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Discrete transparent boundary conditions

for the Schrödinger equation (**)

1 - Introduction

Many physical problems are described mathematically by a partial differential
equation (PDE) which is defined on an unbounded domain. If one wants to solve
such whole-space evolution problems numerically, one first has to make it finite
dimensional. The standard approach is to restrict the computational domain by in-
troducing artificial boundary conditions or absorbing layers. Further possible
methods that can be applied are boundary element methods (BEM) (cf. [23]) or
infinite element methods (IEM) (see for example [20]). In this paper we focus on
the approach of artificial boundary conditions.

If the initial data is supported in a finite domain V , one can construct bounda-
ry conditions (BCs) on ¯V with the objective to approximate the exact solution of
the whole-space problem, restricted to V. Such BCs are called absorbing bounda-
ry conditions (ABCs) if they yield a well-posed (initial) boundary value problem
(IBVP), where some «energy» is absorbed at the boundary. If the approximate
solution coincides on V with the exact solution, one refers to these BCs as trans-
parent boundary conditions (TBCs). Of course, these boundary conditions should
lead to a well-posed (initial) boundary value problem. Additionally, it is desirable
that the BCs are local in space and/or time to allow for an efficient numerical
implementation.
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In this paper we shall review the state of the art and we shall present recent
developments of TBCs for the time-dependent Schrödinger equation. Since quan-
tum mechanical problems are typically posed on a whole space, the «correct» for-
mulation of BCs is of paramount importance for numerical simulations. Due to the
wave-like character of the Schrödinger equation the construction and careful dis-
cretization of TBCs requires special care. However, most of the ideas presented
here carry over to other linear evolution equations like wave or diffusion equa-
tions [13].

We remark that Schrödinger-type equations also appear in other fields of
application. They arise from «parabolic» equation (PE) models which have been
widely used for 1-way wave propagation problems in various application areas,
e.g. seismology [8], [9], optics and plasma physics (cf. the references in [5]). In un-
derwater acoustics they appear as wide angle approximation to the Helmholtz
equation in cylindrical coordinates and are called wide angle parabolic equations
[24].

The usual strategy of employing TBCs for solving a whole-space problem nu-
merically consists of first deriving an analytic TBC at the artificial boundary.
These TBCs are typically nonlocal in time (of «memory-type») and can be ap-
proximated by a local-in-time BC. Finally, the continuous BC must be discretized
to use it with an interior discretization of the PDE. The analytic TBC for the
Schrödinger equation was independently derived by several authors from various
application fields [3], [6], [21], [30], [33], [35].

While continuous TBCs fully solve the problem of cutting off the spatial do-
main for the analytical equation, their numerical discretization is far from trivial.
Up to now the standard strategy is to derive first the TBC for the analytic equa-
tion, then to discretize it, and to use it in connection with some appropriate nume-
rical scheme for the PDE. The defect of this usual approach of discretizing conti-
nuous TBCs (discretized TBCs) is that the inner discretization of the PDE often
does not «match» the discretization of the TBCs. There are two major problems
of these existing consistent discretizations of the continuous TBC:

P1: The discretized TBCs for the Schrödinger equation often destroy the sta-
bility of the whole-space finite difference scheme. E.g. the unconditional stability
of the underlying Crank-Nicolson scheme is destroyed [30] and the overall nume-
rical scheme is rendered only conditionally stable [6], [30], [34], [42].

P2: The available discretizations often suffer from reduced accuracy (in com-
parison to the discretized whole-space problem) and induce numerical reflections
at the boundary, particularly when using coarse grids.
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In this paper we discuss in detail a recently developed approach (first outlined
in [3]) which overcomes both the stability problem (P1) and the problem of re-
duced accuracy (P2). In our discrete approach we propose to change the order of
the two steps of the usual strategy, i.e. we first consider the discretization of the
PDE on the whole space and then derive the TBC for the difference scheme di-
rectly on a purely discrete level.

There are several advantages of the discrete approach. It completely avoids
any numerical reflections at the boundary: no additional discretization errors due
to the boundary conditions occur. The discrete TBC is already adapted to the in-
ner scheme and therefore the numerical stability is often better-behaved than for
a discretized differential TBC. An additional motivation for this discrete approach
arises from the fact that the numerical scheme often needs more boundary condi-
tions than the analytical problem can provide (especially hyperbolic equations,
systems of equations and high-order schemes).

