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Generalized Brownian motion and anomalous diffusion (**)

1 - Introduction

There are many reasons to look for an equilibrium distribution different from
Maxwellian distribution. Derivations of the Maxwell-Boltzmann distribution are
based on several assumptions. In a kinetical approach, one assumes that: 1) the
collision time be much smaller than the mean time between collisions, 2) the inte-
raction be sufficiently local, 3) the velocities of two particles at the same point are
not correlated (Boltzmann’s Stosszahl-ansatz), and 4) energy is locally conserved
when using only the degrees of freedom of the colliding particles. In the equili-
brium statistical mechanics approach, one uses the assumption that the velocity
probabilities of different particles are independent , corresponding to 3), and that
the total energy of the system could be expressed as the sum of a term quadratic
in the momentum of the particle and independent of the other variables, and a
term independent of momentum, but if 1) and 2) are not valid the resulting effecti-
ve two-body interaction is not local and depends on the momentum and energy of
the particles. Finally, even when the one-particle distributions is Maxwellian, ad-
ditional assumptions about correlations between particles are necessary to deduce
that the relative-velocity distribution, is also Maxwellian. At last in one limit the
MB distribution can be rigorously derived: systems that are dilute in the appro-
priate variables, whose residual interaction is small compared to the one-body
energies.
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Examples among others of important physical problems where the experimen-
tal results seem to deviate from the Maxwellian behavior are: a) Solar core
plasma and solar neutrino fluxes. b) Galaxy distributions and peculiar velocity
function of galaxy clusters. c) Velocity distributions and annual-modulation signa-
tures of weakly-interacting massive particles and existence of particle dark mat-
ter in galactic halo. d) Turbulence and non-neutral electronic plasma experiments.
e) Quark-Gluon plasma and high energy e1-e2 experiments. f ) Condensed matter
(charged particles in electric and magnetic fields).

Let us illustrate few of them. The solar core is a weakly-nonideal plasma
where: 1) the mean Coulomb energy potential is of the order of the thermal kine-
tic energy; 2) the Debye screening length is RDBa (interparticle distance) and
the Debye-Hückel conditions are only approximately verified; 3) it is not possible
to separate individual and collective degrees of freedom; 4) the inverse solar pla-
sma frequency (tpl4v pl

214km/4pne 2B10217) is of the same order of magnitude
of the collision time tcoll4 f 214 ansvb; 5) particles loose memory of the initial sta-
te only after many collisions: the scattering process cannot be considered Marko-
vian; 6) the time needed to build up again the screening, after hard collisions, is
not negligible.

At the thermal equilibrium reacting ions are usually described as quasi free
particles with Maxwell-Boltzmann (MB) velocity distribution. But many-body ef-
fects inside the plasma could cause deviations from a pure Maxwell-Boltzmann
statistics for the effective degrees of freedom. Because reacting ions belong to the
high momentum tail of the distribution, at least for fusion reactions between
charged ions, even tiny deviations from the MB tail can cause large modifications
(enhancement or depletion) of the rates.

The value of the collision frequency f determines the possibility of two diffe-
rent effects that produce important deviations from the Maxwellian distribution
FM (p) at high momenta:

A) Quantum uncertainty effect: When the Coulomb collisional frequency is lar-
ge (hfDkT) the ions cannot be considered as quasi free particles: the energy and
momentum distributions are different and one must decide which one is relevant
for the reaction rates. The fact that the two distributions are not equivalent is re-
lated to the finite life-time of the quasi-particles and to the quantum uncertainty.
Since nuclear rates should be evaluated averaging the quasi-classical cross sec-
tion s (p) over the momentum distribution, rather than the energy distribution,
even if the energy distribution is Maxwellian, the effective distribution can acqui-
re a non-Maxwellian tail.

