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Trotter-Kato approximation theorems

for locally equicontinuous semigroups (**)

1 - Introduction

A systematical theory of equicontinuous semigroups has been developed on se-
quentially complete locally convex spaces by several authors (e.g. [16], [6], [9]).
The assumption of equicontinuity permitted them to obtain generation and appro-
ximation theorems parallel to the case of Banach spaces. Indeed, this theory de-
pends heavily on the fact that for any equicontinuous semigroup (7(t)); » o with ge-
nerator A on a sequentially complete locally convex space X, its Laplace tran-
sform defined as

[

j e M T(t) adt
0

exists for all xe X and 1 e C with ReA > 0 and coincides with (1 — A) '« (as for
bounded strongly continuous semigroups on Banach spaces).
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On the other hand, if equicontinuity fails, this parallelism may no longer hold.
For instance, let (T'(t)); =, be the left translation semigroup on the space C(R) of
continuous functions on R endowed with the topology of uniform convergence on
bounded subsets. Then (7(t)); > is not equicontinuous, its Laplace transform does

d
not exist for any A e C, and its generator given by A = T has empty resolvent
x

set. To avoid these difficulties, T. Komura [7] dealt with locally equicontinuous se-
migroups and introduced the «generalized resolvent» defined as a suitable vector-
valued distribution. She obtained a Hille-Yosida theorem for such locally equicon-
tinuous semigroups in sequentially complete locally convex spaces by giving con-
ditions on such a distributional resolvent (see [7], Thm. 3). Since this type of resol-
vent is hard to treat, S. Ouchi [10] used «asymptotic resolvents» to state a simpli-
fied generation theorem of Hille-Yosida type [10], Thm. 2.1. Following this ap-
proach, C. Grosu proved in [5] a version of the Trotter-Kato theorems for locally
equicontinuous semigroups in Fréchet-Schwartz spaces for continuous (or, in so-
me case, even bounded) generators.

The aim of this paper is to prove Trotter-Kato theorems and the Lie-Trotter
product formula for locally equicontinuous semigroups in the general setting of
sequentially complete locally convex spaces with no additional assumption on the
generator, making only use of the notion of asymptotic resolvent due to S. Ouchi
and of «pseudo asymptotic resolvent» (see Def. 8). Therefore, we substantially im-
prove the results of C. Grosu [5] and extend the theory of locally equicontinuous
semigroups. Moreover, we apply our results to prove that the Lie-Trotter product
formula is also available for the Ornstein-Uhlenbeck semigroup on the space
Cy(R™) of bounded continuous functions endowed with a suitable locally convex
topology t agreeing with the compact-open topology on bounded subsets of R".
We point out that in [13], [14] the Lie-Trotter product formula has been proved
for a class of transition Markov semigroups associated to stochastic differential
equations, including Ornstein-Uhlenbeck semigroups. Hovewer it has been used
there a probabilistic approach very different from the functional one which is con-
sidered in the present paper.

The paper is divided into 5 sections. After the introduction, we recall in Sec-
tion 2 some basic facts and introduce pseudo asymptotic resolvents together with
their main properties. In Section 3 we prove preliminary convergence results of
sequences of locally equicontinuous semigroups and their asymptotic resolvents.
Section 4 is devoted to the Trotter-Kato theorems. Finally, in Section 5 we prove
the Lie-Trotter product formula for locally equicontinuous semigroups and apply
it to the Ornstein-Uhlenbeck semigroup on Cj,(R").
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2 - Locally equicontinuous semigroups and asymptotic resolvents

Let X be a sequentially complete locally convex space. We denote by £(X) the
space of all continuous linear operators on X and by P the set of all continuous se-
minorms on X. We consider locally equicontinuous semigroups and use the defini-
tion of S. Ouchi [10], Def. 1.1.

Definition 1. A family {T(t):t=0} in LX) is called a locally equiconti-
nuous semigroup if it satisfies the following conditions.

(@ T@) T(s) =Tt +s) for all t,s=0, T(0) =1Id.
(b) }iLnT(t)x= T(s)x for all s=0, xeX.

(¢) Forall a>0 the subset {T(t):0 <t <a} is equicontinuous, i.e., for all
peP there exists ge P such that

p(T)x)<qx) forall O0<t<a and xeX.

The generator (A, D(A)) of a locally equicontinuous semigroup (T(t))i=, s
defined as

. T x—x
)] Ax:= lim ———
t—0* t
. . . THxe—a .
with domain D(A) :={xeX: lim —t exists ;.
t—0"

Remark 2. If X is barreled, by [12], Chapt. ITI, Thm. 4.2, conditions (a) and
(b) in Definition 1 imply the local equicontinuity of a family of continuous and li-
near operators on X. Moreover the continuity of the map ¢~ T(¢) « at 0 and local
equicontinuity imply the continuity at every point in R, . To see this, let ¢, >0,
xeX and peP. By Definition 1, (c¢), there exists geP such that p(T(t)y)<q(y)
for all 0 <t <t, and y € X. Therefore, p(T(t, + h) x — T(ty) x) < q(T(h) x — x) if
h>0 and p(T(ty+h) x—T(ty) ) <qlax —T(—=h) x) if —t,<h <0 which implies
the continuity at t,.

We now put, for a fixed a >0 and for each 1eC,

@) R, A) = Je’“T(t)xdt for xeX.
0

By the local equicontinuity of the semigroup (7(t));>, and the sequentially
completeness of X, the integral exists in the sense of Riemann, and we obtain the
following important properties of the operators R(A, A) and its relation to the
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generator of the semigroup (7(f));=, (see [7], Prop. 1.3, 1.4, Cor. p. 261, [10],
Prop. 1.2).

Proposition 3. Let (T(t));=, be a locally equicontinuous semigroup on X
with generator (A, D(A)). Then (A, D(A)) is a closed and densely defined opera-
tor. Moreover, the operator R(A, A) defined as i (2) maps X into D(A), and we
have

) A—A)RUA,A)x=x—e¢ *T(a)x for all xeX,
(i) RA, A) R(u, A) x=R(u, A) R(A, A) x for all xeX,

(i) R(A, A) Ax = AR(A, A) x for all xeD(A).

(iv) The operator R(A, A) x is an X-valued holomorphic function in A for all
xeX, R(A, A)e £X) for all A, and the family of operators

/'Ln+1 dn
nl dA"

R(A,A):2>0,n=0,1,2, ...

1S equicontinuous.

Based on these properties, S. Ouchi [10] defines the so-called asymptotic
resolvent and states a generalized Hille-Yosida Theorem (see [10], Def. 2.1,
Thm. 2.1).

Definition 4. A family {R(A,A):A>w}, wekR, in LX) is called an
asymptotic resolvent of a closed operator (A, D(A)) if it satisfies the following
conditions.

(a) The operator R(A, A) x is infinitely differentiable in A (A > w) for all
xeX and R(A, A) maps X into D(A).

(b) AR(A, A) =R(4, A)A on D(A).

() R(A, A)R(u, A) =R(u, A)R(A, A) on X for all 1, u>w.