In the literature the discrete approach did not gain much attention yet. The
first discrete derivation of artificial boundary conditions was presented in [15],
Section 5. This discrete approach was also used in [36], [43], [44] for linear hyper-
bolic systems and in [19] for the wave equation in one dimension, also with error
estimates for the reflected part. In [43] a discrete (nonlocal) solution operator for
general difference schemes (strictly hyperbolic systems, with constant coefficients
in 1D) is constructed. Lill generalized in [26] the approach of Engquist and Majda
[15] to boundary conditions for a convection diffusion equation and drops the
standard assumption that the initial data is compactly supported inside the com-
putational domain. However, the derived Z-transformed boundary conditions
were approximated in order to get local-in-time artificial boundary conditions
after the inverse Z-transformation.

Here we construct discrete transparent boundary conditions (DTBC) for a
Crank-Nicolson finite difference discretization of the Schrödinger equation such
that the overall scheme is unconditionally stable and as accurate as the discre-
tized whole-space problem. The same strategy applies to the u-scheme for con-
vection diffusion equations [13] and was also used in [12] for the wave equation in
the frequency domain.

Although this work concentrates on the discrete derivation of BCs, we will
also consider the continuous problem, since the basic ideas of the construction and
derivation carry over to the discrete case, e.g. we can use discrete versions of the
L 2-estimates. Moreover the well-posedness of the continuous problem is neces-
sary for the stability of the numerical scheme. Just like the analytic TBC, the di-
screte TBC will be nonlocal in the time variable.

This paper is organized as follows: In Section 2 we first review the continuous



60 M. EHRHARDT and A. ARNOLD [4]

TBC for the Schrödinger equation in one space dimension and in § 3 we derive
and analyze the discrete TBCs which are in the form of a discrete convolution. In
order to obtain an efficient implementation one can easily localize these nonlocal
in time DTBCs just by cutting off the rapidly decaying sequence of the convolu-
tion coefficients. Various numerical examples in Section 3 illustrate the superiority
of our DTBC over existing discretizations. In § 4 we discuss the DTBC in the
case that the initial data is not supported in the computational domain and, finally,
in § 5 we show how to apply a numerical inverse Z-transform if the exact inverse
Z-transform cannot be determined analytically.

2 - Transparent Boundary Conditions

In this Section we shall sketch the derivation of the TBC and discuss the well-
posedness of the resulting IBVP. Here we will treat the case of the Schrödinger
equation

iˇc t

c(x , 0 )

42
ˇ2

2
Dc1V(x , t) c , x�R , tD0 ,

4c I (x) ,

(2.1)

where c I�L 2 (R), V(. , t)�L Q (R) and V(x , . ) is piecewise continuous.

2.1 - Derivation of the TBC

Our goal is to design transparent boundary conditions (TBCs) at x40 and
x4L , such that the resulting IBVP is well-posed and its solution coincides with
the solution of the whole-space problem restricted to (0 , L).

We make the following two basic assumptions:

A1: The initial data c I is supported in the computational domain 0ExEL.
A2: The given electrostatic potential is constant outside this finite domain:

V(x , t)40 for xG0, V(x , t)4VL for xFL.

R e m a r k 2.1. Without the first assumption information would be lost, and
the whole-space evolution could not be reproduced on the finite interval [0 , L].
The second assumption allows to explicitly solve the equation in the exterior of
the computational domain (by the Laplace-method) which is the basic idea of the
derivation of the TBC. In Section 4 we will see how to drop the assumption (A1).

We present a formal derivation of the TBC for smooth (i.e. C 1) solutions.
Afterwards, the obtained TBC can be regarded for less regular solutions. The first
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step is to cut the original whole-space problem (2.1) into three subproblems, the
interior problem on the domain 0ExEL , and a left and right exterior problem.
They are coupled by the assumption that c , c x are continuous across the artifi-
cial boundaries at x40, x4L. The interior problem reads

iˇc t

c(x , 0 )

c x (0 , t)

c x (L , t)

42
ˇ2

2
Dc1V(x , t) c , 0ExEL , tD0 ,

4c I (x) ,

4 (T0 c)(0 , t) ,

4 (TL c)(L , t) .