B) Weak nonextensivity effect: Tsallis statistics with entropic parameter q can
describe systems that are not extensive due to long-range interactions or non-
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Markovian memory effects; the energy distribution itself deviates from the stan-
dard free-particle statistics. When deviations are small (qB1) the correction

(enhanced or depleted tail) can be described by the factor exp y2 12q

2
g e p

kT
h2z.

Deviations from the Maxwellian tail due to either quantum uncertainty effect or
non extensive effect (or both) may lead to strong increase of the rates in the solar
core.

From the data obtained by the Cosmic Background Explorer (COBE), it has
been possible to infer the distribution of peculiar velocities of certain groups of
spiral (Sc) galaxies (we recall that by peculiar velocity we mean the residual
velocity after the global universe expansion velocity has been subtracted). Four
theoretical attempts (namely Cold Dark Matter with V40.3 and with V41.0,
Hot Dark Matter with V41.0 and Primeval Barionic Isotropic with V40.3) have
been developed. All the attempts were done within BG statistics. The less unsati-
sfactory fitting was obtained for CDM model with V40.3. In fact, all the
attempts exhibit a long tail towards high velocities, whereas the experimental
data show a pronounced cut-off at about 500 Km s21. It is relevant to mention
that all the models that were used had several fitting parameters, and neverthe-
less can not get rid of the tail. A fitting was then advanced using the Tsallis non
extensive formalism (which will be outlined later), with only two free parameters,
one of them being q and the other one a characteristic velocity. The q-generalized
Maxwell distribution was used essentially corresponding to an ideal classical gas.
The quality of the fitting is quite remarkable, far better than those corresponding
to the mentioned attempts. Once again, one sees that modifications of the stati-
stics can be sensibly more efficient than modifications of the model. A famous
example along this line is provided by the completely different physics associated
with a gas of free fermions or of free bosons, i.e., a Fermi-Dirac ideal gas or a
Bose-Einstein gas (same model but different statistics).

The presence of memory effects and color long-range forces among the many-
parton system in the early stage of heavy-ion collisions can affect the particle sta-
tistical behavior at the freeze-out temperature. In this context, in the framework
of the equilibrium generalized non-extensive thermostatistics, the shape of pion
transverse mass spectrum and the value of the transverse momentum correlation
function of the pions emitted during the central Pb+Pb collisions have been calcu-
lated and it has been shown that the experimental results are well reproduced as-
suming very small deviations from the standard statistics. We send the reader to
our papers quoted in ref. [1] for details on the topics discussed above.

Tsallis distribution functions are shown to arise in the case of charged parti-
cles in electric and magnetic fields, inelastically interacting with a medium. Expli-
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cit results for Maxwell and hard sphere interactions can be provided. The mean
energy and the components of the current density are functions of both the elec-
tric and the magnetic fields.

Recently, the linear Boltzmann equation for inelastic scattering has been ob-
ject of interest by researchers in the field of transport theory. This equation [2] is
derived starting from the nonlinear system of kinetic equations for a mixture of
particles A (mass m) and B (mass M), where B is endowed with two internal en-
ergy levels.

A particularly simple assumption, but still preserving physical interest, consi-
sts in considering M c m so that we can let MKQ. The resulting model is such
that test particles A can gain or lose a fixed amount of kinetic energy by interac-
ting with field particles B.

The equation for such a model raises a number of interesting problems. First
of all the study of possible equilibria is not trivial at all [3]. The derivation of ma-
croscopic equations from the kinetic one also shows unespected difficulties [4].
Moreover, it has been shown that the present problem is mathematically equiva-
lent to the transport of electrons interacting with phonons of a crystal lattice [5].

In ref. [5] Rossani has constructed, under suitable assumptions, a Fokker-
Planck approximation of this equation. Such an approximation can be applied to
the case of charged test particles subjected to both an electric and a magnetic
field. The equations of the model turn out to be solvable and explicit solutions can
be shown for both Maxwell and hard sphere interactions. In the case of Maxwell
interactions, Tsallis distribution functions (TDF) [6] are found. For hard sphere
interactions, a Maxwellian function times a TDF is found. Tsallis distribution fun-
ction in the velocity space, where q now is allowed to assume many different
values, is a function of both the electric and the magnetic field.

