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Trotter-Kato approximation theorems

for locally equicontinuous semigroups (**)

1 - Introduction

A systematical theory of equicontinuous semigroups has been developed on se-
quentially complete locally convex spaces by several authors (e.g. [16], [6], [9]).
The assumption of equicontinuity permitted them to obtain generation and appro-
ximation theorems parallel to the case of Banach spaces. Indeed, this theory de-
pends heavily on the fact that for any equicontinuous semigroup (T(t) )tF0 with ge-
nerator A on a sequentially complete locally convex space X , its Laplace tran-
sform defined as

�
0

Q

e 2lt T(t) xdt

exists for all x�X and l�C with RelD0 and coincides with (l2A)21 x (as for
bounded strongly continuous semigroups on Banach spaces).
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On the other hand, if equicontinuity fails, this parallelism may no longer hold.
For instance, let (T(t) )tF0 be the left translation semigroup on the space C(R) of
continuous functions on R endowed with the topology of uniform convergence on
bounded subsets. Then (T(t) )tF0 is not equicontinuous, its Laplace transform does

not exist for any l�C , and its generator given by A4
d

dx
has empty resolvent

set. To avoid these difficulties, T. Komura [7] dealt with locally equicontinuous se-
migroups and introduced the «generalized resolvent» defined as a suitable vector-
valued distribution. She obtained a Hille-Yosida theorem for such locally equicon-
tinuous semigroups in sequentially complete locally convex spaces by giving con-
ditions on such a distributional resolvent (see [7], Thm. 3). Since this type of resol-
vent is hard to treat, S. Ouchi [10] used «asymptotic resolvents» to state a simpli-
fied generation theorem of Hille-Yosida type [10], Thm. 2.1. Following this ap-
proach, C. Grosu proved in [5] a version of the Trotter-Kato theorems for locally
equicontinuous semigroups in Fréchet-Schwartz spaces for continuous (or, in so-
me case, even bounded) generators.

The aim of this paper is to prove Trotter-Kato theorems and the Lie-Trotter
product formula for locally equicontinuous semigroups in the general setting of
sequentially complete locally convex spaces with no additional assumption on the
generator, making only use of the notion of asymptotic resolvent due to S. Ouchi
and of «pseudo asymptotic resolvent» (see Def. 8). Therefore, we substantially im-
prove the results of C. Grosu [5] and extend the theory of locally equicontinuous
semigroups. Moreover, we apply our results to prove that the Lie-Trotter product
formula is also available for the Ornstein-Uhlenbeck semigroup on the space
Cb (Rn ) of bounded continuous functions endowed with a suitable locally convex
topology t agreeing with the compact-open topology on bounded subsets of Rn .
We point out that in [13], [14] the Lie-Trotter product formula has been proved
for a class of transition Markov semigroups associated to stochastic differential
equations, including Ornstein-Uhlenbeck semigroups. Hovewer it has been used
there a probabilistic approach very different from the functional one which is con-
sidered in the present paper.

The paper is divided into 5 sections. After the introduction, we recall in Sec-
tion 2 some basic facts and introduce pseudo asymptotic resolvents together with
their main properties. In Section 3 we prove preliminary convergence results of
sequences of locally equicontinuous semigroups and their asymptotic resolvents.
Section 4 is devoted to the Trotter-Kato theorems. Finally, in Section 5 we prove
the Lie-Trotter product formula for locally equicontinuous semigroups and apply
it to the Ornstein-Uhlenbeck semigroup on Cb (Rn ).
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2 - Locally equicontinuous semigroups and asymptotic resolvents

Let X be a sequentially complete locally convex space. We denote by L(X) the
space of all continuous linear operators on X and by P the set of all continuous se-
minorms on X . We consider locally equicontinuous semigroups and use the defini-
tion of S. Ouchi [10], Def. 1.1.

D e f i n i t i o n 1. A family ]T(t) : tF0( in L(X) is called a locally equiconti-
nuous semigroup if it satisfies the following conditions.

(a) T(t) T(s) 4T(t1s) for all t , sF0, T(0) 4Id .

(b) lim
tKs

T(t) x4T(s) x for all sF0, x�X .

(c) For all aD0 the subset ]T(t) : 0 G tGa( is equicontinuous, i.e., for all
p�P there exists q�P such that

p(T(t) x) Gq(x) for all 0 G tGa and x�X .

The generator (A , D(A) ) of a locally equicontinuous semigroup (T(t) )tF0 is
defined as

Ax»4 lim
tK01

T(t) x2x

t
(1)

with domain D(A) »4 {x�X : lim
tK01

T(t) x2x

t
exists} .

R e m a r k 2. If X is barreled, by [12], Chapt. III, Thm. 4.2, conditions (a) and
(b) in Definition 1 imply the local equicontinuity of a family of continuous and li-
near operators on X . Moreover the continuity of the map tOT(t) x at 0 and local
equicontinuity imply the continuity at every point in R1 . To see this, let t0 D0,
x�X and p�P. By Definition 1, (c), there exists q�P such that p(T(t) y)Gq(y)
for all 0 G tG t0 and y�X . Therefore, p(T(t0 1h) x2T(t0 ) x) Gq(T(h) x2x) if
hD0 and p(T(t0 1h) x2T(t0 ) x) Gq(x2T(2h) x) if 2t0 GhE0 which implies
the continuity at t0 .

We now put, for a fixed aD0 and for each l�C ,

R(l , A) x»4�
0

a

e 2lt T(t) x dt for x�X .(2)

By the local equicontinuity of the semigroup (T(t) )tF0 and the sequentially
completeness of X , the integral exists in the sense of Riemann, and we obtain the
following important properties of the operators R(l , A) and its relation to the
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generator of the semigroup (T(t) )tF0 (see [7], Prop. 1.3, 1.4, Cor. p. 261, [10],
Prop. 1.2).

P r o p o s i t i o n 3. Let (T(t) )tF0 be a locally equicontinuous semigroup on X
with generator (A , D(A) ). Then (A , D(A) ) is a closed and densely defined opera-
tor. Moreover, the operator R(l , A) defined as in (2) maps X into D(A), and we
have

(i) (l2A) R(l , A) x4x2e 2la T(a) x for all x�X ,
(ii) R(l , A) R(m , A) x4R(m , A) R(l , A) x for all x�X ,

(iii) R(l , A) Ax4AR(l , A) x for all x�D(A).

(iv) The operator R(l , A) x is an X-valued holomorphic function in l for all
x�X , R(l , A) � L(X) for all l , and the family of operators

m l n11

n!

d n

dl n
R(l , A) : lD0, n40, 1 , 2 , Rn

is equicontinuous.

Based on these properties, S. Ouchi [10] defines the so-called asymptotic
resolvent and states a generalized Hille-Yosida Theorem (see [10], Def. 2.1,
Thm. 2.1).

D e f i n i t i o n 4. A family ]R(l , A) : lDv(, v�R , in L(X) is called an
asymptotic resolvent of a closed operator (A , D(A) ) if it satisfies the following
conditions.

(a) The operator R(l , A) x is infinitely differentiable in l (lDv) for all
x�X and R(l , A) maps X into D(A).

(b) AR(l , A) 4R(l , A)A on D(A).
(c) R(l , A) R(m , A) 4R(m , A) R(l , A) on X for all l , mDv .
(d) (l2A) R(l , A) 4Id1S(l , A), where S(l , A) � L(X) and S(l , A) x is

infinitely differentiable in l for all x�X , and for all p�P there exists q�P such
that

p g d n

dl n
S(l , A) xhGCp

n e 2Cp l q(x)

for all x�X , lDv , and some constant Cp D0.
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Consequently, if R(l , A) is an asymptotic resolvent of A , we have

(l2A) R(l , A) 4Id1S(l , A) ,

where S(l , A) x is infinitely differentiable in l for every x�X . Differentiating
this equation (k11)-times in l , we obtain

(l2A) R (k11) (l , A) x1 (k11) R (k) (l , A) x4S (k11) (l , A) x(3)

for all x�X (cf. [10], p. 269). Moreover, if (A , D(A) ) is the generator of a locally
equicontinuous semigroup (T(t) )tF0 on X , and R(l , A) is defined as in (2) for so-
me fixed a and all l�C , then ]R(l , A) : lD0( is an asymptotic resolvent of A ,
which is called the canonical asymptotic resolvent of A , where we take

S(l , A) »42e 2la T(a)(4)

for all lD0, and hence

S ( j) (l , A) 4 (21) ja je 2la T(a)(5)

for all lD0 and j�N . The canonical asymptotic resolvent will play an essential
role for convergence properties of sequences of locally equicontinuous semigroups
in Section 3 and the Trotter-Kato approximation results in Section 4.