(2.2)

T0, L denote the Dirichlet-to-Neumann maps at the boundaries, and they are ob-
tained by solving the two exterior problems:

iˇvt

v(x , 0 )

v(L , t)

v(Q , t)

(TL F)(t)

42
ˇ2

2
Dv1VL v , xDL , tD0 ,

40 ,

4F(t) , tD0 , F(0)40 ,

40 ,

4vx (L , t) ,

(2.3)

and analogously for T0 . Since the potential is constant in the exterior problems,
we can solve them explicitly by the Laplace method and thus obtain the two boun-
dary operators T0, L needed in (2.2). This idea is illustrated in Figure 1.

Fig. 1 - Schrödinger equation: Construction idea for transparent boundary conditions.
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The Laplace transformation of v is given by

v×(x , s)4�
0

Q

v(x , t) e 2st dt ,(2.4)

where we set s4h1 ij , j�R , and hD0 is fixed, with the idea to later perform
the limit hK0. Now the right exterior problem (2.3) is transformed to

v×xx1 i
2

ˇ
gs1 i

VL

ˇ
h v×40 , xDL ,

v×(L , s)4F×(s) .

(2.5)

Since its solutions have to decrease as xKQ (since we have c(. , t)�L 2 (R)), we
obtain

v×(x , s)4e
21o2i 2

ˇ
gs1 i VL

ˇ
h(x2L)

F×(s) .(2.6)

Hence the Laplace-transformed Dirichlet-to-Neumann operator TL reads

TL F
43

(s)4v×x (L , s)42o 2

ˇ
e
2i p

4
1os1 i

VL

ˇ
F×(s) ,(2.7)

and T0 is calculated analogously. Here, 1k÷ denotes the branch of the square root
with nonnegative real part.

An inverse Laplace transformation yields the right TBC at x4L:

c x (L , t)42o 2

ˇp
e
2i p

4 e
2i VL

ˇ
t d

dt
�

0

t
c(L , t) e

i VL
ˇ

t

kt2t
dt .(2.8)

Similarly, the left TBC at x40 is obtained as

c x (0 , t)4o 2

ˇp
e 2i p

4
d

dt
�

0

t
c(0 , t)

kt2t
dt .(2.9)

These BCs are nonlocal in t and of memory-type, thus requiring the storage of all
previous time levels at the boundary in a numerical discretization. A second diffi-
culty in numerically implementing (2.8), (2.9), is the discretization of the singular
convolution kernel. A simple calculation shows that (2.8) is equivalent to the impe-
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dance boundary condition [33]:

c(L , t)42o ˇ

2p
e

i p

4 �
0

t
c x (L , t2t) e

2i VL
ˇ

t

kt
dt .(2.10)

Likewise, (2.9) is equivalent to

c(0 , t)4o ˇ

2p
e

i p

4 �
0

t
c x (0 , t)

kt2t
dt .(2.11)

R e m a r k 2.2 (Inhomogeneous TBC). The (homogeneous) TBC (2.9) was de-
rived for modeling the situation where an initial wave function is supported in the
computational domain [0 , L], and it is leaving this domain without being reflected
back. If an incoming wave function c in (t) is given at the left boundary (e.g. a
right traveling plane wave), the inhomogeneous TBC

[c(0 , t)2c in (0 , t) ]x4o 2

ˇp
e
2i p

4
d

dt
�

0

t
c(0 , t)2c in (t)

kt2t
dt ,(2.12)

has to be prescribed at x40. This is the TBC (2.9) formulated for c(0 , t)
2c in (t) since the TBC was only derived for outgoing wave functions. The inho-
mogeneous TBC is described and analyzed in detail in [4].

R e m a r k 2.3 (Factorization). It should be noted that the Schrödinger equa-
tion can formally be factorized into left and right travelling waves (cf. [6]):

u ¯

¯x
2o 2

ˇ
e
2i p

4 o ¯

¯t
1 i

VL

ˇ
v u ¯

¯x
1o 2

ˇ
e
2i p

4 o ¯

¯t
1 i

VL

ˇ
v c40 ,(2.13)

and in the potential-free case:

u ¯

¯x
2o 2

ˇ
e 2i p

4 o ¯

¯t
v u ¯

¯x
1o 2

ˇ
e
2i p

4 o ¯

¯t
v c40 ,(2.14)

where the term

o d

dt
c»4

1

kp

d

dt
�

0

t
c(t)

kt2t
dt(2.15)

can be interpreted as a fractional g 1

2
h time derivative.
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2.2 - Well-posedness of the IBVP