2 - Tsallis statistics

Tsallis’s thermostatistics is, actually, known to introduce a non extensive gene-
ralization of the Boltzmann-Gibbs statistics.

One of the main points in this formalism is the peculiar definition of the avera-
ge value, known as normalized q-expectation value. We must mention that during
the last decade different proposals have been advanced, concerning the definition
of the average value. In any case, standard Boltzmann-Gibbs statistics results are
always recovered in the limit qK1 (extensive limit).

We report the main relations of the Tsallis statistics without comments on
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technical or basic refinements that have been recently illustrated for instance in
refs. [7], [8], [9], [10].

The entropy, as a function of the entropy density is defined by:

Sq4�Sq (p) dv ,(2.1)

being p4p(v) the distribution function and the entropy density is given by:

Sq (p)42
p2p q

12q
.(2.2)

The concavity of Sq (p) is:

¯ 2 Sq (p)

¯p 2
E0 if q�R1 .(2.3)

When the non extensive parameter qK1 we obtain the density:

S1 (p)42p log p ,(2.4)

and the standard Shannon entropy:

S142�p log p dv .(2.5)

We indicate with pA and Sq (A) the distribution function and the entropy of the
system A. It is clear that for statistically independent systems A and B we have
pA1B4pA pB, being pA1B the probability associated with the system composed by
the two subsystems A and B. In refs. [11], [12] is shown that the Tsallis entropy
obeys to the following pseudo-additivity rule:

Sq (A1B)4Sq (A)1Sq (B)1 (12q) Sq (A) Sq (B) .(2.6)

From Eq. (2.6) we have

q214
Sq (A1B)2Sq (A)2Sq (B)

Sq (A) Sq (B)
,(2.7)

and then q21 can be seen as the degree of non extensivity for the system. The
q-expectation value of a physical operator is:

aOb4
�O(v) p(v)q dv

�p(v)q dv
,(2.8)
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where the distribution function p(v) is normalized as:

N4�p(v) dv .(2.9)

The energy constraint is postulated to be:

E4�e(v) p(v)q dv .(2.10)

By maximizing Tsallis generalized entropy:

d

dp
(Sq2bE2aN)40 ,(2.11)

the following normalized distribution function is obtained:

pq4
1

Zq

[12 (12q) be]1/12q ,(2.12)

where the partition function Zq is:

Zq4�[12 (12q) be]1/12q dv .(2.13)

We must limit ourselves to the range of variability 1GqG3 because of the requi-
rements, coming from the Fokker-Planck and Boltzmann equations, of the conti-
nuity of the distribution functions and of their derivatives. In the above q-range
we have:

Zq4b21/2o q21

p

G g 1

q21
h

G g 32q

2(q21)
h .(2.14)

Let us report, as an example, the average value of the quantity x 2 :

ax 2 b4
1

2b
yo q21

2p

G g 1

q21
h

G g 32q

2(q21)
h z

2(q21)

32q

.(2.15)

In figure 1 is reported the Tsallis distribution given by Eqs. (2.12), (2.14) for four
different values of the parameter q. The curve corresponding to q41 is the
Maxwell-Boltzmann distribution.
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Figure 1 - Tsallis distribution given by Eqs. (2.12), (2.14) for four different values of the
parameter q. The curve corresponding to q41 is the Maxwell-Boltzmann distribution.