The notion of asymptotic resolvent leads to a generalized Hille-Yosida Theo-
rem stated in [10], Thm. 2.1.

T h e o r e m 5. Let (A , D(A) ) be a linear operator on X . Then the following
conditions are equivalent.

(i) The operator (A , D(A) ) is the generator of a locally equicontinuous semi-
group (T(t) )tF0 .

(ii) The operator (A , D(A) ) is closed and densely defined, and there exists an
asymptotic resolvent ]R(l , A) : lDv( of A such that the family

m l n11

n!

d n

dl n
R(l , A) : lDv , n40, 1 , 2 , Rn

is equicontinuous.

As in the case of strongly continuous semigroups on Banach spaces it is useful
to introduce the notion of a core of a linear operator.

D e f i n i t i o n 6. A subspace D of the domain of a linear operator A : D(A)
’XKX is called a core for A if D is dense in D(A) for the set PA of seminorms
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defined as

pA(x) »4p(x)1p(Ax) for p�P , x�D(A).

We note that D(A) endowed with the topology induced by PA is also sequential-
ly complete if X is. Similarly to the Banach space case we can state a criterion for
subspaces to be a core for the generator of a locally equicontinuous semi-
group.

P r o p o s i t i o n 7. Let (A , D(A) ) be the generator of a locally equicontinuous
semigroup (T(t) )tF0 . A subspace D of D(A) which is dense in X and invariant
under the semigroup (T(t) )tF0 is a core for A .

P r o o f . For every x�D(A), we can find a net (xa )a�A ’D such that xaKx in
X because D is dense in X . Since for each a the map R1�sOT(s) xa�D is conti-
nuous with respect to the family of seminorms PA (see [7], Prop. 1.2 (1)), it follows
that

�
0

t

T(s) xa ds� DP
A

.

Similarly, the PA-continuity of R1�sOT(s) x for x�D(A) and [7], Prop. 1.2 (2)
implies that

pA u 1

t
�

0

t

T(s) xds2xvGp u 1

t
�

0

t

T(s) xds2xv1p u 1

t
�

0

t

T(s) Ax ds2Axv
for every pA � PA. This converges to zero if t tends to zero, and also

pA u 1

t
�

0

t

T(s) xa ds2
1

t
�

0

t

T(s) xdsvK0

as a varies in A for each tD0. Therefore, for every eD0 there exists tD0 and
a�A such that

pA u 1

t
�

0

t

T(s) xa ds2xvEe .

Hence, x� DP
A

. r
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In the remaining part of this section we introduce the so-called asymptotic
pseudo resolvent which will be the main technical tool to obtain approximation re-
sults for locally equicontinuous semigroups.

D e f i n i t i o n 8. We consider R(l) � L(X) for each lDv . The family
]R(l) : lDv( is called an asymptotic pseudo resolvent if for all lDv there
exists S(l) � L(X) such that the following conditions hold.

(a) The operator S(l) x is infinitely differentiable in l for all x�X , and for
all p�P there exists q�P such that

p g d k

dl k
S(l) xhGa k e 2al q(x)

for all x�X , lDv , k40, 1 , 2 , R and some aD0.
(b) For each l , mDv , the equation

(l2m) R(l) R(m) 4 R(m)2 R(l)1 S(l) R(m)2 S(m) R(l)

holds.
(c) The operators S(l) and R(m) commute for all l , mDv .

We remark that for an asymptotic pseudo resolvent R(l) we have that

R(l) R(m) 4 R(m) R(l) for all l , mDv .

If we suppose that the asymptotic pseudo resolvent is injective with dense range
at some point l , we obtain the existence of a densely defined and closed linear
operator having an asymptotic resolvent coinciding with the given asymptotic
pseudo resolvent.

P r o p o s i t i o n 9. Let ]R(l) : lDv( be an asymptotic pseudo resolvent on
X . If Ker R(l 0 ) 4 ]0( and Rg R(l 0 ) is dense in X for some l 0 Dv , then there
exists a densely defined and closed linear operator (A , D(A) ) such that
R(l) 4R(l , A) is an asymptotic resolvent of A .

P r o o f . Since Ker R(l 0 ) 4 ]0(, we can define a linear operator by

A»4l 0 Id2 (Id1 S(l 0 ) ) R21 (l 0 ) .

Since R21 (l 0 ) is closed and (Id1 S(l 0 ) ) � L(X), the operator A is closed with do-
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main D(A) »4Rg R(l 0 ) which is dense in X . From the definition of A it follows
that

(l 0 2A) R(l 0 ) x4x1 S(l 0 ) x

for all x�X and

(l 0 2A) R(l 0 ) x4 R(l 0 )(l 0 2A) x4x1 S(l 0 ) x

for all x�D(A). By the properties listed in Definition 8 we have

R(l 0 )(Id1 S(l) ) 4

4

4

4

(l2l 0 ) R(l) R(l 0 )1 R(l)[Id1 S(l 0 ) ]

R(l)[ (l2l 0 ) R(l 0 )1Id1 S(l 0 ) ]

R(l)[ (l2l 0 ) R(l 0 )1 (l 0 2A) R(l 0 ) ]

R(l)(l2A) R(l 0 )

(6)

for all lDv . In the same way, we obtain

(l2A) R(l 0 ) R(l) 4 R(l 0 )[Id1 S(l) ] .(7)

By (6) we conclude that

R(l)(l2A) 4Id1 S(l) in D(A) 4Rg R(l 0 ) .

Moreover, since R(l) x�D(A) for x�D(A), by (7), we have

(l2A) R(l) 4Id1 S(l) in D(A) .(8)

To complete the proof, it is sufficient to show that Rg R(l) ’D(A) and that
equation (8) holds on X . Let x�X . Since D(A) 4Rg R(l 0 ) is dense in X , there
exists a net (xa )a�A ’D(A) such that xaKx and hence R(l) xaK R(l) x and
S(l) xaK S(l) x . By (8) we obtain

(l2A) R(l) xa4xa1 S(l) xaKx1 S(l) x .

Since l2A is a closed operator with domain D(A), it follows that R(l) x�D(A)
and (l2A) R(l) x4x1 S(l) x . r

We remark that Ker (l 0 2A) 4D(A)OKer (Id1S(l 0 ) ) and (l 0 2A) R(l 0 ) X
4 (Id1S(l 0 ) ) X .

A particular case of Proposition 9 is stated in the following proposition.

P r o p o s i t i o n 10. Let ]R(l) : lDv( be an asymptotic pseudo resolvent and
(Id1 S(l 0 ) ) bijective for some l 0 Dv , where S(l 0 ) denotes the operator corre-
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sponding to the asymptotic pseudo resolvent R(l 0 ). If for an unbounded sequen-
ce (l n )n�N , l n Dv ,

lim
nKQ

l n R(l n ) x4x for all x�X ,(9)

then ]R(l) : lDv( is an asymptotic resolvent of a densely defined and closed
operator. In particular, (9) holds if for all p�P there exists q�P such that

p(l n R(l n ) x) GCp q(x)

for all x�X , n�N , and some constant Cp F0, and Rg R(l) is dense for some
lDv .

P r o o f . By the properties of the asymptotic pseudo resolvent (see Def. 8) we
obtain

R(l n )1 S(l 0 ) R(l n ) 4 R(l 0 )1 S(l n ) R(l 0 )2 (l n 2l 0 ) R(l n ) R(l 0 ) ,

which is equivalent to

R(l n )[Id1 S(l 0 ) ] 4 R(l 0 )[Id1 S(l n )2 (l n 2l 0 ) R(l n ) ] .

This implies, by the surjectivity of (Id1 S(l 0 ) ), that

Rg R(l n ) ’Rg R(l 0 ) ,

and therefore

0
n�N

Rg R(l n ) ’Rg R(l 0 ) .