We now turn to the discussion of the well-posedness of (2.2). The existence of
a solution to the 1D Schrödinger equation with the TBCs (2.8), (2.9) is clear from
the used construction. For regular enough initial data, e.g. c I�H 1 (0 , L), the
whole-space solution c(x , t) will satisfy the TBCs at least in a weak sense. A
more detailed discussion is presented in [10]. It remains to check the uniqueness
of the solution, i.e. whether the TBC gives rise to spurious solutions. In order to
prove uniform boundedness of Vc(. , t)VL 2 (0 , L) in t we will need the following sim-
ple lemma which states that the kernel of the Dirichlet-to-Neumann operator
e ip/4kd/dt is of positive type in the sense of memory equations (see, e.g.
[17]).

Using the Plancherel equality for the Laplace transformation the following
lemma can be shown:

L e m m a 2.4 ([3]). For any TD0, let u�H
1

4 (0 , T) with the extension
u(t)40 for tDT. Then

Re {e i p

4 �
0

Q

u(t)
d

dt
y�

0

t u(s)

kt2s
dsz dt}F0 .(2.16)

With this lemma we shall now derive an estimate for the L 2-norm of solutions
to the Schrödinger equation (2.2). We multiply (2.2) by c:

cc t4
iˇ

2
cc xx2

i

ˇ
V(x , t)NcN2 , 0ExEL , tD0 .(2.17)

Integrating by parts on 0ExEL , and taking the real part gives

¯t�
0

L

Nc(. , t)2 dx4ˇRe ]ic(x , t) c x (x , t)Nx40
x4L(

42o 2ˇ

p
Re {e i p

4 c(L , t) e
2i VL

ˇ
t d

dt
�

0

t
c(L , t) e

i VL
ˇ

t

kt2t
dt}(2.18)

2o 2ˇ

p
Re {e i p

4 c(0 , t)
d

dt
�

0

t
c(0 , t)

kt2t
dt} .

Now integrating in time and applying Lemma 2.4 for the second term and an
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analogous lemma for the first term yields the estimate

Vc(. , t)VL 2 (0 , L)GVc I
VL 2 (0 , L) , tD0 .(2.19)

This implies uniqueness of the solution to the Schrödinger IBVP. Equa-
tion (2.19) reflects the fact that some of the initial mass or particle density
n(x , t)4Nc(x , t)N2 leaves the computational domain [0 , L] during the evolution.
In the whole-space problem, x�R , Vc(t)VL 2 (R) is of course conserved. Finally, we
address the question of the well-posedness of the Schrödinger equation (2.2) with
inhomogeneous TBCs (cf. Remark 2.2). We assume that the incoming wave
function c in (t) is given at the left boundary by

c in (x , t)4e
2i gvt1o 2

ˇ
vxh

, vF0 ,(2.20)

i.e. a right traveling plane wave. Then the auxiliary function

W(x , t) »4c(x , t)2 g12 x

L
h c in (0 , t) , 0GxGL , tD0 ,(2.21)

fulfils the following inhomogeneous Schrödinger equation

iˇW t42
ˇ2

2
DW1V(x , t) W1 f (x , t) ,

f (x , t) »4 g12 x

L
h c in (0 , t)[V(x , t)2v] ,(2.22)

W(x , 0 )4W I (x)4c I (x)2 g12 x

L
h a ,

with the homogeneous left TBC

u ¯

¯x
2o 2

ˇ
e
2i p

4 o ¯

¯t
v W(0 , t)40 ,(2.23)

and the right TBC (2.8). Proceeding as in the homogeneous case we obtain

¯t VW(. , t)VL 2 (0 , L)
2 G

1

ˇ
�

0

L

fW dxG
1

ˇ
V f (. , t)VL 2 (0 , L) VW(. , t)VL 2 (0 , L) .(2.24)
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If we further assume V f (. , t)VL 2 (0 , L)GFˇ , tF0 then it follows easily that

Vc(. , t)VL 2 (0 , L)GVW I
VL 2 (0 , L)1ao L

3
1

F

2
t , tD0 ,(2.25)

and this implies the well-posedness.

