectic structures and Hamiltonian actions to bigger mani-
folds and has several interesting applications [11], [8], [9], [4]. We know [5], that
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the induction procedure has a natural Poisson analog and, in particular, that the
Poisson induced of a symplectic manifold is also a symplectic manifold carrying a
Hamiltonian Poisson action. Here we will study the effect of the Poisson induction
procedure on a homogeneous symplectic manifold, a problem whose even the com-
pletely symplectic aspects are not yet known.

Let us recall from [5] the elements of the Poisson induction which are necess-
ary for the understanding of what follows. We consider a left Poisson action
s : (H , p H )3 (P , p P ) K (P , p P ) admitting the equivariant momentum mapping
J : PKH * and assume that (H , p H ) is a Poisson-Lie subgroup of the Poisson-
Lie group (G , p G ). In order to simplify technically the discussion, we make the
assumption that (G , p G ) is simply connected and complete. If (D(G), p 1 ) is the
double group of G equipped with its natural symplectic structure [14], let (PA, p PA )
4 (P , p P )3 (D(G), p 1 ). Then the map sA : H3PA K PA given by

sA (h , (p , d) ) 4 (s (l i * u 21 (h), p), d[l i * u 21 (h) ]21 ), (h�H , (p , d) � PA(4.1)

where i *: G *KH * is the projection of the dual groups induced by the inclusion
i : H %KG , is a left Poisson action of H on PA admitting the equivariant momentum
map JA : PA KH * with

JA(p , d) 4J(p)(i * u 21 ).(4.2)

If e *�H * is the unit element, we obtain by Marsden-Weinstein reduction the in-
duced manifold as

Pind 4 JA21 (e *) /H .(4.3)

The group G acts on Pind as follows: if [(p , gu) ] is the equivalence class of (p , gu)
� JA21 (e *) in the quotient (4.3), then

k Q [ (p , gu) ] 4 [ (p , l r g 21 (u) (k) gu) ](4.4)

for all k�G . This action is Poisson and admits an equivariant momenutm
mapping.

The above construction works even when (P , p P ) is a general Poisson mani-
fold, but here we are interested in the case where P is symplectic. Then, Pind is
also symplectic and the following question arises naturally: what can we tell about
Pind when P is a homogeneous space of H?

Let us fix an element [(p0 , g0 u0 ) ] �Pind and consider an arbitrary element
[ (p , gu) ] �Pind . Then, assuming that H acts transitively on P , we conclude that
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there exist elements h�H and u 1 �H 0 such that

.
/
´

p4 (s J )h (p0 )

u4r h 21 (u0 u 1 ).
(4.5)

Here H 0 4 ker (i *) and s J is the action of H on P defined as (s J )h (p)
4s l J(p)21 (h) (p). We want now to solve the equation k Q [ (p0 , g0 u0 ) ] 4 [ (p , gu) ] with
respect to k�G for given [(p0 , g0 u0 ) ] and arbitrary [(p , gu) ]. In view of the tran-
sitivity of the action s and of (4.4), this equation is equivalent to

.
/
´

p4 (s J )h (p0 )

g4l r g021 (u0 ) (k) g0 h 21

u4r h 21 (u0 ).

(4.6)

The last equations make clear that, generally, one can nothing say about the ac-
tion of G on Pind , despite the transitivity of s . Let us make the following assum-
ption: u0 H 0 %H Qu0 , where the dot on the right hand side means left dressing
transformations. If J(p0 ) 4v0 , one then observes:

l if h1 �H is an element for which l h1
(u0 ) 4u0 u 1 , then h1 �Hv0

, where Hv0

represents the isotropy subgroup of v0 �H * with respect to the left dressing
tranformations;

l u0 u 1 4r hA1
21 (u0 ), where hA1

21 4l J(p0 ) (h1 ).
Consequently, the equations (4.5) become

.
/
´

p4 (s J )hh
A

1
(p08 )

u4r (hhA1 )21 (u0 ),

where p084s h1
21 (p0 ) �J 21 (v0 ). Combining with equations (4.6) we obtain the fol-

lowing theorem:

T h e o r e m 4.1. Assume that the symplectic manifold (P , p P ) is a homoge-
neous Hamiltonian Poisson-Lie space of the Poisson-Lie group (H , p H ), viewed
as a Poisson-Lie subgroup of (G , p G ). Then, the Poisson induced symplectic
manifold (Pind , p ind ) has the following structure:

l if u0 H 0 %H Qu0 , then Pind is an almost homogeneous Hamiltonian Poisson-
Lie space of G ;

l if u0 H 0 %Hp0
Qu0 , where Hp0

is the isotropy subgroup of p0 for the action s

of H on P , then Pind is a homogeneous Hamiltonian Poisson-Lie space of G and,
in view of Proposition 2.2, a covering space of a left dressing orbit of G in G *.
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5 - Applications