Consequently, by (9), we have

X4 0
n�N

Rg R(l n ) 4 Rg R(l 0 ) ,

hence R(l 0 ) has dense range in X . If x�Ker R(l 0 ), we obtain, again by the pro-
perties of the pseudo asymptotic resolvent, that

l n R(l n )[Id1 S(l 0 ) ] x4l n [Id1 S(l n )2 (l n 2l 0 ) R(l n ) ] R(l 0 ) x40

for all n�N . By passing to the limit we obtain (Id1 S(l 0 ) ) x40, which implies
x40 by assumption. Applying Proposition 9 we can conclude that there exists a
densely defined and closed operator (A , D(A) ) such that R(l) 4R(l , A).
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We now suppose that for all p�P there exists q�P such that

p(l n R(l n ) x) GCp q(x)

for all x�X , n�N , and some constant Cp D0, and Rg R(l) is dense for some
lDv . Fix p�P and take q�P such that the above inequality and condition (a) in
Definition 8 hold. Then, by the asymptotic pseudo resolvent equation, we obtain
that

p( (l n R(l n )2Id) R(l) x) 4

G

G

p(S(l n ) R(l) x1 R(l n )[l R(l)2 (Id1 S(l) ) ] x)

p(S(l n ) R(l) x)1p(R(l n )[l R(l)2 (Id1 S(l) ) ] x)

e 2al n q(R(l) x)1
Cp

l n

q(l R(l) x2 (Id1 S(l) ) x),

which converges to zero as nKQ for all x�X . Since Rg R(l) is dense in X for
some lDv , we can conclude that

l n R(l n ) xKx

for all x�X as nKQ . r

3 - Sequences of locally equicontinuous semigroups and asymptotic resolvents

In this section, we prove convergence properties of sequences of locally equi-
continuous semigroups and of their asymptotic resolvents. To that purpose, we
first introduce the notion of a uniformly locally equicontinuous sequence of
semigroups.

D e f i n i t i o n 11. Let ](Tn (t) )tF0 : n�N( be a sequence of locally equiconti-
nuous semigroups on X . It is called uniformly locally equicontinuous, if for all
sD0 and for all p�P there exists q�P such that

p(Tn (t) x) Gq(x) for all 0 G tGs , x�X and n�N .

If An is the generator of (Tn (t) )tF0 and R(l , An ) its corresponding canonical
asymptotic resolvent defined for the same aD0, then

l j11

j!

d j

dl j
R(l , An ) x4 (21) jl j11�

0

a

e 2lt t j

j!
Tn (t) xdt

for all x�X , n , j�N and lD0. Consequently, if ](Tn (t) )tF0 : n�N( is uniformly
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locally equicontinuous, then for every p�P there exists q�P such that

p g l j11

j!

d j

dl j
R(l , An ) xhGq(x) N l j11

j!
�

0

a

e 2lt t jdtN Gq(x)(10)

for all x�X , j , n�N and lD0.
In the theory of strongly continuous semigroups on Banach spaces the

equation

d n

dl n
R(l , A) 4 (21)n n! R(l , A)n11 , n�N , l�r(A) ,(11)

is essential to obtain that the convergence of the resolvents at one point l 0 D0
implies already their convergence for all lD0. However, for pseudo asymptotic
resolvents equation (11) fails, and we must work with the derivatives of the asym-
ptotic resolvents instead of their powers. The following lemma is one of the basic
steps towards Trotter-Kato theorems for locally equicontinuous semigroups.

L e m m a 12. Let ](Tn (t) )tF0 : n�N( be a sequence of uniformly locally
equicontinuous semigroups on X . Let (An , D(An ) ), n�N , be the generator of
(Tn (t) )tF0 and R(l , An ) be the corresponding canonical asymptotic resolvent de-
fined for the same aD0. If

lim
nKQ

d j

dl j
R(l 0 , An ) x4: R ( j) (l 0 ) x

exists for all j�N , x�X and some l 0 D0, then

lim
nKQ

d j

dl j
R(l , An ) x4: R ( j) (l) x

exists for all j�N , x�X and lD0.

P r o o f . We set R ( j) (l , An ) »4
d j

dl j
R(l , An ). By Proposition 3(iv) R(l , An ) x

is a vector-valued holomorphic function in l for all x�X and n�N . Therefore,
R(l , An ) x has a power series expansion around l 0 given by

R(l , An ) x4 !
jF0

1

j!
(l2l 0 ) jR ( j) (l 0 , An ) x ,

where the series converges in X uniformly for n�N if lD0. Indeed, by (10), for
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every p�P there exists q�P such that

p g!
jFh

(l2l 0 ) j

j!
R ( j) (l 0 , An ) xhG !

jFh

Nl2l 0Nj a j

j!
q(x)�

0

a

e 2l 0 t dt

Gq(x)
12e 2l 0 a

l 0

!
jFh

Nl2l 0Nj a j

j!

for all x�X , and h , n�N . Let lD0 and x�X . We now show that
lim

nKQ
R (k) (l , An ) x exists for all k�N . Since X is sequentially complete, it is suffi-

cient to prove that ]R (k) (l , An ) x(n�N is a Cauchy sequence in X for all k�N . To
that purpose, let k�N , p�P and eD0. There exists h0 �N , h0 Fk , such
that

!
jFh

Nl2l 0Nj2k

( j2k) !
a jq(x)

12e 2l 0 a

l 0

E
e

4

for all hFh0 , where q�P is taken as in (10). Therefore, we obtain that

p(R (k) (l , An ) x2R (k) (l , Am ) x)

Gp u!
j4k

h0 (l2l 0 ) j2k

( j2k) !
(R ( j) (l 0 , An ) x2R ( j) (l 0 , Am ) x)v

1p g!
jFh0

(l2l 0 ) j2k

( j2k) !
(R ( j) (l 0 , An ) x2R ( j) (l 0 , Am ) x)h

Gp u!
j4k

h0 (l2l 0 )j2k

( j2k) !
(R ( j) (l 0 , An ) x2R ( j) (l 0 , Am ) x)v1

e

2

4: C1
e

2

for all n , m�N . By assumption ]R ( j) (l 0 , An ) x(n�N is a Cauchy sequence in X
for all j�N . Hence, there exists n0 �N such that CE

e

2
for all n , mFn0 . This

concludes the proof. r
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R e m a r k 13. Under the assumptions of Lemma we obtain that

d j

dl j
R(l) x4 lim

nKQ
R ( j) (l , An ) x4R ( j) (l) x ,

and hence, by using (10), for each p�P there exists q�P such that

p g l j11

j!

d j

dl j
R(l) xhGq(x)

for all x�X , j�N and lD0.

4 - Trotter-Kato approximation theorems

In this section we characterize the convergence of uniformly locally equiconti-
nuous semigroups by the convergence of their canonical asymptotic resolvents.

T h e o r e m 14. Let ](Tn (t) )tF0 : n�N( and (T(t) )tF0 be uniformly locally
equicontinuous semigroups on X with generators An and A , respectively. For ea-
ch n�N and some l 0 D0 let R(l 0 , An ) and R(l 0 , A) be the corresponding cano-
nical asymptotic resolvents defined for the same aD0 and S(l 0 , An ) and
S(l 0 , A) be defined by (4), respectively. Suppose that S(l 0 , An ) xKS(l 0 , A) x
for all x�X and Rg R(l 0 , A) is dense in X . Then the following assertions are
equivalent.

(a) R(l 0 , An ) xKR(l 0 , A) x for all x�X .
(b) Tn(t) xKT(t) x for all x�X and uniformly for t in compact intervals in R1 .

P r o o f . The proof is inspired by the one given in [11], Thm. 4.2.
(a) ¨ (b): Let x�X , 0 G tGT and p�P . Then

p( (Tn (t)2T(t) ) R(l 0 , A) x)

Gp(Tn (t)(R(l 0 , A)2R(l 0 , An ) ) x)

1p(R(l 0 , An )(Tn (t)2T(t) ) x)1p( (R(l 0 , An )2R(l 0 , A) )T(t) x)

4: an (t)1bn (t)1cn (t) .

(12)

Since p(Tn (t) x) Gq(x) for all 0 G tGT and some suitable q�P , it follows that
an (t) converges to zero uniformly on [0 , T] as n tends to infinity. Also since
tOT(t) x is continuous, the set ]T(t) x : 0 G tGT( is compact in X and therefore,
by [12], Chapt. III, Thm. 4.3, cn (t) K0 uniformly on [0 , T] as nKQ .