3 - Discrete transparent boundary conditions

In this Section we shall discuss how to discretize the TBC (2.8) in conjunction
with a Crank-Nicolson finite difference scheme and review the derivation of the
DTBC from [3]. With the uniform grid points xj4 jDx , tn4n Dt , and the approxi-
mations c j

nAc(xj , tn ) the discretized Schrödinger equation (2.1) reads:

2iˇDt
1 c j

n42
ˇ2

2
D 2

x c j
n1 1

2 1Vj
n1 1

2 c j
n1 1

2 , Vj
n1 1

2 4V(xj , tn1 1

2
) ,(3.1)

with the time averaging c j
n11/24 (c j

n111c j
n ) /2. Here D 1

t denotes the forward
difference quotient in time and D 2

x is the second order difference quotient in
space, i.e.

Dt
1 c j

n4
c j

n112c j
n

Dt
, Dx

2 c j
n4

c j11
n 22c j

n1c j21
n

(Dx)2
.

R e m a r k 3.1. Most existing discretization schemes for the Schrödinger
equation with TBCs are also based on the Crank-Nicolson finite differences ([6],
[30], [34]).

For our analysis, one of the main advantages of this second order (in Dx and
Dt) scheme is, that it is unconditionally stable [40] and an easy calculation shows
that it preserves the discrete L 2-norm: Vc n

V2
24Dx !

j�Z
Nc j

nN2 , which is the discrete

analogue of the mass conservation property of (2.1).
In order to derive this discrete mass conservation property we multiply (3.1)

with 2ic j
n11/2 /ˇ:

c j
n1 1

2 D 1
t c j

n4
iˇ

2
c j

n1 1

2 D 2
x c j

n1 1

2 2
i

ˇ
Vj

n1 1

2 Nc j
n1 1

2 N2 .(3.2)

Summing it up for j�Z (i.e. in absence of boundary conditions) gives with sum-
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mation by parts

!
j�Z

c j
n1 1

2 D 1
t c j

n42
iˇ

2
!

j�Z
ND 1

x c j
n1 1

2 N22
i

ˇ
!

j�Z
Vj

n1 1

2 Nc j
n1 1

2 N2 .(3.3)

Finally, taking the real part by using the simple identity («discrete product
rule»)

Dt
1 (c n v n )4c n1 1

2 D 1
t (v n )1v n1 1

2 D 1
t (c n ) ,(3.4)

i.e. with v n4c n

D 1
t Nc nN242 Re ]c n1 1

2 Dt
1 c n( ,(3.5)

yields the conservation of the mass:

Dt
1 !

j�Z
Nc j

nN240 .(3.6)

R e m a r k 3.2. We remark that an arbitrary high (even) order conservative
scheme for the Schrödinger equation (2.1) can be obtained by using the diagonal
Padé approximations to the exponential [7]. The Crank-Nicolson scheme corre-
sponds to second order, and the fourth order is known in the ODE literature as
Hammer and Hollingsworth method [18].

3.1 - Discretization strategies for the TBC

We shall now compare four strategies to discretize the TBC (2.8) with its mid-
ly singular convolution kernel. First we review a known discretization from the
literature, where the analytic TBC in the equivalent form (2.10) at L4JDx was
discretized in an ad-hoc fashion.
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D i s c r e t i z e d TBC of Ma y f i e l d . In [30] Mayfield proposed the approxima-
tion

�
0

tn
c x (L , tn2t) e

2i VL
ˇ

t

kt
dtB

1

Dx
!

m40

n21

(c J
n2m2c J21

n2m ) e
2i VL

ˇ
mDt �

tm

tm11
dt

kt
,

4
2 kDt

Dx
!

m40

n21 (c J
n2m2c J21

n2m ) e
2i VL

ˇ
mDt

km111km
,

(3.7)

where she used the left-point rectangular quadrature rule. This leads to the fol-
lowing discretized TBC for the Schrödinger equation:

c J
n2c J21

n 4
Dx

2BkDt
c J

n2 !
m41

n21

(c J
n2m2c J21

n2m ) lAm ,(3.8)

with

B42o ˇ

2p
e i p

4 , lAm4
e
2i VL

ˇ
mDt

km111km
.