(1) Consider two complete Poisson-Lie groups (H , p H ) and (G , p G ) and an
injective morphism of Poisson-Lie groups f : HKG which is an immersion at the
identity. Then, the linear map s : S*K X (H) given by

s (j) 4p l--l
H ( f * j l )

is an infinitesimal Poisson action admitting f as equivariant momentum map. In
the complete case we are studying, the corresponding Poisson action s of G * on
H is given by the equation s u (h) 4l f * u (h), where f *: G *KH * is the morphism
of the dual groups induced by f . In view of Proposition 2.2, one obtains:

C o r o l l a r y 5.1. The orbit of h�H under the left dressing action of H * is a
homogeneous Hamiltonian Poisson-Lie G *-space and, at the same time, a cove-
ring space of the orbit of f (h) �G under the left dressing action of G *. In parti-
cular, these orbits have the same dimension.

(2) If (P , p P ) is a non-trivial homogeneous Hamiltonian Poisson-Lie space of
(G , p G ), then there is no point of P whose image under the momentum map J
could be the identity of the group G *. Indeed, if such a point existed, then P
should be locally isomorphic to a point according to Proposition 2.2, which is a
contradiction.

Consider now a simply connected symplectic manifold P and a transitive left
Poisson action s : G3PKP of the Poisson-Lie group (G , p G ). Then, for each
point x0 �P there exists a momentum mapping J : PKG * for this action [14],
such that J(x0 ) 4e *, the identity of G *. Then, according to the previous argu-
ment, this momentum map cannot be equivariant. Assume instead that there
exists an element u0 �G *, such that the bivectors p P and p G * be J0-related at the
point x0 , where J0 4Lu0

i J . Then, J0 is a Poisson morphism between (P , p P ) and
(G , p G * ) and hence an equivariant momentum map for the action s . In this case,
P is the universal covering space of a left dressing orbit of G in G *.

Staying always in the case of a transitive left Poisson action on a simply con-
nected symplectic manifold, assume that there exists a point x0 �P such that the
annihilator of the isotropy subalgebra Sx0

(with respect to the action s) be contai-
ned in the center of the Lie algebra S*. Then, the element g�L 2 S of Proposition
3.1 is invariant under the adjoint action of G * but not zero, because of the transi-
tivity of the action. Then, by Theorem 3.2 and Proposition 2.2, P is the universal
covering space of a left dressing orbit in the dual group of an appropriate central
extension of G .
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(3) We consider now the case where (H , p H ) is a Poisson-Lie subgroup of
(G , p G ), with p G (g) 4Rg r2Lg r and p H 40, where r�L 2 S has the property
Ad ( g)[r , r] 4 [r , r]. Otherwise stated, p G is exact and Ad (h)r4r , (h�H . Let
O 4G/H and r : O 3G *K O the right action of G * on the Poisson manifold O

[17], obtained projecting the right dressing transformations of G * in G . Then, for
each point x0 4 [ g0 ] � O, the orbit x0 QG * coincides with the symplectic leaf throu-
gh x0 . Pick an element g0 �G such that the orbit of x0 be simply connected. Then,
the action r restricts to a right Poisson action of G * on x0 QG * for which there
exists a momentum mapping J : x0 QG *KG with J(x0 ) 4e . By construction, the
tangent of J at x0 is given by J*x0

(r(h)x0
)(j) 42v x0

(r(h)x0
, r(j)x0

), (h , j�S*,
where v is the symplectic structure of the symplectic leaf x0 QG *. Assume now
that the Lie algebra T of H has center of dimension 0 or 1. Then, one
finds

J*x0
(r(h)x0

) 4Rg0
21 r(h)g0

which has as direct consequence that J*x0
p(x0 ) 4Rg0

21 p G (g0 ), where p is the
Poisson structure of O. Then, the results of example (2) above, conveniently adap-
ted for a right Poisson action, confirm that J0 4Rg0

i J : x0 QG *KG is an equiva-
riant momentum map for the transitive Poisson action r. Consequently:

P r o p o s i t i o n 5.2. Let (G , p G ) be a Poisson-Lie group, where p G is exact
with linearization at the identity equal to r�L 2 S. Assume further that r is in-
variant under the adjoint action of a closed Lie subgroup H and that the center
of T4Lie(H) is equal to RX0 , where X0 �T is eventually zero. Then, all the sim-
ply connected symplectic leaves of the quotient Poisson space G/H are universal
covering spaces of right dressing orbits of G * in G.