(d A-A)RA, A)=1d + S(4, A), where S(A,A) e LX) and S(A, A) x is
finitely differentiable in A for all x € X, and for all p € P there exists q € P such
that

p( (jﬂ S(4, A) 90) <Cpe % q(x)

for all xeX, 2> w, and some constant C,>0.
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Consequently, if R(1, A) is an asymptotic resolvent of A, we have
A—A)R(A,A)=1d+ S, A),

where S(A, A) x is infinitely differentiable in A for every x e X. Differentiating
this equation (k + 1)-times in A, we obtain

3 A-—AR* VA, A+ k+1)RPA, A)x=S* "V, A)w

for all x e X (cf. [10], p. 269). Moreover, if (A, D(A)) is the generator of a locally
equicontinuous semigroup (7(t));=, on X, and R(4, A) is defined as in (2) for so-
me fixed a and all 1 e C, then {R(4, A): 1> 0} is an asymptotic resolvent of A4,
which is called the canonical asymptotic resolvent of A, where we take

4) S(A, A) :== —e *T(a)
for all A >0, and hence
(5) SP(,A)=(-1)a’e *T(a)

for all 1 >0 and j e N. The canonical asymptotic resolvent will play an essential
role for convergence properties of sequences of locally equicontinuous semigroups
in Section 3 and the Trotter-Kato approximation results in Section 4.

The notion of asymptotic resolvent leads to a generalized Hille-Yosida Theo-
rem stated in [10], Thm. 2.1.

Theorem 5. Let (A, D(A)) be a linear operator on X. Then the following
conditions are equivalent.

(1) The operator (A, D(A)) is the generator of a locally equicontinuous semi-
group (T(?))i=o¢.

(ii) The operator (A, D(A)) is closed and densely defined, and there exists an
asymptotic resolvent {R(A, A):A>w} of A such that the family

An,+1 dn

R(A,A):A>w, n=0,1, 2, ...
n!  dA”

18 eqUACONLINUOUS.

As in the case of strongly continuous semigroups on Banach spaces it is useful
to introduce the notion of a core of a linear operator.

Definition 6. A subspace D of the domain of a linear operator A : D(A)
cX—X is called a core for A if D is dense in D(A) for the set P of seminorms
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defined as
p(x) :=p(x) + p(Ax) for pe P, xe D(A).

We note that D(A) endowed with the topology induced by P is also sequential-
ly complete if X is. Similarly to the Banach space case we can state a criterion for
subspaces to be a core for the generator of a locally equicontinuous semi-

group.

Proposition 7. Let (A, D(A)) be the generator of a locally equicontinuous
semigroup (T(t));=o. A subspace D of D(A) which is dense in X and mvariant
under the semigroup (T(t));=, is a core for A.

Proof. For every x e D(A), we can find a net (x,),c4C D such that x,—x in
X because D is dense in X. Since for each a the map R, 2s—T(s) x, € D is conti-
nuous with respect to the family of seminorms P (see [7], Prop. 1.2 (1)), it follows
that

t
jT(s) v, dse D",
0

Similarly, the P—continuity of R, 28—=T(s) x for x € D(A) and [7], Prop. 1.2 (2)
implies that

t t t
-1 1 1
p(— JT(s)xds—x) Sp(— fT(s) xds —ac) +p(— JT(S)A%dS —Aac)
t 0 t 0 t 0
for every p e P. This converges to zero if ¢ tends to zero, and also
t t
! 1
P ?J’T(s)xads— ?jT(s)xds —0
0 0

as a varies in A for each ¢ > 0. Therefore, for every ¢ > 0 there exists £ >0 and
aeA such that

t
i)(%ofT(s)xads—x) <e.

Hence, xeD". m



[7] TROTTER-KATO APPROXIMATION THEOREMS... 25

In the remaining part of this section we introduce the so-called asymptotic
pseudo resolvent which will be the main technical tool to obtain approximation re-
sults for locally equicontinuous semigroups.

Definition 8. We consider R(A) e LX) for each A>w. The family
{RA): A>w} is called an asymptotic pseudo resolvent if for all 1> w there
exists S(A) e L(X) such that the following conditions hold.

(@) The operator S(1) x is infinitely differentiable in A for all xe X, and for
all pe P there exists qe P such that

dk
p ( I S() ac) <ae “q(x)

for all xeX, A>w, k=0,1,2, ... and some a>0.
(b) For each A, u>w, the equation

(A — 1) RA) R(w) = R(w) — RG) + L) R@w) — S@) R(A)

holds.
(¢) The operators S(A) and R(u) commute for all A, u>w.

We remark that for an asymptotic pseudo resolvent R(1) we have that
R(A) R(u) = R(u) R(A) for all A, u>w.

If we suppose that the asymptotic pseudo resolvent is injective with dense range
at some point 1, we obtain the existence of a densely defined and closed linear
operator having an asymptotic resolvent coinciding with the given asymptotic
pseudo resolvent.

Proposition 9. Let {R(A):A>w} be an asymptotic pseudo resolvent on
X. If Ker R(Ay) = {0} and Rg R(A,) is dense in X for some A,> w, then there
exists a densely defined and closed linear operator (A, D(A)) such that
R(A) = R4, A) is an asymptotic resolvent of A.

Proof. Since Ker R(1,) = {0}, we can define a linear operator by

A:=20Id— (Id+ S(y) RHAy).

Since R1(4,) is closed and (Id + S(1,)) € £(X), the operator A is closed with do-
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main D(A) := Rg R(A,) which is dense in X. From the definition of A it follows
that

(Ao—A) R(Ag)x=u+ S(Ay) x
for all xeX and
Ao—A) RAp) x=RANAg—A)x =0+ 1) x
for all xe D(A). By the properties listed in Definition 8 we have

RA I+ 8(A)) = (4 = 4¢) R(A) R(Ao) + R + S(A)]
= RALA = 4¢) R(Lo) +1d + S(Z)]
= RDLA = 49) R(Ag) + (Ao = A) R(Ly)]
=R —A) R(Ly)

(6)

for all A > w. In the same way, we obtain
) (A—=A) R(Ay) R(A) = R(A A + S(D)].
By (6) we conclude that

RA)A—A)=1d+ S(A) in DA) =Rg R(Ly).
Moreover, since R(1) x e D(A) for x e D(A), by (7), we have
® (A—A) R(A) =Id+ S(A) 1in DA).

To complete the proof, it is sufficient to show that Rg R(1) cD(A) and that
equation (8) holds on X. Let x e X. Since D(A) = Rg R(A,) is dense in X, there
exists a net (x,),caCD(A) such that x,—«x and hence R(1) x,— R(1) x and
SA) x,— S(A) x. By (8) we obtain

A—-A) RA) xg=ux,+ SA) xy— 2+ SA) x.

Since 4 — A is a closed operator with domain D(A), it follows that R(1) x € D(A)
and (A-A) RN x=x+SA)x. =

We remark that Ker(1,— A) = D(A) N Ker(Id + S(Ay)) and (A1, —A) R(A,) X
={Id+S(1y)) X.
A particular case of Proposition 9 is stated in the following proposition.

Proposition 10. Let {R(1): 1> w} be an asymptotic pseudo resolvent and
(Id + S(Ly)) bijective for some 1y> w, where S(A,) denotes the operator corre-
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sponding to the asymptotic pseudo resolvent R(A ). If for an unbounded sequen-
ce (ln)nei\b An > w,

9) lim 4, RA,)e=2  foral veX,

then {R(A):A>w} is an asymptotic resolvent of a densely defined and closed
operator. In particular, (9) holds if for all pe P there exists qe P such that

P, R(A,) ®) < C,q(x)

for all xeX, nelN, and some constant C, =0, and RgR(4) is dense for some
A>w.