On the fully discrete level this BC is no longer perfectly transparent. For the re-
sulting scheme with a homogeneous Dirichlet BC at j40 and (3.8), Mayfield ob-
tained the following result:

Theorem 3.3 ([30]). The numerical scheme (3.1), (3.8) is stable, if and only if

4pˇ
Dt

Dx 2
� 0

j�N0
[ (2 j11)22 , (2 j)22 ] .(3.9)

This shows that the chosen discretization of the TBC (3.8) destroys the uncon-
ditional stability of the underlying Crank-Nicolson scheme. The stability regions
of Theorem 3.3 are illustrated in Figure 2 as light areas. The dark intervals are
regions of instability.

Fig. 2 - Discretized TBC of Mayfield: Stability regions.
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As the numerical example in Section 3.5 will show this discretization gives rise
to unphysical reflections at the boundary.

R e m a r k 3.4 (Approach of Baskakov and Popov). A similar strategy using a
higher-order quadrature rule for the l.h.s. of (3.7) was introduced by Baskakov
and Popov in [6]. This approach typically induces less numerical reflections com-
pared to the results when using the discretized TBC of Mayfield.

S e m i - D i s c r e t e TBC of Sc h m i d t a n d D e u f l h a r d . In the semi-discrete
approach of Schmidt and Deuflhard [38] a TBC is derived for the semi-discretized
(in t) Schrödinger equation. This method also applies for a nonuniform in t (e.g.
adaptive) interior scheme and it admits a time-dependent potential in the exterior
domain (i.e. VL4VL (t)). While being unconditionally stable (in conjunction with
an interior finite element scheme) [39], it still exhibits small residual reflections at
the artificial boundary. In [39] this approach is also applied to uniform exterior
z-discretizations, and one then recovers — through a different derivation — the
discrete TBC from [3].

A p p r o a c h o f L u b i c h a n d S c h ä d l e . The time discretization is done by
the trapezoidal rule in the interior and by convolution quadrature on the bounda-
ry. The numerical integration of the convolution integral is done in the following
way (cf. [27], [28], [37]. If f×(s) denotes the Laplace transform of f , then formally
setting s4¯t yields

f×(¯t ) g(t)4�
0

Q

f (t) e 2t¯t g(t) dt

4�
0

Q

f (t) g(t2t) dt

4 f * g ,

(3.10)

where g is a function satisfying g(t)40 for tE0. Now f×(¯t ) g(t) is approximated
by the discrete convolution

f×(¯t
k ) g(t) »4 !

nF0
v n g(t2nk) ,(3.11)

with the stepsize k4Dt. The quadrature weights v n are defined as the coefficients
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of the generating power series:

!
nF0

v n j n »4 f×g d(j)

k
h , NjN small .(3.12)

Here d(j)4 !
n40

Q

d n j n is the quotient of the generating polynomials of a linear

multistep method, e.g. d(j)42(12j) /(11j) for the trapezoidal rule. If one
chooses for the quadrature the same numerical scheme as in the interior then one
obtains also a reflection-free discrete TBC.

D i s c r e t e TBC. Instead of using an ad-hoc discretization of the analytic
TBC like (3.7) we will construct discrete TBCs of the fully discretized whole-space
problem. Our new strategy solves both problems of the discretized TBC at no
additional computational costs. With our DTBC the numerical solution on the
computational domain 0G jGJ exactly equals the discrete whole-space solution
(on j�Z) restricted to the computational domain. Therefore, our overall scheme
prevents any numerical reflections at the boundary and inherits the unconditional
stability of the whole-space Crank-Nicolson scheme (see Theorem 3.13). These
different approaches, discretization of the analytic TBC and (semi-)discrete TBC,
are sketched in Figure 3.

Consequently, when considering the discretization of TBCs, it should be a
standard strategy to derive the discrete TBCs of the fully discretized problem,
rather then attempting to discretize the differential TBC whenever it is possible.
A comparison of these two strategies for a 1D wave propagation problem is given
in [12].