In particular, when G4SU(2) viewed as a Poisson-Lie group as in [17] and H
4S 1 with the zero Poisson structure, the Poisson manifold O coincides with the 2-
sphere S 2 . In this case, we have two symplectic leaves, a point and its complement
(isomorphic to the plane), and the assumptions of Proposition 5.2 are fulfilled.
Consequently, the open leaf is the universal covering space of a right dressing or-
bit of the three dimensional «book» group (the dual group of SU(2)) in SU(2).
More generally, if G is a compact semisimple Lie group and O a coadjoint orbit of
G , then according to [17], G can be equipped with a Poisson-Lie structure which
descends to O as a Poisson structure whose symplectic leaves are all cells of a
Bruhat decomposition of O and diffeomorphic to dressing orbits of G * in G . The
Propositions 2.2 and 5.2 provide a Hamiltonian interpretation of this situation and
indicate a partial generalization for arbitrary Poisson-Lie group G .
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(4) We discuss now an example where the conditions of Theorem 4.1 are alwa-
ys satisfied. Let us consider a semi-direct product G4K3r d , formed by a Lie
group K and a vector space d through the representation r : KKGL(d). The
group law on G is given by

(k , u) Q (l , v) 4 (kl , k Qv1u),(5.1)

for all (k , u), (l , v) �G , where k Qv means the action of the element k�K on v�d

through the representation r [4]. If f : dKL 2 Td is a Poisson-Lie structure on d

(for the abelian group law of a vector space) invariant under the representation r ,
then the Poisson tensor p405f is a Poisson-Lie structure on G for the group
operation given by (5.1). Now, d* inherits a Lie algebra structure and we will de-
note by V * the corresponding connected and simply connected Lie group with Lie
algebra d*. The Lie group V * can obviously be seen as the dual group of the
Poisson-Lie group V4 (d , f). If W is the Lie algebra of K , then the dual group of
G is

G *4 W*3V *

equipped with the direct product group operation. For X� W and k�K , one has
two mappings:

d*Kd*, qOX Qq , (q�d*(5.2)

and

d*Kd*, q O k Qq , (q�d*.(5.3)

In the previous equations, X Qq and k Qq mean the actions of W and K respectively
through the contragredient representation on d*. The map (5.3) can be integrated
to an action (by group homomorphisms) of the group K on the dual group V *.
The induced fundamental vector fields coincide with the multiplicative vector fiel-
ds obtained from (5.2) (observe that q O X Qq is a 1-cocycle for the adjoint repre-
sentation of d* on itself). If r : K3V *KV * denotes this action, then one obtains
a linear map t p : WKd*, for each p�V *, as follows:

t p (X) 4Rp 21 r(X)p .(5.4)

We introduce the notation t p*(v) 4pUv for the transposed map t p*: dK W*. With
the above data one can calculate the left dressing tranformation of G on G * and
the result is

l (k , a) (j , p) 4 ( Coad (k) j1r k (p) Ua , r k (p) ), ((k , a) �G , (j , p) �G *.(5.5)



66 PIERRE BAGUIS [12]

For a given element u0 4 (j 0 , p0 ) �G *, it is easy to make the following observa-
tions using equation (5.5):

l If Kp0
is the isotropy subgroup of p0 with respect to the action r of K on V *,

Wp0
its Lie alebra and ip0

: Wp0
%K W the natural inclusion, then

l (k , a) (ip0
* j , p0 ) 4 ( Coad (k) ip0

* j , p0 ), ((k , a) �Kp0
3r d .

l If H4Kp0
3r d , then H 0 4 (Wp0

)0 3 ]e( and

u0 QH 0 4 (j 0 1 (Wp0
)0 , p0 ).

l If P is the orbit of v0 4 i * u0 4 (ip0
* j , p0 ) �H * under the left dressing tran-

sformations of H , and Hv0
the isotropy subgroup of v0 with respect to the left

dressing transformations of H on H *, then

u0 QH 0 4Hv0
Qu0 .

Now, in the case where P is a dressing orbit in Theorem 4.1, we observe that Pind

is a dressing orbit too (see also [3]). Combining this remark with the previous ob-
servations, we conclude that the dressing orbits of G4K3r d (equipped with the
Poisson-Lie structure p405f) are obtained by Poisson induction on coadjoint
orbits of certain subgroups of K .

Of particular interest is the case where d4 W* and r4Coad. Then G4T * K
and p coincides with the canonical Poisson structure on T * K . Consequently, the
dressing orbits of T * K can be obtained by Poisson induction on coadjoint orbits
of subgroups of K .
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A b s t r a c t

Symplectic manifolds which are homogeneous spaces of Poisson-Lie groups are stu-
died in this paper. We show that these spaces are, under certain assumptions, covering
spaces of dressing orbits of the Poisson-Lie groups which act on them. The effect of the
Poisson induction procedure on such spaces is also examined, thus leading to an intere-
sting generalization of the notion of homogeneous space. Some examples of homogeneous
spaces of Poisson-Lie groups are discussed in the light of the previous results.
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