Proof. By the properties of the asymptotic pseudo resolvent (see Def. 8) we
obtain

R(Ay) + 8(Ag) R(Ay) = R(Ao) + S(A,) R(Ag) = (A, = 4o) R(A,) R(Ao),
which is equivalent to
RA A+ SA )] = RADUIA + S(A,,) — (A, —Ag) R(A,)].
This implies, by the surjectivity of (Id + S(1,)), that
Rg R(4,) cRg R(4o),

and therefore
U Rg R(A,) cRg R(Ly).
Consequently, by (9), we have
X= U Ry R(1,) = Rg R(),

hence R(4,) has dense range in X. If x € Ker R(4,), we obtain, again by the pro-
perties of the pseudo asymptotic resolvent, that

A RAIUA + S(Ao) e =4, Ud + S(4,) = (A, = A9) R(A,)] R(A9) © =0

for all n e N. By passing to the limit we obtain (Id + S(1,)) x = 0, which implies
2 =0 by assumption. Applying Proposition 9 we can conclude that there exists a
densely defined and closed operator (A, D(A)) such that R(1) = R(4, A).
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We now suppose that for all pe P there exists ge P such that
P(A, R(A,) x) < C,q(x)

for all xeX, nelN, and some constant C,> 0, and Rg R(4) is dense for some
A>w. Fix p e P and take g € P such that the above inequality and condition (a) in
Definition 8 hold. Then, by the asymptotic pseudo resolvent equation, we obtain
that

P((A, R(A,) — Id) R(A) x) =p(S(A,) R(A) ©+ R(ADARA) — (d + S(A))] x)
< p(S(4,) RA) x) + p(RAA IARQ) — (Id + S(A))] x)
C
<e “g(R) x) + l-” qARQA) & — (Id + S(A)) ),
which converges to zero as n—> o for all x € X. Since Rg R(1) is dense in X for
some A > w, we can conclude that

ApnR(A,) x—2

for all reX as n—> . N

3 - Sequences of locally equicontinuous semigroups and asymptotic resolvents

In this section, we prove convergence properties of sequences of locally equi-
continuous semigroups and of their asymptotic resolvents. To that purpose, we
first introduce the notion of a uniformly locally equicontinuous sequence of
semigroups.

Definition 11. Let {(T,(t));>0: n e N} be a sequence of locally equiconti-
nuous semigroups on X. It is called uniformly locally equicontinuous, if for all
s> 0 and for all peP there exists qe P such that

p(T, ) x)<qlx) forall O0<t<s,xeX and nelN.

If A, is the generator of (7,(t));>, and R(1, A,) its corresponding canonical
asymptotic resolvent defined for the same a >0, then

FIEREY Y
RO, A)x= (—1)-7/1-7+1fe = T (t) xdt
Jdu 5!

0

for all ke X, n, je N and A > 0. Consequently, if {(7,,(¢));>¢: 7 € N} is uniformly
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locally equicontinuous, then for every pe P there exists ¢e P such that

1t gi ier
— —R(A,A,) x| < q(x) , fe‘ttfdt < g(x)
G da I

(10) p

for all xeX, j,neN and 1>0.
In the theory of strongly continuous semigroups on Banach spaces the
equation

n

11) %R(}L,A):(—1)”’7@!R(}L,A)”“, nelN, leo(4),

is essential to obtain that the convergence of the resolvents at one point A,>0
implies already their convergence for all 1 > 0. However, for pseudo asymptotic
resolvents equation (11) fails, and we must work with the derivatives of the asym-
ptotic resolvents instead of their powers. The following lemma is one of the basic
steps towards Trotter-Kato theorems for locally equicontinuous semigroups.

Lemma 12. Let {(T,(t))s¢:neN} be a sequence of uwiformly locally
equicontinuous semigroups on X. Let (A,, D(A,)), neN, be the generator of
(T, ()= and R(A, A,,) be the corresponding canonical asymptotic resolvent de-
fined for the same a>0. If

J

di 4
lim —— R(1o, 4,) @ = RV(Z) @

n=w g1

exists for all jelN, xe X and some 1,>0, then
d’ .
lim — R(1,A,)x=:RV(1)x
e dA

exists for all jeN, xeX and 1> 0.

. d’
Proof. Weset RY(1, A,) := wR(i, A,). By Proposition 3(iv) R(4, A,) x
is a vector-valued holomorphic function in A for all x € X and n e IN. Therefore,

R(1, A,) x has a power series expansion around 1, given by

RGO, A= L

VELNL

(l _lo)qu)(;L(]a An) X )

where the series converges in X uniformly for » e N if 1 > 0. Indeed, by (10), for
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every p e P there exists ge P such that

A=Ay . A=Aalial a
p 2 uR(ﬁ(io,An)x < 2 %Q(ﬂﬁ)’,’e%“tdt
J-
0

izh gl i=h

1—eh

“ o A=Al

< q(@) pypiasll
Ao izh 7!

for all xeX, and h,nelN. Let 1>0 and xeX. We now show that
lim R ® (1, A,) x exists for all ke N. Since X is sequentially complete, it is suffi-
cient to prove that {R*¥ (4, 4,) x}, . is a Cauchy sequence in X for all k € N. To
that purpose, let kelN, peP and e¢>0. There exists hyeN, hy=k, such
that
A=2gli~F . 1—g e
P=dol ™ G L2 2
izh (J—k)! Ao 4

for all k= h,, where qe P is taken as in (10). Therefore, we obtain that

PRV, A,) x—RP(4, A,) ©)

hg _ Jj—k
<p[> LB (R, A0 - ROG, 4, 0)
i<k (j=k)!
( (l_/lo)j_k
]Zho—

( s k)' (R(j)(/l(hAn)x_R(j)(/lo’Am) 90))
] — .

ho i—k
<p (A—2¢)
i=k  (j—k)!

(RWMMAMx—RWumAMxﬁ+§

—Cc+ L
2
for all n, me N. By assumption {R”(4,, A,) #},cx is a Cauchy sequence in X

for all j e IN. Hence, there exists nye IN such that C < 3 for all n, m = n,. This
concludes the proof. =
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Remark 13. Under the assumptions of Lemma we obtain that
a’ . .
wR(/l) x= nlilr%oR”)(/l, A)x=RY1)x,

and hence, by using (10), for each pe P there exists ge P such that

yERS I ¥
i EERQM?gﬁM

p

for all xeX,jelN and 1>0.

4 - Trotter-Kato approximation theorems

In this section we characterize the convergence of uniformly locally equiconti-
nuous semigroups by the convergence of their canonical asymptotic resolvents.

Theorem 14. Let {(T,(1))so:neN} and (T(t));=¢ be uniformly locally
equicontinuous semigroups on X with generators A, and A, respectively. For ea-
ch nelN and some 1, >0 let R(4,, A,) and R(1,, A) be the corresponding cano-
nical asymptotic resolvents defined for the same a >0 and Sy, A,) and
S(Ag, A) be defined by (4), respectively. Suppose that S(A,, A,) c—>S(Ly, A) x
for all xe X and RgR(A,, A) is dense in X. Then the following assertions are
equivalent.

(a) R(Ag, A) x—R(Ay, A) x for all xeX.
(b) T,(t) x—T(t) x for all x € X and uniformly for t in compact intervals in R, .

Proof. The proof is inspired by the one given in [11], Thm. 4.2.
(@) = (b): Let xeX,0<t<T and peP. Then

pU(T,(t) =T(t)) R(4,, A) )
< p(T, ()R g, A) — R(Ag, A,)) @)
+P(R( o, AT, () = T(1) @) + p(R(Zo, A,) = R(Lo, ANT(H) )
=10, (t) + b, (t) + ¢, (1).