32 ANGELA ALBANESE and FRANZISKA KÜHNEMUND [14]

It remains to prove that bn (t) K0 uniformly on [0 , T] as nKQ . To show
this, we consider, for each t� [0 , T] and y�X , the map

[0 , t] �sOTn (t2s) R(l 0 , An ) T(s) R(l 0 , A) y�X

which is differentiable in [0 , t], and its derivative is given by

[0 , t] �sO 2Tn (t2s) An R(l 0 , An ) T(s) R(l 0 , A) y

1Tn (t2s) R(l 0 , An ) T(s) AR(l 0 , A) y�X .

Consequently, for each t� [0 , T], y�X , and p 8�P we have

p 8 (R(l 0 , An )(Tn (t)2T(t) ) R(l 0 , A) y)

Gp 8u �
0

t

Tn (t2s)[2AnR(l 0, An) T(s)1R(l 0, An) T(s) A] R(l 0, A) ydsv

4p 8u �
0

t

Tn (t2s)][Id1S(l 0 , An )2l 0 R(l 0 , An ) ] R(l 0 , A)

1R(l 0 , An )[l 0 R(l 0 , A)2Id2S(l 0 , A) ](T(s) ydsv

G�
0

t

p 8 (Tn (t2s)[R(l 0 , A)2R(l 0 , An ) ] T(s) y) ds

1�
0

t

p 8 (Tn (t2s)[S(l 0 , An )2S(l 0 , A) ] R(l 0 , A) T(s) y) ds

1�
0

t

p 8 (Tn (t2s)[R(l 0 , A)2R(l 0 , An ) ] S(l 0 , A) T(s) y) ds

G�
0

T

q 8 ( [R(l 0 , A)2R(l 0 , An ) ] T(s) y) ds

1�
0

T

q 8 ( [S(l 0 , An )2S(l 0 , A) ] R(l 0 , A) T(s) y) ds

1�
0

T

q 8 ( [R(l 0 , A)2R(l 0 , An ) ] S(l 0 , A) T(s) y) ds ,
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which converges to zero uniformly on [0 , T] as n tends to infinity by assumption
and the same compactness argument as above, where q 8�P depends on p 8 and is
taken as in Definition 11. Therefore, for each y�X , we have

R(l 0 , An )(Tn (t)2T(t) ) R(l 0 , A) yK0

uniformly on [0 , T] as nKQ . Since Rg R(l 0 , A) is dense in X , it follows
that

R(l 0 , An )(Tn (t)2T(t) ) xK0

uniformly on [0 , T] as nKQ , thereby implying that bn (t) K0 uniformly on
[0 , T] as nKQ . Thus, with estimate (12), we obtain that

p(Tn (t) x2T(t) x) K0

uniformly on [0 , T] as nKQ .
(b) ¨ (a): For x�X we have, for every p�P ,

p(R(l 0 , A) x2R(l 0 , An ) x) G�
0

a

e 2l 0 t p(T(t) x2Tn (t) x) dt ,

which converges to zero as nKQ . r

E x a m p l e 15. Let C(R) be the space of continuous functions endowed with
the compact-open topology t c . We consider the multiplication semigroup
(Tq (t) )tF0 defined as

Tq (t) f»4e tq f , tF0, f�C(R) ,

for some function q�C(R). It can be easily verified that (Tq (t) )tF0 is a locally
equicontinuous semigroup on (C(R), t c ) and its generator is given by

Af4q Q f for all f�D(A) 4C(R).

Therefore, for fixed aD0 and every lD0 the canonical asymptotic resolvent
R(l , A) and the corresponding operator S(l , A) are given by

R(l , A) f (s) 4
e (q(s)2l)a 21

q(s)2l
f (s) and S(l , A) f (s) 42e (q(s)2l)a f (s)

for all f�C(R) and s�R . Thus, the range of the canonical asymptotic resolvent is
dense in (C(R), t c ).

Let us now consider a sequence (qn )n�N%C(R) such that (qn )n�N t c-converges
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to the function q . Then each An defined as An f»4qn Q f , f�C(R), generates a local-
ly equicontinuous semigroup (Tn (t) )tF0 given by

Tqn
(t) f4e tqn f , tF0, f�C(R).

Furthermore, for every compact subset K%R we have

pK (Tn (t) f ) G sup
s�K

Ne tqn (s)NpK ( f ) Ge tMK pK ( f )

for all f�C(R), tF0 and some constant MK »4 sup
n�N

max
s�K

Nqn (s)N . Consequently,
(Tn (t) )tF0 , n�N , are uniformly locally equicontinuous semigroups on (C(R), t c ).
Let l 0 D0. We have for each aD0 that

S(l 0 , An ) f42e (qn2l 0 )a fK
t c

S(l 0 , A) f42e (q2l 0 )a f

for all f�C(R). Finally, it is easy to see that Tn (t) fK
t c

T(t) f for all f�C(R) and
tF0.

The following result is very useful for applications because it permits us to
conclude that an operator A is a generator of a locally equicontinuous semigroup
only by assuming that a sequence (An )n�N of generators converges to it.

T h e o r e m 16. Let ](Tn (t) )tF0 : n�N( be a sequence of uniformly locally
equicontinuous semigroups on X with generators (An , D(An ) ). For each n�N
let R(l , An ) be defined by (1) for the same aD0 and S(l , An ) defined by (4).
Suppose that there exists l 0 D0 and Sl 0

� L(X) such that S(l 0 , An ) xKSl 0
x for

all x�X and (Id1Sl 0
) is bijective. Consider the following assertions:

(a) There exists a densely defined operator (A , D(A) ) such that An xKAx
for all x in a core D of A and such that the range Rg(l 02A) is dense in X .

(b) There exists R� L(X) such that R(l 0 , An ) xKRx for all x�X , RgR is
dense in X and Ker R4 ]0(.

(c) The sequence ](Tn (t) )tF0 : n�N( converges pointwise and uniformly in t
on compact intervals of R1 to a locally equicontinuous semigroup (T(t) )tF0 with
generator (B , D(B) ) such that R4R(l 0 , B), where R(l 0 , B) is an asymptotic
resolvent of B .

Then the implications

(a) ¨ (b) ` (c)

hold. In particular, if (a) holds, then B is an extension of A.
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P r o o f . (a) ¨ (b): We observe that (l 02A)D4X. In fact, since Rg(l 02A)
is dense in X , for fixed x�X , eD0 and p�P there exists y�D(A) such
that

p(x2 (l 0 2A)y) E
e

2
,

and there exists z�D such that

p( (l 0 2A)(y2z) ) E
e

2
.

Therefore,

p(x2 (l 0 2A) z) 4p(x2 (l 0 2A) y1 (l 0 2A)(y2z) ) Ee .

Take now x�D and put y»4 (l 0 2A) x . Then, for each n�N ,

R(l 0 , An ) y4R(l 0 , An )[ (l 0 2An ) x2 (l 0 2An ) x1 (l 0 2A) x]

4R(l 0 , An )(l 0 2An ) x1R(l 0 , An )(An x2Ax)

4x1S(l 0 , An ) x1R(l 0 , An )(An x2Ax).

Hence R(l 0 , An ) y converges to Ry»4x1Sl 0
x since, by (10), for all p�P there

exists q�P such that

p(R(l 0 , An )(An x2Ax) ) G
1

l 0

q(An x2Ax)

for all n�N . Moreover, by (10) again, for every p�P there exists q�P such that,
for each y� (l 0 2A) D and n�N ,

p(R(l 0 , An ) y) G
1

l 0

q(y).

Therefore, letting nK1Q , we conclude that

p(Ry) G
1

l 0

q(y)(13)

for all y� (l 0 2A) D . This means that the linear operator R defined above is con-
tinuous on (l 0 2A) D . Consequently, by the density of (l 0 2A) D in X , we can
extend R continuously on X such that (13) still holds.
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In the next step we show that

R(l 0 , An ) xKRx for all x�X .

Let x�X , eD0 and p�P . Corresponding to p there exists a continuous semi-
norm q on X such that (13) and

p(R(l 0 , An ) x) G
1

l 0

q(x) for all n�N

hold. Moreover, there exists x0 �D such that

q(x2 (l 0 2A) x0 ) E
l 0 e

3
,

and there exists n0 �N such that

p(R(l 0 , An )(l 0 2A) x0 2R(l 0 2A) x0 ) E
e

3

for all nFn0 . By (13) it follows that, for each nFn0 ,

p(R(l 0 , An ) x2Rx) Gp(R(l 0 , An ) x2R(l 0 , An )(l 0 2A) x0 )

1p(R(l 0 , An )(l 0 2A) x0 2R(l 0 2A) x0 )1p(R(l 0 2A) x0 2Rx)

G
2

l 0

q(x2 (l 0 2A) x0 )1
e

3

Ge .