3 - Brownian motion

Let us recall that a stochastic process can be described by the Langevin
equation:

dv (t)

dt
1g(t) v4g(t) G(t) .(3.1)

The viscous force is 2mg(t) v and mg(t) G(t) is the random force, where G(t) is a
Gaussian random variable

aG(t)b40 ,(3.2)

aG(t) G(t 8 )b42d(t2 t 8 ) .(3.3)

The macroscopic process associated to Eq. (3.1) is the Brownian motion described
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by the standard Fokker-Planck equation (FPE) [13], [14]:

¯p(t , v)

¯t
4

¯

¯v
yg(t) vp(t , v)1g(t)2 ¯p(t , v)

¯v
z .(3.4)

After changing variable: dt4g(t) dt and posing D(t)4g(t)2 /g(t), Eq. (3.4)
becomes

¯p(t , v)

¯t
4

¯

¯v
yvp(t , v)1D(t)

¯p(t , v)

¯v
z .(3.5)

We consider now particular solutions of Eq. (3.5) by using the following
ansatz:

p(t , v)4
1

Z(t)
exp [2b(t) v 2 ] ,(3.6)

where the function Z(t), given by

Z(t)4 �
2Q

1Q

exp [2b(t) v 2 ] dv ,(3.7)

is the partition function and b(t) defines the temperature of the system

T(t)4
m

2kb(t)
.(3.8)

If we substitute the solution (3.6) into Eq. (3.5), we obtain the evolution
equations

Z(t)

Z(0)
4 y b(0)

b(t)
z1/2

,(3.9)

db(t)

dt
42b(t)24D(t) b(t)2 .(3.10)

Let us remark that, being lim
tKQ

db/dt40, from Eq. (3.10) we can deduce immedia-

tely the well known Einstein relation

2b(Q) D(Q)41 .(3.11)

We note that the transformation y4b21 linearizes Eq. (3.10). After integration
we obtain:

b(t)4b(Q) {11 y b(Q)

b(0)
211b(t)z exp (22t)}21

,(3.12)
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b(t)42 �
0

t y D(t)

D(Q)
21z exp (22t) dt .(3.13)

Once b(t) is known, we may deduce Z(t) from Eq. (3.9):

Z(t) b(t)1/24Z(0) b(0)1/2 .(3.14)

Finally, we write the solution of Eq. (3.5) in the form

p(t , v)4p21/2 b(t)1/2 exp [2b(t) v 2 ] ,(3.15)

that represents, at any instant, a Maxwellian distribution. The temperature of the
system is time dependent and the variation law of T(t) depends on the function
D(t), as we can see from Eq. (3.12) and Eq. (3.13).

4 - General motion

We consider now a generic stochastic motion, described by the Langevin
equation:

dv (t)

dt
1h(t , v)4g(t , v) G(t) ,(4.1)

where G(t) is a Gaussian random force

aG(t)b40 ,(4.2)

aG(t) G(t 8 )b42d(t2 t 8 ) .(4.3)

The viscous force has the expression

fviscous (t , v)42mh(t , v) ,(4.4)

and the functions h(t , v) and g(t , v) are, at the moment, arbitrary.
The macroscopic motion associated to Eq. (4.1) is described by the linear FPE

[15]:

¯p(t , v)

¯t
4

¯

¯v
{yJ(t , v)1

¯D(t , v)

¯v
z p(t , v)1D(t , v)

¯p(t , v)

¯v
} .(4.5)

The drift coefficient J(t , v) and the diffusion coefficient D(t , v) depend on the
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velocity v and can be expressed in terms of the functions h(t , v) and g(t , v):

J(t , v)4h(t , v)2sg(t , v)
¯g(t , v)

¯v
,(4.6)

D(t , v)4g(t , v)2 ,(4.7)

where the parameter s40 means that the Ito definition of the stochastic integral
is adopted, while s41 means that the Stratonovich definition is adopted (see ap-
pendix A).