(12)

Since p(T,(t) x) < q(x) for all 0 <t<T and some suitable q € P, it follows that
a,(t) converges to zero uniformly on [0, T] as n tends to infinity. Also since
t—T(t) x is continuous, the set {T'(¢) x : 0 <t < T} is compact in X and therefore,
by [12], Chapt. III, Thm. 4.3, ¢, (t) —0 uniformly on [0, 7] as n— .
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It remains to prove that b,(t) —0 uniformly on [0, 7] as n— . To show
this, we consider, for each te[0, T] and y e X, the map

[07 t] BSHTn(t - S) R(/l(h An) T(S) R(AO’ A) Y eX
which is differentiable in [0, ¢], and its derivative is given by

[0, t]3s— — T, (t —s) A, R(A,, A,) T(s) R(1,, A) y
+Tn(t - S) R(/107 An) T(S) AR(;LO’ A) Y eX.

Consequently, for each te[0, T], ye X, and p’ € P we have
p ' (R(AOv An)(Tn(t) - T(t)) R(AO; A) ?/)

t
<p ’( JTn(t =S —A,R(AyA,)T()+RA,A,)T(s)AIR(A,A) yds)
0
t
zp’( an(t— s{Id + S(Ay, A4,) —AoR(Ay, A DI R(Ay, A)
0
+R(kg, A2 R(, A) —Id—S(AO,An}T(s)yds)
t
< [P/ (T, = DRy, 4) = Rk, A,)] T(s) y) ds
0
t
+ [P (Tt = 9ISy, A,) = 8o, AR, A) T(s) y) ds
0
t
+ Jp’(Tn(t = 8)[R(Ay, A) — R(Ay, A1 Sy, A) T(s) y) ds
0
.
< [q' (R, A) = Ry, A1 T(5) ) ds
0
T

+ fq’([S(lo,An)—S(lo,A)]R(lo,A) I(s) y) ds
0

T
+ Jq’([R(/lo, A)— Ry, A8y, A) T(s) y) ds,
0
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which converges to zero uniformly on [0, 7] as n tends to infinity by assumption
and the same compactness argument as above, where ¢’ € P depends on p' and is
taken as in Definition 11. Therefore, for each y e X, we have

R(4o, AT, () = T(®)) R(4o, A) y—=0

uniformly on [0, 7] as n— . Since RgR(1,, A) is dense in X, it follows
that

R(/l(h A?’L)(Tn(t) - T(t)) x—0

uniformly on [0, T] as n—> o, thereby implying that b,(¢) —0 uniformly on
[0, T] as n— . Thus, with estimate (12), we obtain that

(T, (t) © — T(t) ©) —0
uniformly on [0, T] as n— .
(b) = (a): For xeX we have, for every peP,

a

P(R(Lo, A) &~ R(io, A,) @) < [e M p(T(t) & = T,(1) ) dt

0

which converges to zero as n—. =R

Example 15. Let C(R) be the space of continuous functions endowed with
the compact-open topology 7.. We consider the multiplication semigroup
(Ty(t));=o defined as

T,(t) fi=e"f, 20, feCR),

for some function g e C(R). It can be easily verified that (T,(t));>, is a locally
equicontinuous semigroup on (C(R), 7.) and its generator is given by

Af=q-f for all fe D(A) = C(R).

Therefore, for fixed a >0 and every A >0 the canonical asymptotic resolvent
R(1, A) and the corresponding operator S(1, A) are given by
el —Da _ 1
R, A) f(s) = ————f(s) and S(4, A) f(s) = —e W& ~Paf(s)
q(s) — 4

for all fe C(R) and s € R. Thus, the range of the canonical asymptotic resolvent is
dense in (C(R), t,).

Let us now consider a sequence (g,,), <~ C C(R) such that (q,,), < T ~converges
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to the function ¢. Then each A, defined as A,,f:= q,,-f, fe C(R), generates a local-
ly equicontinuous semigroup (7,,());=, given by

T, @) f=e'f, =0, feCR).
Furthermore, for every compact subset KcR we have

px(T, (1) ) < SUIIQ |e" ™ | pr(f) < e™Epg(f)

for all fe C(R), t =0 and some constant My := sup max |g,(s) | . Consequently,
(T,(®))i =0, me N, are uniformly locally equlcontlnuous semlgroups on (C(R), t,).
Let 1,>0. We have for each a >0 that

SO, A,) f= —e@= 00580 A) f= —g@—toaf

for all fe C(R). Finally, it is easy to see that T, (?) f2> T(t) ffor all fe C(R) and
t=0.

The following result is very useful for applications because it permits us to
conclude that an operator A is a generator of a locally equicontinuous semigroup
only by assuming that a sequence (A4,),<n of generators converges to it.

Theorem 16. Let {(T,(t));>0: neN} be a sequence of uniformly locally
equicontinuous semigroups on X with generators (A,, D(A,)). For each neN
let R(A, A,) be defined by (1) for the same a >0 and S(A, A,) defined by (4).
Suppose that there exists A,> 0 and S; e £(X) such that S(A,, A,) x— S, x for
all xeX and (Id+S,,) is bijective. Consider the following assertions:

(@) There exists a densely defined operator (A, D(A)) such that A, x— Ax
for all x in a core D of A and such that the range Rg(A,—A) is dense in X.

(b) There exists R e £(X) such that R(4,, A,) x— Rx for all xeX, RgR is
dense in X and KerR = {0}.

(¢) The sequence {(T,(t));=q: n e N} converges pointwise and uniformly in t
on compact intervals of R to a locally equicontinuous semigroup (T(t)); s with
generator (B, D(B)) such that R = R(A,, B), where R(1,, B) is an asymptotic
resolvent of B.

Then the 1mplications

(@) = (b) < (¢)

hold. In particular, if (a) holds, then B is an extension of A.
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Proof. (a) = (b): We observe that (1,—A)D=X. In fact, since Rg(A,—A)
is dense in X, for fixed xeX, ¢>0 and peP there exists ye D(A) such
that

£
ple—(Ao—A)y) < 3
and there exists ze D such that
€
p((Ag—A)y —2)) < 3
Therefore,
plx—UAy—A)z)=plx—Ag—A)y+ Ay—A)Ny —2)) <e.
Take now xeD and put y:= (1,—A)x. Then, for each nelN,
R(Ag, Ay) y=R(Ao, AN(Ag—A)x— (Ao—A)x+ (Ag—A) x]
=R(Ay, A,)Ag—A,) x+ R, A,)A,x — Ax)

=x+ S 0y An) T+ R(/’LO’ Aw)(Anx — Aw).

Hence R(4, A,) y converges to Ry :=x + S, x since, by (10), for all p € P there
exists qe P such that

1
P(R(4g, A,)(A,x — Ax)) < o q(A,x — Ax)
0

for all n e N. Moreover, by (10) again, for every p € P there exists ¢ € P such that,
for each ye (Ag—A)D and nelN,

1
P(R(Lo, Ay) y) S — q(y).
Ao

Therefore, letting n— + o, we conclude that

1
(13) p(Ry) € —q(y)
Ao

for all y e (1, — A) D. This means that the linear operator R defined above is con-
tinuous on (1, — A) D. Consequently, by the density of (1,—A) D in X, we can
extend R continuously on X such that (13) still holds.
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In the next step we show that
R(Ay,A,) x—Rx for all xeX.
Let xe X, e>0 and p e P. Corresponding to p there exists a continuous semi-

norm g on X such that (13) and

1
p(R(/,{(]y An) 9(;) < Tq(x) fOI' 3.11 nelN

0

hold. Moreover, there exists x,e D such that
q(x = (Ao —A) xp) < Agﬁ ,
and there exists nye N such that
MRumAﬂuyﬁD%—Rﬂofow<§

for all n=mn,. By (13) it follows that, for each n = n,,
p(R(AO, An) xr— Rﬁﬁ) = p(R(/IO’ An) xr— R(AO, An)(/l[) _A) 960)

+p(R(Ag, Ay)(Ao—A) 2y — R(Ao— A) ) + p(R(ALo— A) 2y — Rx)

2 €
S —qlx—(Ag—A)x) + =
ioq( (4o ) %) 3

<¢

< C.