We now show that RgR is dense in X . By definition we have R(l 0 2A) 4Id
1Sl 0

, hence R(l 0 2A) D4 (Id1Sl 0
) D . Since Id1Sl 0

is surjective, we ob-
tain

X4 (Id1Sl 0
) X4 (Id1Sl 0

) D ’ (Id1Sl 0
) D .

Therefore, X4 R(l 0 2A) D 4 R (l 0 2A)D 4 R(X). Finally, Ker R4 ]0( becau-
se Id1Sl 0

is one-to-one and (l 0 2A) R4Id1Sl 0
.

Since the implication (c) ¨ (b) holds, by Theorem 14, it remains to prove that
(b) ¨ (c). To that purpose, we first show that the condition

(b8) For each k�N there exists Rk � L(X) such that R (k) (l 0 , An ) xKRk x for
all x�X and Rg R0 is dense in X ,
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implies (c). By Lemma 12 for each lD0 there exists Rk (l) � L(X) such that

R (k) (l , An ) xKRk (l) x

for all x�X , k�N , lD0, and also, by Remark (13), that R(l) x is infinitely diffe-
rentiable in lD0 with

d k

dl k
R(l) x4Rk (l) x

for all x�X , k�N and lD0. Moreover, by Remark 13, for every p�P there
exists q�P such that

p g l k11

k!

d k

dl k
R(l) xhGq(x)(14)

for all x�X , k�N and lD0, where R(l 0 ) »4R0 . Furthermore, it is easy to veri-
fy that in this case ]R(l) : lD0( is an asymptotic pseudo resolvent with Rg R(l 0 )
dense in X and Ker R(l 0 ) 4 ]0(. Thus, by Proposition 9, there exists a densely
defined and closed operator (B , D(B) ) such that R(l , B) 4R(l) for all lDv ,
where R(l , B) is an asymptotic resolvent of B . Clearly, R(l , B) satisfies estimate
(14), and therefore, by the generalized Hille-Yosida Theorem 5, (B , D(B) ) gene-
rates a locally equicontinuous semigroup (T(t) )tF0 . We can now apply the implica-
tion (a) ¨ (b) from Theorem 14 in order to conclude that the semigroups
(Tn (t) )tF0 converge, in the desired way, to the semigroup (T(t) )tF0 .

Now, we observe that conditions (b) and (b8) are equivalent. In fact, (b) follows
from (b8) by taking R4R0 . In order to obtain (b8) from (b) it remains to show
that for each k�N , kD0, there exists Rk � L(X) such that

R (k) (l 0 , An ) xKRk x for all x�X

as nKQ . We proceed by induction. Put R0 »4R . By assumption, the assertion
for k40 holds. We assume that for some kF1 there exists Rk � L(X) such
that

R (k) (l 0 , An ) xKRk x

for all x�X . To obtain the result for k11, it is sufficient to show that there
exists Rk11 � L( (l 0 2A) D , X) such that, for all x�D ,

R (k11) (l 0 , An )(l 0 2A) xKRk11 (l 0 2A) x .
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Let x�D and put y»4 (l 0 2A) x . Then, by using (3), we have

R (k11)(l 0, An) y4R (k11)(l 0, An)(l 02An) x1R (k11)(l 0, An)(Anx2Ax)

4S (k11)(l 0, An) x2(k11)R (k)(l 0, An) x1R (k11)(l 0, An)(Anx2Ax),

which converges to S (k11)
l 0

x2 (k11)Rk x»4Rk11 y by assumption and (5).
In the final step, we show that (a) implies B is an extension of A. By assum-

ption we have that

Tn (t) An x2T(t) Ax4Tn (t)(An x2Ax)1 (Tn (t)2T(t) ) Ax

converges to zero as nKQ for all x�D and uniformly for t in compact intervals
in R1 . By [7], Prop. 1.2, (2), we have

Tn (t) x2x4�
0

t

Tn (s) An xds

and therefore, by letting nKQ ,

T(t) x2x4�
0

t

T(s) Axds

for all tF0. Thus

Bx4 lim
t70

T(t) x2x

t
4 lim

t70
�

0

t

T(s) Axds4Ax ,

and we obtain D’D(B). We now fix x�D(A). Since D is a core for A , there exists
a net (xa )a�I ’D’D(B) such that xaKx and AxaKAx . But Bxa4Axa for every
a�I and hence BxaKAx . Since B is a closed operator, we obtain x�D(B) and
Bx4Ax . Therefore, we have shown that D(A) ’D(B) and Bx4Ax for all
x�D(A).

Therefore, the proof is complete. r

E x a m p l e 17. Let F�C(Rn ; Rn ) be a globally Lipschitz function whose Lip-
schitz constant is LD0. It follows from standard results that there exists a conti-
nuous function F :[0 , 1Q[3Rn KRn such that F(t1s , x) 4F(t , F(s , x) ) and
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F(0 , x) 4x for every t , sF0 and x�Rn , which solves the differential equa-
tion

¯F

¯t
(t , x) 4F(F(t , x) )(15)

for all tF0 and x�Rn . Moreover, by Gronwall’s lemma, F also satisfies

VF(t , x)VG (VxV1 tVF(0)V) e Lt(16)

for all tF0 and x�Rn .
For each tF0, f�C(Rn ) and x�Rn , let

T(t) f (x) 4 f (F(t , x) ).(17)

Then (T(t) )tF0 is a locally equicontinuous semigroup on the space C(Rn ) of the
continuous functions on Rn endowed with the compact-open topology t c . Moreo-
ver, if (A , D(A) ) is its generator and f�C 1 (Rn ), f�D(A) and Af4 a˜f , Fb.

Indeed, fix f�C(Rn ) and RD0. If VxVGR and CR 4 (R1VF(0)V) e L , then, by
(16), for each 0 G tG1, by Lagrange’s theorem,

VF(t , x)2F(0 , x)V4VF(F(t , x)VtG t sup
VyVGCR

VF(y)V ,(18)

where F(t , x) 4 (F 1 (t1 , x), F 2 (t2 , x), R , F n (tn , x) ) for suitable t1 , t2 , R , tn

�]0 , 1[ which depend only on t and x .
Since f is continuous on Rn and hence uniformly continuous on the compact set

B4 ]x�Rn ; VxVGCR (, for each eD0 there is dD0 such that Nf (y)2 f (y 8 )NEe

whenever y , y 8�B and Vy2y 8 VEd . Therefore, if 0 E tEd( sup
VyVGCR

VF(y)V)21 , by
(18), we get that

NT(t) f (x)2 f (x)N4Nf (F(t , x) )2 f (F(0 , x) )NEe .

We have thus shown that t c 2 lim
tK01

T(t) f4 f .

Next, let sD0, RD0 and f�C(Rn ). Then, put Cs , R 4 (R1sVF(0)V) e Ls , by
(16), for each 0 G tGs ,

sup
VxVGR

NT(t) f (x)N4 sup
VyVG (R1 tVF(0)V)e Lt

Nf (y)NG sup
VyVGCs , R

Nf (y)N .(19)

Since (C(Rn ), t c ) ) is a Fréchet space and hence it is barrelled, by Remark 2, we
can conclude that (T(t) )tF0 is a locally equicontinuous semigroup on
(C(Rn ), t c ).
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Let f�C 1 (Rn ). Then, for each x�Rn and 0 E tG1, by Lagrange’s theorem
again, we have that

T(t) f (x)2 f (x)

t
4 a˜f (F(t , x) ), F(F(t , x) )b,

where F(t , x) is as above. Consequently, for each t�]0 , 1 ] and VxVGR ,

N T(t) f (x)2 f (x)

t
2 a˜f (x), F(x)b N 4Na˜f (F(t , x) ), F(F(t , x) )b2 a˜f (x), F(x)bN

GVF(F(t , x) )V V˜f (F(t , x) )2˜f (F(0 , x) )V1V˜f (x)V VF(F(t , x) )2F(F(0 , x) )V

G sup
0 GsG t

sup
VxVGR

VF(F(s , x) )V V˜f (F(t , x) )2˜f (F(0 , x) )V1

1 sup
VxVGR

V˜f (x)VLVF(t , x)2F(0 , x)V .