Let us note that the particle current in Eq. (4.5) is the sum of two
terms

j(t , v)4 jdrift (t , v)1 jdiffusive (t , v) .(4.8)

The first is the drift current and is the sum of two contributions: one due to the
coefficient J(t , v), the second to D(t , v)

jdrift (t , v)4 jdrift , J (t , v)1 jdrift , D (t , v) ,(4.9)

jdrift , J (t , v)42J(t , v) p(t , v) ,(4.10)

jdrift , D (t , v)42
¯D(t , v)

¯v
p(t , v) .(4.11)

The other contribution of the current in Eq. (4.8) is the diffusive current and is
given by the Fick’s law:

jdiffusive (t , v)42D(t , v)
¯p(t , v)

¯v
.(4.12)

Let us remark that in the case of Brownian motion, where J(t , v)4g(t) v and
D(t , v)4g(t)2, the function h(t , v) can be obtained by Eq. (4.6) and assumes the
value h(t , v)4g(t) v and does not depend on the definition adopted for the sto-
chastic integral (Ito or Stratonovich).

5 - Microscopic description of generalized Brownian motion

From Eqs. (4.6) and (4.7) it is easy to see that the Ito (s40) and the Stratono-
vich (s41) definitions of h(t , v) are given by:

h(t , v)4J(t , v)1
s

2

¯D(t , v)

¯v
,(5.1)

and coincide only if g(t , v) does not depend on v.
We wish to study the motions featured by the following relation of proportio-
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nality between the Ito and the Stratonovich definition of h(t , v):

hStrat (t , v)4C(t) hIto (t , v) .(5.2)

Of course, when C(t)41 we obtain the motion associated with a diffusion coeffi-
cient which does not depend on v like the Brownian motion just discussed in the
previous section.

In the case C(t)c1, Eq. (5.2) is satisfied only if the condition

¯D(t , v)

¯v
4

j(t)

12j(t)
J(t , v) ,(5.3)

is verified, being j(t) an arbitrary function. We explain now the physical meaning
of the function j(t). From Eqs. (4.9)-(4.11) and (5.3) we have:

j(t)4
jdrift , D (t , v)

jdrift (t , v)
,(5.4)

and then we can conclude that j(t) represents the fraction of the drift current due
to the coefficient D(t , v) respect to the total drift current. After integration of
Eq. (5.3) we can express D(t , v) in terms of J(t , v):

D(t , v)4
g(t)2

12j(t)
1

j(t)

12j(t)
�J(t , v) dv ,(5.5)

where the integration constant in Eq. (5.5) is chosen in such a way to reobtain the
Brownian diffusion coefficient D(t , v)4g(t)2 in the limit j(t)K0. By combining
Eqs. (4.7) and (5.5) we have

g(t , v)4 y g(t)2

12j(t)
1

j(t)

12j(t)
�J(t , v) dvz1/2

,(5.6)

while from Eqs. (4.6) and (5.1) we obtain:

h(t , v)4 g11 s

2

j(t)

12j(t)
h J(t , v) .(5.7)

In this work we make the choice that the drift coefficient J(t , v) has the same
expression of the Brownian motion:

J(t , v)4g(t) v .(5.8)

Thus, from Eq. (5.5) we have that the diffusion coefficient is given by:

D(t , v)4
g(t)2

12j(t)
1

1

2

j(t)

12j(t)
g(t) v 2 ,(5.9)
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and consequently g(t , v) and h(t , v) become:

g(t , v)4 y g(t)2

12j(t)
1

1

2

j(t)

12j(t)
g(t) v 2z1/2

,(5.10)

h(t , v)4 g11 s

2

j(t)

12j(t)
h g(t) v .(5.11)

The Langevin equation (4.1) finally assumes the form [13]:

d

dt
v (t)1 g11 s

2

j(t)

12j(t)
h g(t) v (t)

4 y g(t)2

12j(t)
1

1

2

j(t)

12j(t)
g(t) v (t)2z1/2

G(t) ,

(5.12)

and describes a stochastic process in the presence of a multiplicative noise. We
call this process generalized Brownian motion (GBM) and, in the limit j(t)K0,
reduces to the standard Brownian motion.