We now show that RgR is dense in X. By definition we have R(1,—A) =1Id
+S;,, hence R(Ay—A)D=(Id+S;)D. Since Id +S,, is surjective, we ob-
tain

X=(Id+8,)X=Ud+8,)DcUd+3,)D.

Therefore, X = R(Ag—A) D = R(1,—A)D = R(X). Finally, Ker R = {0} becau-
se Id +8;, is one-to-one and (A —A)R=1Id+3S;,.

Since the implication (¢) = (b) holds, by Theorem 14, it remains to prove that
(b) = (c). To that purpose, we first show that the condition

(") For each k e\ there exists R, e 2(X) such that R®(1,, A,) *— R« for
all xeX and RgR, is dense in X,
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implies (¢). By Lemma 12 for each A >0 there exists R (1) € £(X) such that
R(k)(/ly An) x%Rk(l) €

forallx e X, ke N, A >0, and also, by Remark (13), that R(1) x is infinitely diffe-
rentiable in A >0 with

dlc
WR(/I) =R, (M) x

for all xeX, kelN and A > 0. Moreover, by Remark 13, for every pe P there
exists ge P such that

ﬂ,lﬁ—l k

—RA) x| < qx)

14
(14 P\ 7 anr

for all x e X, ke N and 1 > 0, where R(4,) := R,. Furthermore, it is easy to veri-
fy that in this case {R(41): 1 >0} is an asymptotic pseudo resolvent with Rg R(1 )
dense in X and KerR(4,) = {0}. Thus, by Proposition 9, there exists a densely
defined and closed operator (B, D(B)) such that R(41, B) = R(4) for all 1> w,
where R(1, B) is an asymptotic resolvent of B. Clearly, R(4, B) satisfies estimate
(14), and therefore, by the generalized Hille-Yosida Theorem 5, (B, D(B)) gene-
rates a locally equicontinuous semigroup (7(t)); . We can now apply the implica-
tion (@) = (b) from Theorem 14 in order to conclude that the semigroups
(T,()); =0 converge, in the desired way, to the semigroup (7(t));¢-

Now, we observe that conditions (b) and (b’) are equivalent. In fact, (b) follows
from (b’) by taking R = R,. In order to obtain (b") from (b) it remains to show
that for each ke, k>0, there exists R, e £(X) such that

R®(Ly, A)x—R,x for all xeX

as n— o . We proceed by induction. Put R, := R. By assumption, the assertion
for k=0 holds. We assume that for some k=1 there exists R, e £(X) such
that

R® (g, A)) x—> Ry

for all xeX. To obtain the result for k£ + 1, it is sufficient to show that there
exists Ry ,,e £&((1y—A) D, X) such that, for all xeD,

R DAy, Ao~ A) x—Ry (Ao~ A) 2.
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Let xeD and put y:= (1,—A) x. Then, by using (3), we have

R0, A)y=R* V0o A )0~ A) e+ R* (o, A)A,x—A)

=80, A) =k + DRP(o, A) &+ R (g, A)A &~ Aw),

which converges to S{¥*Vx — (k+1)R,x:=R;,,y by assumption and (5).
In the final step, we show that (a) implies B is an extension of A. By assum-
ption we have that

T, Ayx =T Ax =T, () (A, x — Ax) + (T, (¢) — T(?)) Ax

converges to zero as n— o for all x e D and uniformly for ¢ in compact intervals
in R,. By [7], Prop. 1.2, (2), we have

t
T, ()@ —x=[T,(s) A,ads
0
and therefore, by letting n— oo,
t
T(t)x —x = jT(s) Auds
0

for all ¢=0. Thus

T x—x . :
Bx=1lim —— =lim f T(s) Axds = Ax ,
N0 t t\()o

and we obtain D ¢ D(B). We now fix x € D(A). Since D is a core for A, there exists
a net (x,),;¢DcD(B) such that x,—« and Ax,— Ax. But Bx, = Ax, for every
a el and hence Bx,— Ax. Since B is a closed operator, we obtain x e D(B) and
Bx = Ax. Therefore, we have shown that D(A)cD(B) and Bx =Ax for all
xeD(A).

Therefore, the proof is complete. =

Example 17. Let F'e C(R"; R") be a globally Lipschitz function whose Lip-
schitz constant is L > 0. It follows from standard results that there exists a conti-
nuous function @ :[0, + o[ X R*"—R" such that &(t + s, x) = O(t, D(s, x)) and
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D(0, x) =« for every t, s=0 and xeR", which solves the differential equa-
tion

(15) a;;(t, ©) = F(P(t, v))

for all =0 and xeR". Moreover, by Gronwall’s lemma, & also satisfies
(16) l@t, ©) < (o + HlF0)]) ™

for all t=0 and xeR".
For each t=0, fe C(R") and xeR", let

(17) T(@) f(x) = f(D(¢, ).

Then (7(%));>, is a locally equicontinuous semigroup on the space C(R") of the
continuous functions on R” endowed with the compact-open topology 7 .. Moreo-
ver, if (A, D(A)) is its generator and fe C'(R"), fe D(A) and Af= (Vf, F).

Indeed, fix fe C(R") and R > 0. If |[x]| < R and Cy = (R + |[F(0)|) e*, then, by
(16), for each 0 <t<1, by Lagrange’s theorem,

(18) lot, x) — (0, @) = [F(@(t, )it < t sup IFapll,
Yl < Cr

where D(t, x) = (P4, x), Py(ts, ©), ..., D,{&,, x)) for suitable ¢, ts, ..., ¢,
€]0, 1[ which depend only on ¢ and «x.

Since f'is continuous on R” and hence uniformly continuous on the compact set
B = {xeR"; |lx| < Cg}, for each &> 0 there is 0 > 0 such that |f(y) —f(y')| <e
whenever y, y'eB and |y —y'| < 0. Therefore, if 0 <t <d( sup |[F(y)|)~!, by
(18), we get that Iyl < Cr

| T(t)f(x) = flw) | = |f(D(, x) — f(P(O, ) | <e.

We have thus shown that 7,— lim 7(¢t) f=f.
t—o0t

Next, let s>0, B> 0 and fe C(R"). Then, put C, r = (R + s||F(0)|)) e*, by
(16), for each 0 <t =<s,

(19) Sup |T(t) fla) | = sup lf(y) | < Sp 1) |

kel <R Iyl < (R + |F(0) ||y et llyll < Cs,

Since (C(R"), t,.)) is a Fréchet space and hence it is barrelled, by Remark 2, we
can conclude that (7(t));>, is a locally equicontinuous semigroup on
(C(R™), 7).



