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MOHAMED AK K O U C H I (*)

A common fixed point theorem connected

to a result of B. Fisher (**)

1 - Introduction and statement of the main result

The study of common fixed points has started in the year 1936 by the well
known result of Markov and Kakutani. Since this year, many works were devoted
to Fixed point theory. The literature on the subject is now very rich. There are
two major problems in metric fixed point theory. The first one consists of proving
the existence of fixed or common fixed points for selfmappings in metric spaces,
while the second one consists of finding and approximating them. In many situa-
tions, the proofs given for the existence of fixed or common fixed points give also
effective methods of approximations and computations, but this is not the general
case. The aim of this paper is a contribution to this area of investigations in metric
fixed point theory and approximations.

Let (M , d) be a complete metric space. Let T be a fixed selfmapping and let
a� [0 , 1[. We define B(T , a) as the set of selfmappings S of M such that for all
x , y�M, the following condition is satisfied:

d(Sx , TSy)

Ga max{d(x , Sy),
d(x , Sx)1d(Sy , TSy)

2
,

d(x , TSy)1d(Sx , Sy)

2
} .

(B)

For every selfmapping S of M, we denote FS the mapping defined for all x�M, by
FS(x)»4d(x , Sx). For all positive number c, we denote Lc , S »4]x�M : FS(x)Gc(.
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The purpose of this paper is to establish the following

T h e o r e m 1.1. Let (M , d) be a complete metric space. Let a� [0 , 1[ and let
S , T be two self-mappings of M such that S�B(T , a). Then the following four
assertions are true and are equivalent.

(1) There exists a unique point z�M such that Fix (S)4Fix (]S , T()4]z(.
(2) lim

cK01
diam (Lc , S ) 40, and the mapping FS is an r.g.i. on M .

(3) There exists a (unique) point z�M , such that, for each sequence ]xn (
%M ; lim

n
d(xn , Sxn ) 40 if and only if ]xn ( converges to z .

(4) There exists a (unique) point z�Im (S), (the range of S) such that, for
each sequence ]yn ( %Im (S), we have lim

nKQ
yn4z , if and only if, lim

nKQ
FT (yn )40.

Moreover we have
(5) S and TS are continuous at the point z .
(6) If Im (T) %Im (S) then we have Fix (S) 4Fix (T) 4Fix (]S , T() 4 ]z(.
(7) For every x0 �M the Picard sequence ]S n (x0 )( converges to the unique

common fixed point z of S and T .

We recall (see [3] and [6]) that a function G : MKR is said to be a regular-
global-inf (r.g.i.) at x�M if G(x) D inf

M
(G) implies there exist eD0 such that

eEG(x)2 inf
M

(G) and a neighborhood Nx of x such that G(y) DG(x)2e for each

y�Nx . If this condition is satisfied for each x�M , then G is said to be an r.g.i. on
M . As we see, the r.g.i. condition may be considered as a weak type of regulatity.
In the paper [6] this condition has been extensively used in many problems dea-
ling with metric fixed points. Therefore, in Theorem 1.1 we see that not only all
the conclusions of Theorem 4.3 (p. 149) of [6] are still valid for all selfmappings in
the class S�B(T , a) but that, in addition, they are equivalent.

In his paper [4], B. Fisher has proved the following result:

T h e o r e m 1.2. [B. Fisher] Let (M , d) be a complete metric space. Let S , T
be two self-mappings of M such that

(i) S is continuous,
(ii) S and T satisfy the following contractive condition:

d(Sx , TSy) Gad(x , Sy)

1b[d(x , Sx)1d(Sy , TSy) ]1g[d(x , TSy)1d(Sx , Sy) ] ,
(F)

for all x , y�M , where a , b , g are fixed nonnegative numbers such that a12b

12gE1. Then S and T have a unique common fixed point.
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It is clear that if S , T satisfy the condition (F) then S�B(T , q), where q»4a

12b12g . Since (in Theorem 1.1) we do not require any continuity condition on
S, Theorem 1.1 improves actually Theorem 1.2. Also, we point out that L. Nova
tried, in his paper [7], to improve Fisher’s result but the assumptions used in [7]
are still much stronger. So our paper solves the problem posed in [7].