3.2 - Derivation of the DTBC

To derive the discrete TBC we will now mimick the derivation of the analytic
TBC from Section 2 on a discrete level. The Crank-Nicolson scheme (3.1) can be

Fig. 3 - Discretization strategies for the TBC.
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written in the form:

2iR(c j
n112c j

n )4D 2
x c j

n111D 2
x c j

n1wVj
n1 1

2 (c j
n111c j

n ) ,(3.13)

with

R4
4

ˇ

(Dx)2

Dt
, w42

2(Dx)2

ˇ2
, Vj

n1 1

2 4V(xj , tn1 1

2
) ,

where D 2
x c j

n4c j11
n 22c j

n1c j21
n , and R is proportional to the parabolic mesh

ratio. Again, we will only consider the right BC. In analogy to the continuous pro-
blem we assume for the potential and initial data: Vj

n4VL4const, jFJ21, c j
040,

jFJ22 and solve the discrete right exterior problem by using the discrete ana-
logue of the Laplace transformation, the Z-transform:

Z]c j
n(4c× j (z) »4 !

n40

Q

c j
n z 2n , z�C , NzND1 .(3.14)

Hence, the Z-transformed Crank-Nicolson finite difference scheme (3.13) for
jFJ21 reads

(z11) D 2
x c× j (z)42iR[z211 ik (z11) ] c× j (z) , k4

Dt

2

VL

ˇ
.(3.15)

The two linearly independent solutions of the resulting second order difference
equation

c× j11 (z)22 k12 iR

2
g z21

z11
1 ikhl c× j (z)1c× j21 (z)40 , jFJ21 ,(3.16)

take the form c× j (z)4n 1, 2
j (z), jFJ21, where n 1, 2 (z) solve

n 222 k12 iR

2
g z21

z11
1 ikhl n1140 .(3.17)

For the decreasing mode (as jKQ) we have to require Nn 1 (z)NE1 and obtain
(using n 1 (z) n 2 (z)41) the Z-transformed right DTBC as

c× J21 (z)4n 2 (z) c× J (z) .(3.18)

Analogously, the Z-transformed left DTBC reads:

c× 1 (z)4nA 2 (z) c× 0 (z) ,(3.19)
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where nA 2 (z) with NnA 2 (z)ND1 is obtained from a solution to the left discrete pro-
blem, i.e. (3.16) on the range jG1.

R e m a r k 3.5 (Discrete Factorization). If S denotes the usual shift operator
given by Sc× j (z)4c× j11 (z), then analogously to the continuous case (cf. Remark
2.3) the discretized Schrödinger equation (3.16) can formally be factorized as:

(S2n 1 (z) )(S2n 2 (z) ) c× j (z)40 , jFJ21 ,(3.20)

which leads to the same DTBCs (3.18), (3.19).
It remains to inverse transform (3.18) using the inversion rules of the

Z-transform (cf. [11], e.g.). By the following tedious calculation this can be achie-
ved explicitly.

C a l c u l a t i o n (of Z21]n 2 (z)(). First we rewrite n 1, 2 (z) as:

(3.21)
n 1,2 (z)412

iR

2
g z21

z11
1ikh61o2

iR

2
g z21

z11
1ikhk22 iR

2
g z21

z11
1ikhl

411
iR

2
1

Rk

2
2iR

z

z11
Z

iR

2

1

z11
1kAz 222Bz1C,

with the constants

A4 (11 ik) g11 ik1 i
4

R
h ,(3.22a)

B411k 21
4k

R
,(3.22b)

C4 (12 ik) g12 ik2 i
4

R
h .(3.22c)

For the inverse Z-transform we use

1kAz 222Bz1C4
1

1
kA

Az 222Bz1C

z

1
kA
1
kC

z

1o A

C
z 222

B

C
z11

.(3.23)
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With the abbreviations

F(z , m)4
z

1kz 222mz11
, l4

1
kA
1
kC

, m4
B

1
kA 1

kC
,(3.24)

we obtain from equation (3.23)

1

z11
1kAz 222Bz1C4

1
1
kA

Az 222Bz1C

z(z11)
F(lz , m)

4
1

1
kA
mA1

C

z
2

E

z11
n F(lz , m)(3.25)

41
kC {l1l21 1

z
2

E
1
kA 1

kC

1

z11
} F(lz , m) ,

with E4A12B1C. The inversion rules now yield

Z21{ 1kAz 222Bz1C

z11
}41

kC {ld n
0 1l21 d n

1 2
E

1
kA 1

kC
[ (21)n2d n

0 ]} * PAn (m)

41
kC {lPAn (m)1l21PAn21 (m)2

E
1
kA 1

kC
!

k40

n21

(21)n2kPAk (m)} ,

where * denotes the discrete convolution. Finally, we obtain

Z21]n 1,2 (z)(4 k12i
R

2
1

Rk

2
l d n

01iR(21)n

Z

iR 1
kC

2
l2n{lPn (m)1Pn21 (m)2

E
1
kA 1

kC
!

k40

n21

(2l)n2kPk (m)} .