Since F and ˜f are continuous functions and hence uniformly continuous on every

compact sets, it follows exactly as before that t c 2 lim
tK01

T(t) f2 f

t
4 a˜f , Fb.

Also, for a fixed aD0 and for every lD0 the canonical asymptotic resolvent
R(l , A) and the corresponding operator S(l , A) are given by

R(l , A) f (x)4�
0

a

e 2lt f (F(t , x) ) dt and S(l , A) f (x)42e 2la f (F(a , x) )(20)

for all f�C(Rn ) and x�Rn .
Now, taking a sequence (Fm )m %C(Rn ; Rn ) of globally Lipschitz functions with

Lipschitz’s constant Lm respectively and the corresponding sequence (F m )m of
continuous functions which solve the differential equation (15) with Fm instead of
F , the family ](Tm (t) )tF0 : m�N( of operators, defined as in (17), is a sequence
of locally equicontinuous semigroups on (C(Rn ), t c ) with generators (Am , D(Am ) )
respectively such that

Am f (x) 4 a˜f (x), Fm (x)b

for all f�C 1 (Rn ) and x�Rn . Moreover, by (19), the family ](Tm (t) )tF0 : m�N( is
uniformly locally equicontinuous if and only if the sequence (Lm)m is bounded.

Next, suppose that L»4sup
m�N

LmE1Q and (Fm )m t c-converges to some func-

tion F�C(Rn ; Rn ). Clearly, F is also a globally Lipschitz function with Lipschitz
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constant GL . In particular, denoting by F the continuous function which solves
(15) with respect to F , the family (T(t) )tF0 of operators, defined as in (17), is a lo-
cally equicontinuous semigroup on (C(Rn ), t c ) with generator (A , D(A) ) such
that, for each f�C 1 (Rn ) and x�Rn ,

Af (x) 4 a˜f (x), F(x)b

and, by [3], Chapt. II, Section 3.28-Proposition, the space D4C 1
c (Rn ) is a core of

A and Rg(12A) &D ; hence Rg(12A) &D is dense in (C(Rn ), t c ). On the other
hand, we have that (Am f )m t c-converges to Af for all f�D .

Moreover, since VFm (x)2Fm (y)VGLVx2yV for all m�N and x , y�Rn , it
follows, by Gronwall’s lemma, that, for each m�N , tF0 and x�Rn ,

VF m (t , x)2F(t , x)VGe Lt�
0

t

VFm (F(s , x) )2F(F(s , x) )V ds ,

which implies that (S(l , Am ) f )m t c-converges to S(l , A) f for all f�C(Rn ) and l

D0. Consequently, by the above theorem, we can conclude that the sequence
](Tm (t) )tF0 : m�N( t c-converges pointwise and uniformly in t on compact inter-
vals of R1 to the locally equicontinuous semigroup (T(t) )tF0 .

R e m a r k 18. In many applications, e.g., in Section 5.2 below, we have the
situation that the semigroup considered is locally equicontinuous and the resol-

vent defined as s
0

Q

e 2lt T(t) xdt exists for suitable l�C . Consequently, the corre-

sponding operator S(l , A) is zero. Moreover, we obtain in Theorem 16 that if (a)
holds, then B4 A. In fact, by Theorem 16, we have that B is an extension of A.
Furthermore, (l 0 2A)21 exists and its closure (l 0 2A)21 is contained in
R(l 0 , B). Since R(l 0 , B) is continuous, we obtain that (l 0 2A)21 is continuous.
Further, the domain D( (l 0 2A)21 ) contains the range rg(l 0 2A) which is dense
in X by assumption. This implies that D( (l 0 2A)21 ) 4X . Consequently, we ob-
tain R(l 0 , B) 4 (l 0 2A)21 , and therefore B4 A.

5 - Applications

To apply our results we concentrate on the Lie-Trotter product formula which
goes back to [15]. We will obtain an explicit product formula for locally equiconti-
nuous semigroups whose generator is the sum of two generators. We then apply
this formula to the Ornstein-Uhlenbeck semigroup on Cb (Rn ).
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5.1 - The Lie-Trotter product formula

A first application of Theorem 16 is a version of the Lie-Trotter product for-
mula for locally equicontinuous semigroups. To that purpose, we restate Lemma
III, 5.1 from [3] replacing the norm V QV by seminorms p , q�P .

L e m m a 19. Let S� L(X). Assume that for each p�P there exists q�P
such that

p(S m x) Gq(x) for all x�X and m�N .

We then have that for each p�P there exists q�P such that

p(e n(S2Id) x2S n ) Gknq(Sx2x)

for all x�X and n�N .

Now, we are able to state the Lie-Trotter product formula for locally equicon-
tinuous semigroups.

T h e o r e m 20. Let (T(t) )tF0 and (S(t) )tF0 be locally equicontinuous semi-
groups on X with generators (A , D(A) ) and (B , D(B) ), respectively. Assume that
there exist MF1 and v�R such that for all sD0 and p�P there exists q�P
such that

p( [T(t)S(t) ]m x) GMe mvt q(x)

for all x�X , 0 G tGs and m�N . Consider the sum A1B on a subspace D
’D(A)OD(B) and assume that D and (l 0 2A2B) D are dense in X for some
l 0 Dv . Then the closure of A1B exists and generates a locally equicontinuous
semigroup (U(t) )tF0 given by the Lie-Trotter product formula

U(t) x4 lim
nKQ

kT g t

n
h S g t

n
hln

x ,(21)

where the limit exists for all x�X and uniformly for t in compact intervals in R1 .
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P r o o f . Let V(t) »4T(t) S(t) for all tF0. By a rescaling argument we can
assume v40 without loss of restriction. For tD0 we define

(A1B)n »4

V g t

n
h2Id

t

n

� L(X), n�N ,

and observe that (A1B)n xKAx1Bx for x�D as nKQ . Since for all p�P
there exists q�P such that

p(e t(A1B)n x) Ge
2

tn

t p
u!

m40

Q g tn

t
hm

m!
kV g t

n
hlm

x
v

GMq(x)

for all x�X , tF0 and n�N , the semigroups (e t(A1B)n )tF0 are equicontinuous se-
migroups. Therefore, by a result of K. Yosida [16, p. 241], we obtain that the
resolvent

R(l , (A1B)n ) x4�
0

Q

e 2lt e t(A1B)n xdt

exists for all x�X and l�C with Re lD0. This shows that the assumptions of
Theorem 16 are fulfilled with, in particular, S(l , (A1B)n ) 40 for all lD0. Hen-
ce, by Theorem 16 and Remark 18, the closure of A1B generates a locally equi-
continuous semigroup (T(t) )tF0 satisfying

e t(A1B)n xKT(t) x(22)

for all x�X and uniformly for t� [0 , T].
On the other hand, by Lemma 19, for p�P there exists q�P such that

p ge t(A1B)n x2 kV g t

n
hln

xhG

4

knMq gV g t

n
h x2xh

tM

kn
q( (A1B)n x), x�X ,

(23)

which converges to zero as n tends to infinity for all x�D and uniformly for
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t� [0 , T]. Finally, since for all p�P there exists q�P such that

pge t(A1B)n x2 kV g t

n
hln

xhG2Mq(x)

for all x�X , the combination of (22), (23) yields the convergence on a dense sub-
set which then holds by [12], Chapt. III, Thm. 4.5 on all of X . r

E x a m p l e 21. On C(R) endowed with the compact-open topology t c we take
the locally equicontinuous (right) translation semigroup (T(t) )tF0 with generator
A and the multiplication semigroup (Tq (t) )tF0 defined as in Example 15 with ge-
nerator B . For f�C(R) we can calculate the Lie-Trotter products

kT g t

n
h Tqg t

n
hln

f (s) 4exp g!
k41

n

q gs2
kt

n
h t

n
h f (s2 t)

for tF0 and s�R which converge to U(t) f with respect to t c with

U(t) f»4exp u �
s2 t

s

q(r) drv f (s2 t) .

The operators (U(t) )tF0 form a locally equicontinuous semigroup on
(C(R), t c ).