6 - Macroscopic description of generalized Brownian motion

The GBM is described by a FPE which derives from Eq. (4.5) and using Eqs.
(5.8) and (5.9). After introducing the variables:

dt4
g(t)

12j(t)
dt ,(6.1)

D(t)4
g(t)2

g(t)
,(6.2)

2D(t) b(t)(q21)4j(t) ,(6.3)

b(t)4
1

kB T(t)
,(6.4)

the drift coefficient becomes J(v)4v and the diffusion coefficient is

D(t , v)4D(t)[12 (12q) b(t) v 2 ] .(6.5)
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Finally, the FPE for GBM becomes [16]:

¯p(t , v)

¯t
4

¯

¯v
{vp(t , v)1D(t)[12 (12q) b(t) v 2 ]

¯p(t , v)

¯v
} ,(6.6)

which can be solved with the ansatz

p(t , v)4
1

Zq (t)
[12 (12q) b(t) v 2 ]1/(12q) ,(6.7)

where Zq (t) is the position function given by

Zq (t)4 �
2Q

1Q

[12 (12q) b(t) v 2 ]1/(12q) dv .(6.8)

The ansatz (6.7) is a generalizzation of the one given by Eq. (3.6) when qc1 and
has been used previously in refs. [16], [18] for solving the anomalous diffusion
equation. Let us note that, when qK1, Eq. (6.6) reduces to Eq. (3.5) and the an-
satz (6.7) to Eq. (3.6) and we recover the standard Brownian motion.

After substitution of Eq. (6.7) into Eq. (6.6) we obtain the evolution laws

Zq (t)

Zq (0)
4 y b(0)

b(t)
z1/2

.(6.9)

db(t)

dt
42b(t)24D(t) b(t)2 .(6.10)

We note that Eqs. (6.9) and (6.10) are identical to the corresponding relations of
the standard Brownian motion.

This justifies the name GBM to the motion described by Eq. (6.6).
The evolution equation (6.10) of the function b(t) or of the temperature T(t)

does not depend on the parameter q. From Eq. (6.9) we can see that the depen-
dence of Zq (t) on the parameter q is limited to the initial condition Zq (0). As for
the standard Brownian motion, the Einstein relation holds:

2b(Q) D(Q)41 ,(6.11)

and does not depend on the parameter q which is related to the stationary value
of j(t) by:

q214j(Q) .(6.12)

The time evolution of b(t) is:

b(t)4b(Q) {11 y b(Q)

b(0)
211b(t)z exp (22t)}21

,(6.13)
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Figure 2 - Behaviour of T(t) /T(Q) given by Eqs. (6.4), (6.13) and (6.14) for a system where
D(t)4D(Q). The different curves correspond to different values of T(0) /T(Q).

with

b(t)42 �
0

t y D(t)

D(Q)
21z exp (22t) dt ,(6.14)

and the one of Zq (t) is:

Zq (t) b(t)1/24Zq (0) b(0)1/24Nq
21 .(6.15)

The constant Nq (when 1FqF3) is given by [17]:

Nq4o q21

p

G[1 /(q21) ]

G[ (32q) /2(q21) ]
.(6.16)

Now this last expression behaves as x 22/(q21) as NxNKQ. In figure 2 is reported
the behaviour of T(t) /T(Q) given by Eqs. (6.4), (6.13) and (6.14) for a system
where D(t)4D(Q). The different curves correspond to different values of
T(0) /T(Q).



185GENERALIZED BROWNIAN MOTION AND ANOMALOUS DIFFUSION[15]

Figure 3 - Time dependent Tsallis distribution given by Eqs. (6.16), (6.17) while evolves to-
wards equilibrium. The curves correspond to four different times (t40, t40. 5, t41,
t4Q).

Finally the distribution function is:

p(t , v)4Nq b(t)1/2 [12 (12q) b(t) v 2 ]1/(12q) .(6.17)

In figure 3 is reported the time dependent Tsallis distribution given by Eqs.
(6.16), (6.17) while evolves towards equilibrium. The curves correspond to four
different times (t40, t40.5, t41, t4Q).