40 ANGELA ALBANESE and FRANZISKA KUHNEMUND [22]

Let fe C1(R"). Then, for each xeR" and 0 <t <1, by Lagrange’s theorem
again, we have that

T(t - 5 ()
M = (VA(@(t, x)), F(D(t, x))),

where ®(t, x) is as above. Consequently, for each ¢t<]0, 1] and Hac|| <R,

T@) fx) — fx)

; —(Vf(@), F(x)) | = [(VA(D(t, 2)), F(D(t, x))) — (Vf(x), F(x))|

< ||F(@(t, )| |[VA(D(t, ) — VD0, x))|| + |[VA@)| |F(D(t, x)) — F(D(0, x))||

< sup sup [[F(D(s, 2)||[VABE, ) — VA(D(0, )| +

0ss<t |z|<R

+ ”sHupRIIVﬂx)IILII@(t, @) = @0, ).
| <
Since @ and Vf are continuous functions and hence uniformly continuous on every
@) f—
compact sets, it follows exactly as before that v, — lim %ff = (Vf, F).
t—0*

Also, for a fixed a > 0 and for every A > 0 the canonical asymptotic resolvent

R(A, A) and the corresponding operator S(1, A) are given by

a

20) R, A) flx)= Je_“f@(t, ©)dt and S(4,A) fx)=—e " f(P(a, x))

0

for all fe C(R") and xeR".

Now, taking a sequence (F,,),,c C(R"; R") of globally Lipschitz functions with
Lipschitz’s constant L,, respectively and the corresponding sequence (@ ,,),, of
continuous functions which solve the differential equation (15) with F',, instead of
F, the family {(T,,(¢));>¢: m e N} of operators, defined as in (17), is a sequence
of locally equicontinuous semigroups on (C(R"), 7,.) with generators (4,,, D(4,,))
respectively such that

Am f(x) = (Vf(.%'), Fm(x»

for all fe C*(R") and x € R". Moreover, by (19), the family {(7,,(t));=(: m € N} is
uniformly locally equicontinuous if and only if the sequence (L,,),, is bounded.

Next, suppose that L :=sup L,,< + © and (F,,),, T,converges to some func-
melN

tion F'e C(R"; R"). Clearly, F' is also a globally Lipschitz function with Lipschitz



[23] TROTTER-KATO APPROXIMATION THEOREMS... 41

constant < L. In particular, denoting by & the continuous function which solves
(15) with respect to F', the family (7(?)); >, of operators, defined as in (17), is a lo-
cally equicontinuous semigroup on (C(R"), t,) with generator (A, D(A)) such
that, for each fe C'(R") and xeR",

Af(x) = (Vf(x), F(x))

and, by [3], Chapt. II, Section 3.28-Proposition, the space D = C}(R") is a core of
A and Rg(1 —A)>D; hence Rg(1 —A)>D is dense in (C(R"), t,). On the other
hand, we have that (4,, ), t.converges to Af for all feD.

Moreover, since ||F,,(x) — F,,(y)| < L|jx —y|| for all meN and x, y e R", it
follows, by Gronwall’s lemma, that, for each melN, t =0 and xeR",

t
[t 2) = ot )| < e [ IF,, (s, ) = F((s, @)l ds ,
0

which implies that (S(4, A,,) f).. 7.converges to S(1, A) ffor all fe C(R") and 4
> (. Consequently, by the above theorem, we can conclude that the sequence
{(T,,(t));=0: me N} 7 -converges pointwise and uniformly in ¢ on compact inter-
vals of R, to the locally equicontinuous semigroup (7(%));>-

Remark 18. In many applications, e.g., in Section 5.2 below, we have the
situation that the semigroup considered is locally equicontinuous and the resol-

vent defined as f e “MT(t) xdt exists for suitable A e C. Consequently, the corre-
0

sponding operator S(4, A) is zero. Moreover, we obtain in Theorem 16 that if (a)
holds, then B = A. In fact, by Theorem 16, we have that B is an extension of A.
Furthermore, (1,—A) ! exists and its closure (1,—A)"! is contained in
R(1,, B). Since R(1,, B) is continuous, we obtain that (1, —A) ! is continuous.
Further, the domain D((A,—A) 1) contains the range rg(1, — A) which is dense
in X by assumption. This implies that D((1,—A4) ') = X. Consequently, we ob-
tain R(1y, B) = (Ao —A)"!, and therefore B = A.

5 - Applications

To apply our results we concentrate on the Lie-Trotter product formula which
goes back to [15]. We will obtain an explicit product formula for locally equiconti-
nuous semigroups whose generator is the sum of two generators. We then apply
this formula to the Ornstein-Uhlenbeck semigroup on Cj(R").
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5.1 - The Lie-Trotter product formula

A first application of Theorem 16 is a version of the Lie-Trotter product for-
mula for locally equicontinuous semigroups. To that purpose, we restate Lemma
III, 5.1 from [3] replacing the norm [|-| by seminorms p, qeP.

Lemma 19. Let Se £(X). Assume that for each peP there exists qe P
such that

p(S"x) < q(x) for all xeX and melN.
We then have that for each pe P there exists qe P such that
ple™S 1Dy — 8™ <\/ng(Sx —x)
for all xeX and nelN.

Now, we are able to state the Lie-Trotter product formula for locally equicon-
tinuous semigroups.

Theorem 20. Let (T(t));>o and (S(t));=o be locally equicontinuous semi-
groups on X with generators (A, D(A)) and (B, D(B)), respectively. Assume that
there exist M =1 and w € R such that for all s> 0 and pe P there exists qe P
such that

p([T(H)SH) " ) < Me™" q(x)

for all xeX, 0<t<s and melN. Consider the sum A+ B on a subspace D
cD(A) N D(B) and assume that D and (A, — A — B) D are dense in X for some
Ao> w. Then the closure of A + B exists and generates a locally equicontinuous
semigroup (U(t));=¢ given by the Lie-Trotter product formula

s

where the limit exists for all xeX and uniformly for t in compact intervals in R, .

21) Ut) z= lim
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Proof. Let V(t) :=T(t) S(t) for all £=0. By a rescaling argument we can
assume o =0 without loss of restriction. For >0 we define

V(l)—ld
(A+B), = —"1  ceX), neN,

SHE

and observe that (A + B),x—Ax + Bx for xeD as n— o. Since for all pe P
there exists qe P such that
( - )m
tn —
T
!

pe™@Bhgy<e T p > [V(l)] x
m=0 m. n

< Mq(x)

for all te X, t =0 and n € N, the semigroups (¢ *5»),_  are equicontinuous se-

migroups. Therefore, by a result of K. Yosida [16, p. 241], we obtain that the
resolvent

R(A,(A+B),)x= fe 0t HA+ By ot
0

exists for all xe X and 1 e C with ReA > 0. This shows that the assumptions of
Theorem 16 are fulfilled with, in particular, S(1,(A + B),)) =0 for all A > 0. Hen-
ce, by Theorem 16 and Remark 18, the closure of A + B generates a locally equi-
continuous semigroup (7'(t));=, satisfying

(22) et A B S T(t) 2

for all xe X and uniformly for te [0, T1.
On the other hand, by Lemma 19, for p e P there exists qe P such that

p(ez(A+B),l%_ [V(l) 90) s\/ﬁMq(V(l) oc—oc)
(23) ' M )
= T%q((A-FB)nac), relX,

which converges to zero as n tends to infinity for all x e D and uniformly for
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7€ [0, T]. Finally, since for all p e P there exists ge P such that

x) < 2Mq(x)

p(6t<A+B)n,x _ [V( l) “
n

for all x € X, the combination of (22), (23) yields the convergence on a dense sub-
set which then holds by [12], Chapt. III, Thm. 4.5 on all of X. =

Example 21. On C(R) endowed with the compact-open topology 7, we take
the locally equicontinuous (right) translation semigroup (7'(¢));>, with generator
A and the multiplication semigroup (7, (?));>, defined as in Example 15 with ge-
nerator B. For fe C(R) we can calculate the Lie-Trotter products

) ro-en{ Sl ) e

n
for t =0 and se R which converge to U(t) f with respect to 7, with

s

U(t) f::exp( j q(r) dr) fs—1t).

s—t

The operators (U(%));=o form a locally equicontinuous semigroup on
(C(R), 7).