5.2 - Application to the Ornstein-Uhlenbeck semigroup on Cb (Rn )

In this section we are concerned with the Ornstein-Uhlenbeck operator which
has been studied, e.g., in [2]. For any symmetric, positive definite matrix
A»4 (aij ) and a matrix B»4 (bij ) � L(Rn ), the Ornstein-Uhlenbeck operator is de-
fined as

[O f ](x) »4

4:

4:

1

2
!

i , j41

n

aij Dij f (x)1 !
i , j41

n

bij xj Di f (x)

a˜ , A˜f (x)b1 aBx , ˜f (x)b

A f (x)1 B f (x)

(24)

for all f� S(Rn ), where S(Rn ) is the Schwartz space of rapidly decreasing fun-

ctions, x�Rn , ˜»4 g ¯

¯x1

, R ,
¯

¯xn
h . The related semigroup (P(t) )tF0 has the
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following representation due to Kolmogorov (see [2]):

(P(t) f )(x) 4
.
/
´

1

(2p)n/2 (det At )1/2
�

Rn

e
2

aA 21
t y , yb

2 f (e tB x2y) dy ,

f (x),

if tD0,

if t40,

(25)

for all f�Cb (Rn ) and x�Rn , where At »4 s
0

t

e sB Ae sB 8 ds . In [2] it has been shown

that (P(t) )tF0 is not strongly continuous on UCb (Rn ), the space of bounded unifor-
mly continuous functions on Rn with respect to the supremum norm V QVQ (and
hence on (Cb (Rn ), V QVQ ) ). Therefore, Lie-Trotter’s formula in its classical formula-
tion does not apply.

In the following, we show that, if Cb (Rn ) is endowed with a suitable locally
convex topology t finer than the compact-open topology, then (Cb (Rn ), t) is se-
quentially complete and (P(t) )tF0 is a locally equicontinuous semigroup on it. Mo-
reover, the Lie-Trotter product formula from Section 5.1 holds for the Ornstein-
Uhlenbeck semigroup (P(t) )tF0 .

We begin by constructing the topology t . To that purpose, we define a family
P of seminorms on Cb (Rn ) generating a locally convex topology t on Cb (Rn ) such
that the inclusion maps

(Cb (Rn ), V QVQ ) %K(Cb (Rn ), t) %K(Cb (Rn ), t c )

are continuous, where t c denotes the compact-open topology on Cb (Rn ). The con-
struction of P is similar to the one given in [4], Section 2. Let

G»4 ]g�C0 (Rn ) : gD0, lim
VxVKQ

VxV

2 g(x) 4: l exists in R( .

Clearly, G is not empty. Indeed, each function defined as

g(x) »4
.
/
´

l

lr 2

VxV

2

if VxVGr ,

if VxVDr ,
(26)

with l , rD0 arbitrary, belongs to G . Moreover, if (Dm )m�N is an exhaustion of Rn

(i.e. Dm is compact, Dm %Dm11 for all m�N , and 0
m40

Q

Dm 4Rn), and (g m )m�N

’C0 (Rn ) such that for all m�N

0 Gg m G1 on Rn , g m 41 on Dm21 and g m 40 on Rn 0Dm ,
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then each function defined as

g(x) »4 !
m41

Q 1

2lm
g m (x)(27)

for x�Rn belongs to G too, where (lm )m�N is an increasing sequence of integers
such that lm F max ]m , d(0 , Dm )( and lm �N for all m�N . Furthermore, we ha-
ve the following property.

(i) Let A be a non-zero, real matrix and g�G . For each sD0 the function g 8s
defined as

g 8s (x) »4 sup
0 G tGs

g(e 2tVAV x), x�Rn ,

belongs to G and gGg 8s .
We now consider the family of seminorms P»4 ]pg : g�G( on Cb(Rn) defined as

pg ( f ) »4 sup
x�Rn

g(x)Nf (x)N for all f�Cb (Rn ) .

Clearly, P generates a locally convex topology t coarser than the topology of uni-
form convergence on Rn . Since for each g�G there exists M»4 sup

x�Rn
g(x) D0 such

that

pg ( f ) 4 sup
x�Rn

g(x)Nf (x)NGMV f VQ

for all f�Cb (Rn ), the inclusion map (Cb (Rn ), V QVQ ) %K(Cb (Rn ), t) is continuous.
Also the inclusion map (Cb (Rn ), t) %K(Cb (Rn ), t c ) is continuous. Indeed, for each
m�N there exists g�G , where g is given as in (26) by taking l41 and r4m
such that

pm ( f ) 4 sup
VxVGm

Nf (x)NG sup
x�Rn

g(x)Nf (x)N4pg ( f )

for all f�Cb (Rn ). Moreover, by repeating the proof in [4, Prop. 2.4] with minor
changes and using functions g defined as in (27), we obtain the following
results:

(ii) The space C0 (Rn ) is dense in (Cb (Rn ), t);
(iii) A sequence ( fn )n converges in (Cb (Rn ), t) to f if and only if ( fn )n is unifor-

mly bounded and converges uniformly to f on each compact set of Rn ;
(iv) The space (Cb (Rn ), t) is sequentially complete.
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In the sequel, we show that the operators A and B from (24) are generators of
locally equicontinuous semigroups on (Cb (Rn ), t).

P r o p o s i t i o n 22. The semigroup (S(t) )tF0 given by

(S(t) f )(x) 4 f (e tB x) for tF0, f�Cb (Rn ), x�Rn(28)

is locally equicontinuous on (Cb (Rn ), t) and its generator coincides with the clo-
sure of the operator

B f (x) »4 !
i , j41

n

bij xj Di f (x) 4 aBx , ˜f (x)b

defined for every f� S(Rn ).

P r o o f . Clearly, for each compact subset K%Rn we have

lim
tK01

sup
x�K

Ve tB x2xV40 .(29)

Let f�Cb (Rn ), M»4 sup
x�Rn

Nf (x)N and g�G . Then gD0 is continuous on Rn and

lim
VxVKQ

VxV

2 g(x) 40. Let eD0. There exists rD0 such that 0 Eg(x) E
e

4M
for all

x�Rn with VxVDr . Thus,

sup
VxVDr

g(x)Nf (e tB x)2 f (x)NG
e

4M
sup

VxVDr
Nf (e tB x)2 f (x)NG

e

4M
2M4

e

2
(30)

for all tF0. Now, let K»4 ]x�Rn : VxVGr( and 0 Ed»4 max
x�K

g(x) EQ . Then, by
(29), there exists dD0 such that

sup
VxVGr

Nf (e tB x)2 f (x)NE
e

2d

for all t�]0 , d[, and hence

sup
VxVGr

g(x)Nf (e tB x)2 f (x)NGd sup
VxVGr

Nf (e tB x)2 f (x)NEd
e

2d
4

e

2
.(31)

Combining (30) and (31), we obtain for all 0 E tEd that

sup
x�Rn

g(x)Nf (e tBx)2f (x)NGsup
VxVGr

g(x)Nf (e tBx)2f (x)N1sup
VxVDr

g(x)Nf (e tB x)2f (x)NEe.
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Therefore,

t2 lim
tK01

S(t) f4 f

for all f�Cb (Rn ). Next, let sD0 and g�G . Then, taking g 8 (y) »4 sup
0 G tGs

g(e 2tB y),
y�Rn , so that g 8�G by (i), we have

pg (S(t) f ) 4 sup
x�Rn

g(x)Nf (e tB x)N

G sup
y�Rn

g 8 (y)Nf (y)N

4pg 8 ( f )

for all f�Cb (Rn ) and 0 G tGs . Thus, by Remark 2, (S(t) )tF0 is a locally equiconti-
nuous semigroup on (Cb (Rn ), t).

Let (B
A

, D(B
A

) ) be the generator of (S(t) )tF0 . It is not difficult to verify directly
that S(Rn ) %D(B

A
). On the other hand, S(Rn ) is invariant under (S(t) )tF0 and dense

in (Cb (Rn ), t). So, it is a core by Proposition 7. This completes the
proof. r

P r o p o s i t i o n 23. The heat semigroup (R(t) )tF0 given by

(R(t) f )(x) 4

.
`
/
`
´

( (2pt)n/2 ( det A)1/2 )21

Q �
Rn

exp g2 1

2 t
aA 21 (x2y), (x2y)bh f (y) dy

f (x)

if tD0,

if t40

for all tF0, f�Cb (Rn ) and x�Rn is locally equicontinuous on (Cb (Rn ), t) and
its generator coincides with the closure of the operator

A f (x) »4
1

2
!

i , j41

n

aij Dij f (x) 4 a˜ , A˜f (x)b

defined for every f� S(Rn ).
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P r o o f . We first prove the local equicontinuity of (R(t) )tF0 . Let g�G ,
f�Cb (Rn ) and x�Rn . Then

g(x)NR(t) f (x)N

G
g(x)

(2pt)n/2 (det A)1/2
�

Rn

exp g2 1

2 t
aA 21 (x2y), (x2y)bh

Q (11VyV

2 )
Nf (y)N

11VyV

2
dy

G
g(x)

(2pt)n/2 (detA)1/2
�

Rn

exp g2 1

2 t
aA 21 (x2y), (x2y)bh (11VyV

2 ) dy

Q sup
z�Rn

Nf (z)N

11VzV

2

Gg(x)(11VxV

2 1ntVAV

2 ) sup
z�Rn

Nf (z)N

11VzV

2

GM(11 t) sup
z�Rn

Nf (z)N

11VzV

2
,

where M»42 max ]Mg , nVAV

2 ( with Mg »4 sup
x�Rn

(11VxV

2 ) g(x) EQ .