The proof of Theorem 1.1 will be given in the next section. At many places in
this proof, the following simple elementary geometrical fact will be used.

L e m m a 1.3. If A and B are the end points of a real interval with midpoint
A1B

2
and AG max mB ,

A1B

2
n , then A must be the left end point and B the

right one.

Before giving a proof to Theorem 1.1, let us give an example of two mappings
satisfying condition (B).

E x a m p l e . We take X4 ]1, 2 , 3 , 4( equipped with the metric d given by

d(1 , 2 ) 4d(3 , 4 ) 4
3

5
; d(1 , 4 ) 4d(2 , 3 ) 4

2

5
; d(1 , 3 ) 4

1

5
; and d(2 , 4 ) 41.

Let S and T be two mappings defined on X by S(2) 41, S(1) 4S(3) 4S(4) 43;
and T(2) 44, T(1) 4T(3) 4T(4) 43.

It is easy to show that S�B(T , a) for every a� k 1

2
, 1k. Thus there exist

mappings verifying the condition (B).
We have seen that the condition (F) implies the condition (B) but we do not

know whether the converse is true or not.

2 - Proof of Thorem 1.1

2.1 - First, we begin by proving that (1) is true.
(a) Let x0 be some point in M , and set

x2n 4Sx2n21 , n41, 2 , R

x2n11 4Tx2n , n40, 1 , 2 , R

We put tn »4d(xn , xn11 ) for all integer n . Suppose that n42m for some integer
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m . Then

tn4

G

G

G

d(x2m, x2m11)4d(Sx2m21, Tx2m)4d(Sx2m21, TSx2m21)

a max md(x2m21, x2m),
1

2
[d(x2m21, x2m)1d(x2m, x2m11)],

1

2
d(x2m21, x2m11)n

a max mtn21,
1

2
[tn211tn],

1

2
d(x2m21, x2m11)n

a max mtn21,
1

2
[tn211tn]n .

(1)

By using Lemma 1.3, and the inequality (1), we deduce that for every even integer
greater than two, we have

0 G tn Gatn21 .(2)

By similar arguments, it is easy to see that the inequality (2) is still valid for odd
integers. Now, from (2), we get tn Ga n t0 for every integer greater than one. Since
0 GaE1, the sequence ]tn ( is a strongly Cauchy sequence (i.e., Stn converges)
and consequently ]xn ( is a Cauchy sequence. Since (M , d) is complete, this se-
quence must have a limit, say z, in M . Next, we shall prove that z is a common fi-
xed point for S and T .

(b) For all positive integer n , we have

d(Sz , x2n11 ) 4d(Sz , Tx2n ) 4d(Sz , TSx2n21 )

Ga max md(z , x2n ),
1

2
[d(z , Sz)1d(x2n , x2n11 ) ],

1

2
[d(z , x2n11 )1d(Sz , x2n ) ]n .

(3)

By taking the limits in both sides of (3), we obtain

d(Sz , z) G
a

2
d(Sz , z) Ed(Sz , z).

Thus z must be fixed by S. Let us show that Tz4z . By use of the property (B),
we have

d(z , Tz) 4

G

d(Sz , TSz)

a max m0,
1

2
d(z , Tz),

1

2
d(z , Tz)n .

(4)
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(4) implies that g12
a

2
h d(z , Tz) 40. Since aE1, we conclude that d(z , Tz) 40

and then z�Fix (]S , T(). We deduce also that Fix (S) %Fix (T).
(c) Suppose that there exists another point w fixed by S . Then by using the

property (B), we have

d(w , z) 4

G

G

d(Sw , TSz)

a max ]d(w , z), 0 , d(w , z)(

ad(w , z)

(5)

(5) implies that w4z . We conclude that Fix (S) 4Fix (]S , T() 4 ]z(. This com-
pletes the proof of the first assertion.