5.2 - Application to the Ornstein-Uhlenbeck semigroup on C,(R™)

In this section we are concerned with the Ornstein-Uhlenbeck operator which
has been studied, e.g., in [2]. For any symmetric, positive definite matrix
A= (a;) and a matrix B := (b;) € LR"), the Ornstein-Uhlenbeck operator is de-
fined as

n

1 n
[Of I(x) == 3. 2 I%'Dijf(%) + X lbijijif(ac)
i, 7= i,j=
24

4 =:(V, AVf(x)) + (Bx, Vf(x))

=: Af(x) + Bf(x)

for all fe S(R"), where S(R") is the Schwartz space of rapidly decreasing fun-

o o
ctions, xeR", V:= (8_ s eees ) The related semigroup (P(t));>, has the
€1

ox,,
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following representation due to Kolmogorov (see [2]):

1 J JA[Iy’y}f( By—y)dy, if
: ePx—y)dy, it>0,
@5) () fw) = (271)”/2(detAt)1/2R"

t
for all fe C,(R") and x e R", where A, := [e*? Ae*® ds. In [2] it has been shown
0

that (P(t)); = ¢ is not strongly continuous on UC,(R"), the space of bounded unifor-
mly continuous functions on R™ with respect to the supremum norm ||-||. (and
hence on (C,(R"), ||||»)). Therefore, Lie-Trotter’s formula in its classical formula-
tion does not apply.

In the following, we show that, if C,(R") is endowed with a suitable locally
convex topology t finer than the compact-open topology, then (C,(R"™), 7) is se-
quentially complete and (P(%)); =, is a locally equicontinuous semigroup on it. Mo-
reover, the Lie-Trotter product formula from Section 5.1 holds for the Ornstein-
Uhlenbeck semigroup (£(t));=o-

We begin by constructing the topology 7. To that purpose, we define a family
P of seminorms on C,(R") generating a locally convex topology t on C,(R") such
that the inclusion maps

(Cy(R™), [[].) e (CL(R™), 7) e (Cy(R™), T,)

are continuous, where 7, denotes the compact-open topology on C,(R"). The con-
struction of P is similar to the one given in [4], Section 2. Let

I={yeCy(R"):y>0, lim |jx|?y(x) =:1 exists in R}.

[lef] = =
Clearly, I' is not empty. Indeed, each function defined as

l if || <7,
(26) y(@) =1 Ir?

with [, » > 0 arbitrary, belongs to I'. Moreover, if (D,,),, <~ is an exhaustion of R"

(.e. D,, is compact, D,,cD,, . for all meN, and uosz R™), and (¥ ,)men
cCy(R™) such that for all meN "

0<sy,<1 onR", y,=1o0n Emfl and y,,=0 on R"\D,,
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then each function defined as

©

27) y(@) = m2=1 o7

m ()
for x € R" belongs to I' too, where (/,,),, is an increasing sequence of integers
such that {,, = max {m, d(0, D,,)} and [,, € N for all m € N. Furthermore, we ha-
ve the following property.

(i) Let A be a non-zero, real matrix and y e I'. For each s > 0 the function y |
defined as

yi(x) = sup y(e Mlp), xeR”,

0sts<s

belongs to I' and y <vy;.
We now consider the family of seminorms P := {p,:y eI'} on C,(R") defined as

p, (f) := sup y(x) |f(x)| for all feC,(R").

reR"

Clearly, P generates a locally convex topology t coarser than the topology of uni-
form convergence on R”. Since for each y e I" there exists M := sup y(«) > 0 such
that el

p,(f) = sup y(@) |f(@) | <M]|f].

reR"

for all fe C,(R"), the inclusion map (C,(R"), HHM) (Cy(R™), 7) is continuous.
Also the inclusion map (C,(R"), t) —(C,(R"), 7,) is continuous. Indeed, for each
m e N there exists y e I', where y is given as in (26) by taking [ =1 and r=m
such that

P (f) = sup |f(x)| < sup y() |f(x) | =p,(f)

[lx]] < m veR®

for all fe C,(R"). Moreover, by repeating the proof in [4, Prop. 2.4] with minor
changes and using functions y defined as in (27), we obtain the following
results:

(ii) The space Cy(R") is dense in (C,(R"), 7);

(iii) A sequence (f,), converges in (C,(R"), t) to fif and only if (f,), is unifor-
mly bounded and converges uniformly to f on each compact set of R”;

(iv) The space (C,(R"), 7) is sequentially complete.
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In the sequel, we show that the operators @ and & from (24) are generators of
locally equicontinuous semigroups on (C,(R"), 7).

Proposition 22. The semigroup (S(t));=o given by
(28) St f)x) =fex) for t=0, feC,(R"), xeR"

18 locally equicontinuous on (C,(R"), ) and its generator coincides with the clo-
sure of the operator

,j=1
defined for every fe S(R").
Proof. Clearly, for each compact subset Kc R" we have

(29) lim suplle®x — x| =

t—0" xeK

Let fe C,(R"), M := sup |f(x)| and yeI'. Then y >0 is continuous on R" and

reR"
| 1H1m [l () = 0. Let e > 0. There exists > 0 such that 0 < y(x) < ﬁ for all

xeR" with |jz]| > ». Thus,

tB <_ & tB <_ % oy==%
(30) Eﬁlgy(x) |flex) —flx)| < " Eg)rlf(e x) —flx)| < T 5

for all £ = 0. Now, let K:= {x e R": x| <7} and 0 <d := maxy(w) < e . Then, by
(29), there exists 0 >0 such that e

tB ( ) < —
Hiﬁl<pv|f(e D =] 2d

for all t€]0, o[, and hence

(31) sup y(x) |f(e®x) — fx) | <d sup |f(ePx) —flw)| <d

€
[l < > Ikl <> 2d

e
5"
Combining (30) and (31), we obtain for all 0 <t < that

sup y(@)| fle ) = f(x) | < S s y(@) |flex)—fx)| + Sap y(@)|fle™ x)—f(x)| <e.

reR" Jle]| <
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Therefore,

T S0

for all fe C,(R"). Next, let s >0 and y e I'. Then, taking y'(y) := sup y(e *

0<st<s

yeR", so that y' el by (i), we have

P, (8(t) f) = sup y(x) |f(e” )|

reR"

N

supy' () |f(y) |
yeR"

:py’(f)

[30]

By,

for all fe C,(R™) and 0 <t <s. Thus, by Remark 2, (S(¢)),> is a locally equiconti-

nuous semigroup on (C,(R"™), 7).