Put g 8 (z) »4
M

11VzV

2
, z�Rn , so that g 8�G . It follows that for each f

�Cb (Rn )

pg (R(t) f ) G (11 t) pg 8 ( f ).(32)

Therefore, (R(t) )tF0 is locally equicontinuous in (Cb (Rn ), t).
To prove the strong t-continuity of (R(t) )tF0 , it is well known that (R(t) )tF0 is

a strongly continuous semigroup on (C0 (Rn ), V QVQ ). Consequently, we have

t2 lim
tK01

R(t) f4 f

for all f�C0 (Rn ), the space of continuous functions vanishing at infinity, because
the topology t is coarser than the topology of uniform convergence on Rn . Using
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the density of C0 (Rn ) in (Cb (Rn ), t) and formula (32) we easily get

t2 lim
tK01

R(t) f4 f

for all f�Cb (Rn ) and, by Remark 2, (R(t) )tF0 is a locally equicontinuous semi-
group on (Cb (Rn ), t).

Let (A
A

, D(A
A

) ) be the generator of (R(t) )tF0 . Note that (R(t) )tF0 is strongly
continuous on C0 (Rn ) with the V QV-closure of (A, S(Rn ) ) as its generator. Further,
S(Rn ) is invariant under (R(t) )tF0 . On the other hand, S(Rn ) is dense in
(Cb (Rn ), t). So, it is a core by Proposition 7. This completes the proof. r

With the previous propositions we are able to approximate (P(t) )tF0 by the
Lie-Trotter products of (R(t) )tF0 and (S(t) )tF0 .

T h e o r e m 24. Let (R(t) )tF0 and (S(t) )tF0 be the locally equicontinuous se-
migroups on (Cb (Rn ), t) given in Propositions 22 and 23 and generated by
(A, D(A) ) and (B, D(B) ), respectively. Then the Ornstein-Uhlenbeck semigroup
on (Cb (Rn ), t) given by (25) is a t-locally equicontinuous semigroup generated
by the closure of A1B and represented by the Lie-Trotter product formula, i.e.

P(t) f4t2 lim
nKQ

kR g t

n
h S g t

n
hln

f

for all f�Cb (Rn ) and uniformly for t in compact intervals of R1 .

P r o o f . Put lt »4 (2pt)n/2 ( det A)1/2 for tD0.
It is not difficult to verify that, for each m�N , tF0, f�Cb (Rn ), and

x�Rn ,

N[R(t) S(t) ]m f (x)NG
1

lt
m
�

Rn

exp g2 1

2 t
aA 21 (x2y1 ), (x2y1 )bh dy1 QR

Qdym21�
Rn

exp g2 1

2 t
aA 21 (e tB ym21 2ym ), (e tB ym21 2ym )bhNf (e tB ym )Ndym

G sup
z�Rn

Nf (e tB z)N

11VzV

2
Q

1

l m
t

�
Rn

exp g2 1

2 t
aA 21 (x2y1 ), (x2y1 )bh dy1 QR

Q dym21�
Rn

exp g2 1

2 t
aA 21 (e tB ym21 2ym ), (e tB ym21 2ym )bh (11Vym V

2 ) dym .
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Now, fix sD0, g�G and put gA0 (z) »4 sup
0 G tGs

1

11Ve 2tB zV

2
, z�Rn , so that gA0 �G .

By standard computation of integrals with respect to Gaussian measures, it follo-
ws that, for each 0 G tGs ,

g(x)N[R(t) S(t) ]m f (x)NG sup
z�Rn

gA0 (z)Nf (z)N

Q gg(x)1
g(x)

lt
m
�

Rn

exp g2 1

2 t
aA 21 (x2y1 ), (x2y1 )bh dy1 QR

Q dym22�
Rn

exp g2 1

2 t
aA 21 (e tB ym22 2ym21 ), (e tB ym22 2ym21 )bh

Q (Ve tB ym21 V

2 1ntVAV

2 ) dym21hG sup
z�Rn

gA0 (z)Nf (z)N

Q gg(x)(11ntVAV

2 )1
g(x) e 2 tVBV

lt
m21

�
Rn

exp g2 1

2 t
aA 21 (x2y1 ), (x2y1 )bh dy1 QR

dym22 Q�
Rn

exp g2 1

2 t
aA 21 (e tB ym22 2ym21 ), (e tB ym22 2ym21 )bh Vym21 V

2 dym21h
G sup

z�Rn
gA0 (z)Nf (z)Ng(x)(11mntVAV

2 1e 2mtVBV

VxV

2 ) ,

and hence

g(x)N[R(t) S(t) ]m f (x)NG sup
z�Rn

gA0 (z)Nf (z)Ng(x)(11mntVAV

2 1e 2mtVBV

VxV

2 ) .(33)

Take w»4 max ]2VBV , 1( which is independent of g , s and f , and
M»42 max ]Mg , nVAV

2 ( with Mg »4 sup
x�Rn

(11VxV

2 ) g(x) EQ . It follows by (33)

that there exists gA »4MgA0 �G such that

pg ( [R(t) S(t) ]m f) Ge mwt pgA ( f )

for all f�Cb(Rn), 0 GtGs and m�N . Since g and s were arbitrary, we conclude
that there exists w�R1 such that for g�G and sD0 there exists gA �G such that

pggkR g t

m
h S g t

m
hlm

fhGe wt pgA ( f )

for all f�Cb (Rn ), 0 G tGs , and m�N .
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As stated in (ii) at the beginning of this subsection, the Schwartz space S(Rn )
is dense in (Cb (Rn ), t). Moreover, it is a subset of D(A)OD(B). On C0 (Rn ) the
Ornstein-Uhlenbeck semigroup (P(t) )tF0 is strongly continuous and is represen-
ted by the Lie-Trotter Product Formula (see [8], Prop. 12). In particular, its gene-
rator coincides with A 1 B restricted to S(Rn ). Hence, by the invariance of the
Schwartz space under (P(t) )tF0 , we obtain that (l2 A 2 B) S(Rn ) is dense in
(Cb (Rn ), t) for lD0. Applying Theorem 20 we obtain that the closure of A 1 B

generates the locally equicontinuous semigroup (P(t) )tF0 on Cb (Rn ) given by the
Lie-Trotter product formula

P(t) f4t2 lim
mKQ

kR g t

m
h S g t

m
hlm

f

for all f�Cb (Rn ) and uniformly for t in compact intervals of Rn . r

R e m a r k 25. We consider on Cb (Rn ) the topology s given by the norm

NNNfNNN»4 sup
x�Rn

Nf (x)N

11VxV

2
, f�Cb (Rn ) .

Since t is finer than s , and by setting g(x) 4
1

11VxV

2
for x�Rn , we obtain in the

same way as before that the Ornstein-Uhlenbeck semigroup (P(t) )tF0 given by
(25) is a strongly continuous semigroup on (Cb (Rn ), NNN QNNN) and

P(t) f4NNN QNNN2 lim
nKQ

kR g t

n
h S g t

n
hln

f

for all f�Cb (Rn ) and uniformly for t in compact intervals of R1 . We point out that
the space (Cb (Rn ), s) is not complete.
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A b s t r a c t

In this paper we prove Trotter-Kato approximation results and the Lie-Trotter pro-
duct formula for locally equicontinuous semigroups on sequentially complete locally con-
vex spaces. These results are then applied to the Ornstein-Uhlenbeck semigroup on the
space of bounded continuous functions on Rn endowed with a locally convex topology
agreeing with the compact-open topology on norm-bounded sets.
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