2.2 - Suppose that (1) is satisfied, and let z be the unique common fixed point of
S and T . Let x be some point in M . By using Property (B) and the triangular ine-
quality, we have

d(Sx , z) 4

G

G

d(Sx , TSz)

a max md(x , z),
1

2
d(x , Sx),

1

2
[d(x , z)1d(Sx , z) ]n

max md(x , z),
1

2
[d(x , z)1d(Sx , z) ]n .

(6)

By using (6) and lemma 1.3, we deduce that

d(Sx , z) Ga d(x , z) (x�M .(7)

By using (7) and the triangular inequality, we obtain

d(x , z) G
1

12a
d(x , Sx), (x�M .(8)

From (8) we deduce, for each positive number c, that Lc , S is bounded. It is non-
void since it contains z . Now, for all x , y�Lc , S , we have

d(x , y) Gd(x , z)1d(y , z) G
2c

12a
.(9)

(9) shows that diam (Lc , S ) (the diameter of the set Lc , S) tends to zero when c ten-
ds to zero. In order to show that FS is r.g.i., we use Proposition 1.2 of [6] and the
inequality (8). Therefore (1) implies (2).
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2.3 - Suppose that (2) is satisfied. Let x0 be some point in M , and consider the
associated sequence ]xn ( given by

x2n 4Sx2n21 , n41, 2 , R

x2n11 4Tx2n , n40, 1 , 2 , R

We observe that for every integer n, we have the following inequality:

FS (xn ) G
21a

22a
tn .(10)

Indeed, if n is odd then FS (xn ) 4 tn, while if n is even (by using the property (B))

we have FS (xn ) G tn 1d(xn11 , Sxn ) G tn 1
a

2
(tn 1FS (xn ) ). We deduce from (10)

that lim
nKQ

FS (xn ) 40. Then every Lc , S is nonempty and inf
M

FS 40. Consider ]cn (

a decreasing sequence of positive numbers converging to zero, and set LS »4
On Lcn , S, (where Lcn , S designates the closure of Lcn , S). By applying Cantor’s inter-
section theorem we ensure the existence of a unique element z�LS . For every

nonzero integer n, we can find yn �Lcn , S such that d(yn , z) G
1

n
. Therefore ]yn (

converges to z. For each integer n, we have 0 GF(yn ) Gcn . Hence lim
n

FS (yn ) 40.

Since FS is supposed to be regular, then FS (z) 4 inf
M

FS 40. Thus z is a fixed point
of T . Since S�B(T , a), z must be the unique common fixed point of S and T .
Now, let ]xn ( be a sequence in M such that lim

n
FS (xn ) 40. Then by using the

inequality (8), we deduce that lim
n

xn 4z . Conversely, according to (7), for every
x�M , we have

d(x , Sx) Gd(x , z)1d(z , Sx) G (11a)d(x , z).

Thus, if lim
nKQ

xn 4z then lim
nKQ

FS (xn ) 40. Hence, (2) implies (3).

2.4 - Suppose that (3) is satisfied. Then z must be fixed by both S and T . Let
x�M . We start by making the following estimation

d(z , TSx) 4

G

G

d(Sz , TSx)

a max md(z , Sx),
1

2
d(Sx , TSx),

1

2
[d(z , TSx)1d(z , Sx) ]n

a max md(z , Sx),
1

2
[d(z , TSx)1d(z , Sx) ]n .

(11)

From (11) and Lemma 1.3, we deduce that

d(z , TSx) Ga d(Sx , z), (x�M .(12)
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Now, let w4Sx be some element in the range Im (S) of S . Then according to the
triangular inequality and (12), we have

FT (w) 4d(Sx , TSx) Gd(Sx , z)1d(z , TSx)

G (11a)d(Sx , z) 4 (11a)d(w , z).
(13)

From (13) we obtain the first implication in (4). To prove the converse, let again
w4Sx be an element of Im (S). According to (13), we have

d(w , z) 4

G

d(Sx , z) Gd(Sx , TSx)1d(TSx , z)

d(Sx , TSx)1a d(Sx , z) 4FT (w)1a d(w , z).
(14)

From (14), we get

d(w , z) G
1

12a
FT (w).