Let (53, D({E)) be the generator of (S(f)); . It is not difficult to verify directly
that S(R™) c D(B). On the other hand, S(R") is invariant under (S(¢));>, and dense
in (Cy(R"), 7). So, it is a core by Proposition 7. This completes the

proof. ®
Proposition 23. The heat semigroup (G(t));=, given by

((2m)n/2(detA)1/2)71

1 .
(B(@) fHw) = ‘fexp(—ﬂvll(%—y),(x—y)) fdy ift>0,

R”

f(w) ift=0

for all t =0, fe Cy(R") and x e R" is locally equicontinuous on (C,(R"), 1) and

its gemerator coincides with the closure of the operator
1 n
Afw) = < .ZlaiiDii f(x) = (V, AVF(x))
1,]=

defined for every fe S(R™).
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Proof. We first prove the local equicontinuity of (6(f));»,. Let yel,
feCy(R") and xeR". Then

y(@) |B(t) fx) |

y(@) _i o )
- (27tt)"/2(detA)”2J “p ( TR y)))

n

/() |
(1 +[lylP) ——5 dy
1+ [lyl?
< ’J/(x) (_ i A -1 _ _ ) 1 2 Cl
(zﬂt)n/Z(detA)l/zﬂajexp 2t< (.%' y)’(x ?/)) ( +||y|| ) Y
sup @
zer® 1+ ||Z||2
< @)L+ [l + mtAl) sup L
cerr 142

<M1+t sup LEL
cerr 1+ [P

where M :=2max{M,, n||A|F} with M, := sup(1 + [[lP*) y(x) < .

xeR"

M
Put v'(2) := — zeR", so that y'erl. It follows that for each f
" 1+ el
ECb(R )
(32) P, (Bt) )< (1+1)p, (f)

Therefore, (6(t));=, is locally equicontinuous in (Cy(R"), 7).
To prove the strong 7-continuity of (G(1));= ¢, it is well known that (G(t)); = is
a strongly continuous semigroup on (Cy(R"), ||:||..). Consequently, we have

7— lim G@) f=f
t—0*

for all fe Cy(R"), the space of continuous functions vanishing at infinity, because
the topology t is coarser than the topology of uniform convergence on R". Using
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the density of Cy(R") in (Cy(R"), 7) and formula (32) we easily get

T— HI(I]I Gt) f=f
Py’
for all fe C,(R") and, by Remark 2, (G(t));~, is a locally equicontinuous semi-
group on (C,(R"™), 7).

Let (a, D(a)) be the generator of (G(f));~,. Note that (G(t));, is strongly
continuous on Cy(R") with the ||-||—closure of (4, S(R™)) as its generator. Further,
S(R™) is invariant under (B(t));»o. On the other hand, S(R") is dense in
(Cy(R™), 7). So, it is a core by Proposition 7. This completes the proof. =

With the previous propositions we are able to approximate (P(t));=, by the
Lie-Trotter products of (G(t));>, and (S(£));-

Theorem 24. Let (G(t));=o and (S(t));=o be the locally equicontinuous se-
migroups on (Cy(R"), T) given in Propositions 22 and 23 and generated by
(A, D(A)) and (B, D(RB)), respectively. Then the Ornstein-Uhlenbeck semigroup
on (Cy(R™), 1) given by (25) is a t-locally equicontinuous semigroup generated
by the closure of A+ B and represented by the Lie-Trotter product formula, i.e.

oo safe(£)o( 2]}

n

for all feCy(R") and uniformly for t in compact intervals of R, .

Proof. Put I, := (2at)”?(detA)? for ¢ > 0.
It is not difficult to verify that, for each meN, t=0, feC,(R"), and
reR",

1 1
[[B() SOOI f(w) | < I feXp(— 2—t<A_1(96—?/1),(9€—Z/1)>) dy...

m
t R

1
'dymfl J’ exp ( - 2_t <A _l(etBymfl - ?/m), (@tB?/m4 - ym») |f(€tB?/m) |dym

Rﬂ

|f(e™®2)| 1f ( 1, )
<sup —— - — [exp|— — (A x—y), @ —y))| dyr-...
sup T p 2t< Y1 y1)) | dy

R”

1
'dym—ljexp ( - E<A 71(6tBym—1 - ym))(etBym—l - ym)>) (1 + ||ym||2) dym
‘Rﬂ
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Now, fix s >0, yeI" and put y4(2) := sup ——————, zeR", so that yye[.
o<t<s 1+|je "Bz

By standard computation of integrals with respect to Gaussian measures, it follo-
ws that, for each 0 <t <s,

(@) [[B() SO f(a) | < sup yo(2) |f(2) |

zeR"

1
'(7(90) + Vl(j,i) feXp(— §<A e — ), (@ — ?/1)>) dyy- ...
¢

R"

1
'dym—ZJeXp(_ 2_t<A 71(6tB?/m—2 - ym—l)a(etBym—2 - ym—l)>)

R

ey [+ mtlAJR) dy) < sup 5o(®) |f2) |
zeR"

y(x) 2Pl

ltm -1

1
fexp(— 2—t<A1(x—y1),(ac—y1))) dy,- ...

R

- (y(ac)(l T t|AlR) +

1
dymZ'JeXp(_ 2—t<A_1(@tB?sz—?/m1),(€tBZ/mz_?/m1)>) ||Z/m1||2d.7/ml)

R"

< sup 7,(2) |£(2) | (@)1 + mnt| Al + 212 ||,

zeR"

and hence

33)  ya) [[BE) SOOI f(x)| < sup Fo(2) [£(2) | y(@)(1 + mnt||AF + 2B ||| ) .

zeR"

Take w:=max{2|B||,1} which is independent of y,s and f, and
M :=2max{M,, n||A|F} with M, := sup(1+ [jz[P") y(x) < =. It follows by (33)

xeR"

that there exists y := My,e I such that

P, ([B() SO <™ py(f)

for all fe C,(R"), 0 <t<s and meN. Since y and s were arbitrary, we conclude
that there exists we R, such that for y e I" and s > 0 there exists y e I" such that

e )T =eome

for all fe C,(R"), 0<t<s, and meN.
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As stated in (ii) at the beginning of this subsection, the Schwartz space S(R")
is dense in (C,(R"), 7). Moreover, it is a subset of D(A) N D(RB). On Cy(R™) the
Ornstein-Uhlenbeck semigroup (£(t)),s, is strongly continuous and is represen-
ted by the Lie-Trotter Product Formula (see [8], Prop. 12). In particular, its gene-
rator coincides with @ + B restricted to S(R"). Hence, by the invariance of the
Schwartz space under (P(t));=9, we obtain that (1 — A — B) S(R") is dense in
(Cy(R™), ) for 1 > 0. Applying Theorem 20 we obtain that the closure of A + B
generates the locally equicontinuous semigroup (P(t));=, on C,(R") given by the
Lie-Trotter product formula

9<t>f=r—ﬂ}ilnm[°6(%) S(L)Ff

m

for all fe C,(R") and uniformly for ¢ in compact intervals of R*. m

Remark 25. We consider on C,(R") the topology ¢ given by the norm

f(x)
1Al = sup L

cerr 1+ ”90”2 ’

feG(RY).

1
1+ [l
same way as before that the Ornstein-Uhlenbeck semigroup (P(%));=, given by
(25) is a strongly continuous semigroup on (C,(R"), |||-|||) and

Since 7 is finer than o, and by setting y(x) = for x € R", we obtain in the

FOf= -l - Jim ["G(%) 8(1)]1}

n— ®
v n

for all fe Cy(R") and uniformly for ¢ in compact intervals of R, . We point out that
the space (C,(R"), o) is not complete.
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Abstract

In this paper we prove Trotter-Kato approximation results and the Lie-Trotter pro-
duct formula for locally equicontinuous semigroups on sequentially complete locally con-
vex spaces. These results are then applied to the Ornstein-Uhlenbeck semigroup on the
space of bounded continuous functions on R" endowed with a locally convex topology
agreeing with the compact-open topology on norm-bounded sets.