7 - Non-linear diffusion equation

Eq. (6.7) describes a particular family of solutions of Eq. (6.6) for the different
values of the parameter q. The function p(t , v) varies because b(t) varies, as
it happens with the standard Brownian motion. In ref. [16] it is shown that the
solution (6.17) of Eq. (6.6) is also solution of the nonlinear Fokker-Planck equa-
tions considered in refs. [18], [19], [20], [21], [22], [23], [24] and also of the anoma-
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lous diffusion equation [16]. In fact from Eq. (6.6) we can write:

12 (12q) b(t) v 24Nq
q21 b(t)(q21) /2 p(t , v)12q ,(7.1)

vp(t , v)4
Nq

q21

2(q22)
b(t)(q23) /2 ¯

¯v
[p(t , v) ]22q .(7.2)

After substitution of these two expressions into Eq. (6.6) we have:

¯p(t , v)

¯t
4DNL (t)

¯ 2

¯v 2
[p(t , v) ]22q ,(7.3)

where the new function DNL (t) is defined by means of:

DNL (t)4
Nq

q21

q22
b(t)(q23) /2k 1

2
2b(t) D(t)l .(7.4)

The particle current associated to Eq. (7.3) is given by:

j(t , v)42DNL (t)
¯

¯v
[p(t , v) ]22q ,(7.5)

and represents a generalized Fick current.
The evolution law of b(t) in terms of DNL (t) is described by the following dif-

ferential equation

db(t)

dt
44(q22) Nq

12q DNL (t) b(t)(52q) /2 ,(7.6)

which, after integration, gives:

b(t)4b(0) y112(q22)(q23) Nq
12q b(0)(32q) /2�

0

t

DNL (t) dtz2/(q23)

.(7.7)

We note that using Einstein relation (6.11), from Eq. (7.4) we have DNL (Q)40.
This implies that j(Q , v)40. The particle current goes to zero as tKQ and the-
refore the stationary state p(Q , v)c0 takes place. In figure 4 is reported the ti-
me evolution of the function

DNL (t)4DNL (t) b(Q)(32q) /2 .(7.8)

The curves correspond to different values of the parameter T(0) /T(Q).
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Figure 4 - Time evolution of the coefficient DNL (t) given by Eq. (7.8). The curves corre-
spond to different values of the parameter T(0) /T(Q).

Appendix A

Let us assume that w (t) is a Gaussian random variable. If we assume also that
tF0; t iF0; t jF0; w (0)40, it results:

aw (t)b40 ,(A.1)

and

aw (t i ) w (t j )b4
.
/
´

2t i for t jFt i ,

2t j for t jGt i .
(A.2)

If we introduce the quantity D through:

D4max ]t i112t i ; 04t 0Et 1EREt N4t ; i40, R , N21( ,(A.3)
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the Ito and the Stratonovich definitions of the stochastic integral are the
following:

�
0

t

W(w (t 8 ), t 8 ) dw (t 8 )4
I

lim
DK0

!
i40

N21

W(w (t i ), t i )[w (t i11 )2w (t i ) ] ,(A.4)

�
0

t

W(w (t 8 ), t 8 ) dw (t 8 )

4
S

lim
DK0

!
i40

N21

W g w (t i )1w (t i11 )

2
,

t i1t i11

2
h [w (t i11 )2w (t i ) ] .

(A.5)
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A b s t r a c t

In the present contribution we consider a microscopic process described by a
Langevin equation with multiplicative noise which defines a generalized Brownian mo-
tion. The associated macroscopic process is described by a linear Fokker-Planck equation
with non constant coefficients. For this equation we obtain a class of solutions describing
time-dependent Tsallis statistical distributions. We demonstrate that these time depen-
dent distributions are also solutions of the standard nonlinear porous media diffusion
equation.
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