Thus, for every sequence ]wn ( of points in Im (S), if lim
nKQ

FT (wn ) 40, then the se-
quence ]wn ( converges to z in M . Hence, (3) implies (4).

2.5 - Suppose that (4) is satisfied. Then the point z involved in (4) must be fixed
by T . It remains to show that z is fixed by S . Let y�M such that z4Sy . Accor-
ding to Property (B), we have

d(Sz , z) 4

G

4

d(Sz , TSy)

a max m0,
1

2
d(z , Sz),

1

2
d(Sz , z)n

a

2
d(Sz , z)

(15)

(15) shows that necessarily Sz4z . Thus, (4) implies (1), and this proves the equi-
valence of the four properties quoted in Theorem 1.1.

2.6 - Let z be the unique common fixed point of S and T . The continuity of S at
z is a consequence from the inequality (7), and the continuity of TS at z is an im-
mediate consequence from the inequalities (12) and (7).

2.7 - Suppose that Im (T) %Im (S). Then, from Subsection (b) of 2.1, we already
know that Fix (S) %Fix (T). Now, let w�Fix (T), then w�Im (S). Let u�M , such
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that w4Tw4Su . Then, by using the property (B), we obtain

d(Sw , w) 4

G

d(Sw , Tw) 4d(Sw , TSu)

a max m0,
1

2
d(w , Sw),

1

2
d(Sw , w)n .

(16)

(16) implies that [22a] d(Sw , w) 40. Therefore Sw4w .

2.8 - Let z be the unique common fixed point of S and T . Let x0 be any arbit-
rary point in M . We observe that (7) implies d(S n x0 , z) Ga n d(x0 , z), therefore
lim

nKQ
S n x0 4z . This completes the proof of Theorem 1.1. r

Acknowledgements. I thank very much the referee for his (her) helpful and
useful comments.

References

[1] M. AKKOUCHI, On a result of W. A. Kirk and L. M. Saliga, J. Comput. Appl. Math.
142 (2002), 445-448.

[2] M. AKKOUCHI, Common fixed point theorems by altering the distances between
the points in bounded complete metric spaces, Demonstratio Math. 4 (2000),
843-850.

[3] M. ANGRISANI and M. CLAVELLI, Synthetic approaches to problems of fixed points
in metric space, Ann. Mat. Pura Appl. (IV) CLXX (1996), 1-12.

[4] B. FISHER, Results on common fixed points, Math. Japonica 22 (1977), 335-338.
[5] B. FISHER, Theorems on fixed points, Riv. Mat. Univ. Parma 4 (1978), 109-114.
[6] W. A. KIRK and L. M. SALIGA, Some results on existence and approximation in

metric fixed point theory, J. Comput. Appl. Math. 113 (2000), 141-152.
[7] L. NOVA, Puntos fijos comunes, Boletin de Matemáticas IV (1997), 43-47.
[8] R. A. RASHWAN and A. M. SADEEK, A common fixed point theorem in complete

metric spaces, Electronic Journal: Southwest J. Pure Appl. Math. 1 (1996),
6-10.

[9] W. WALTER, Remarks on a paper by F. Browder about contractions: «Remarks of
fixed point theorems of contractive type», Nonlinear Anal. 5 (1981), 21-25.

A b s t r a c t

Let (M , d) be a complete metric space, let 0 GaE1, and let S , T be two selfmappings
of M . We suppose that S belongs to the class B(T , a) (i.e. the condition (B) below is satis-
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fied). Our main result is Theorem 1.1, in which we prove that S , T have a unique com-
mon fixed point. Although we do not suppose any continuity assumption neither for T
nor for S, we conclude some regularity properties. Indeed, we show that S and TS must be
continuous at the unique common fixed point and that the mapping FS : xOd(x , Sx) is
an r.g.i. mapping. We establish four equivalent properties characterizing the existence
and uniqueness of the common fixed point for S , T, and give sequences of points approxi-
mating this fixed point. In particular, we show that all the Picard sequences defined by S
converge to this common fixed point. This paper provides improvements to a well known
result of B. Fisher (see [4]).

* * *