(3.26)

Since C4A we have NlN41 with

l4
A

1
kA 1

kC
4

R24k2Rk 212 i(Rk12)

k(11k 2 )[R 21 (Rk14)2 ]
.(3.27)

Therefore we write

l4e iW , with W4arg
2(Rk12)

R24k2Rk 2
.(3.28)
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We obtain for the parameter m:

m4
R(11k 2 )14k

k(11k 2 )[R 21 (Rk14)2 ]
�R ,(3.29)

and it can easily be seen that 21EmE1 is valid. The constant E simply equals 4
and we get

t4
E

1
kA 1

kC
4

4R

k(11k 2 )[R 21 (Rk14)2 ]
�R .(3.30)

The choice of the sign in (3.26) can be justified analytically or simply by
testing it numerically. We finally obtain the convolution coefficients
l (n)4 Z21]n 2 (z)( as

l (n)4 k11 i
R

2
1

s

2
l d n

0 2 iR(21)n2
i

2
1k(R 21s 2 )[R 21 (s14)2 ]e 2iW/2 Q

Q e 2inWmlPn (m)1Pn21 (m)2t !
k40

n21

(2l)n2k Pk (m)n ,

(3.31)

with s4Rk and Pn denotes the Legendre polynomials. The resulting discrete
TBCs at the grid points xj , j40, J read

c 1
n2 l0

(0) c 0
n4 !

k41

n21

l0
(n2k) c 0

k , nF1 ,(3.32a)

c J21
n 2 lJ

(0) c J
n4 !

k41

n21

lJ
(n2k) c J

k , nF1 .(3.32b)

The subscript j of the coefficients l (n) indicates at which boundary the values are
to be taken. In the sequel many parameters will be supplied with this sub-
script.

3.3 - The asymptotic behaviour of the convolution coefficients

We study the asymptotic behaviour of the l0
(n) , lJ

(n) in (3.32). It will turn out
that it is advantageous to reformulate the DTBC using new coefficients. After-
wards we shall derive a recursion formula for these new coefficients and compare
their decay rate with the decay rate of the continuous integral kernel in (2.8),
(2.9).
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T h e s u m m e d c o n v o l u t i o n c o e f f c i e n t s . First we want to study the
asymptotic behaviour of the convolution coefficients lj

(n) , j40, J. With the nota-
tion m j4cos u j , 0Eu jEp , we use the following classical result on the asympto-
tic property of the Legendre polynomials:

L e m m a 3.6 (Theorem 8.21.2 (Formula of Laplace), [41]).

(3.33) Pn (cos u j)4
k2

kpksin u j

cos kgn1 1

2
h u j2

p

4
l

kn
1O(n 23/2) , 0Eu jEp .

The bound for the error term holds uniformly in the interval eGu jGp2e.

From this lemma we conclude that lim
nKQ

Pn (m j )40 holds. Consequently, the
coefficients have the following asymptotic behaviour for nKQ:

(3.34) lj
(n)2iR(21)nA

it j

2
4
k(R 21s j

2)[R 21(s j14)2]e 2iW j/2(21)n!
k40

n21

(2e 2iW j)kPk(m j) .

Using

lim
nKQ

!
k40

n21

(2e 2iW j )k Pk (m j )4
1

k112m j l j1l j
2
4

1

k2 l j

1

kRe l j1m j

4
1

2R
4
k(R 21s j

2 )[R 21 (s j14)2 ] e iW j /2 ,

(3.35)

we finally obtain

lj
(n)A iR(21)n1

it j

4R
k(R 21s j

2 )[R 21 (s j14)2 ](21)n42 iR(21)n .(3.36)

The sequence lj
(n) is asymptotically an alternating, purely imaginary sequence,

which may lead (on the numerical level) to subtractive cancellation in (3.32). To
circumvent this problem we consider the summed coefficients

sj
(n) »4 lj

(n)1 lj
(n21) , nF1, sj

(0) »4 lj
(0) , j40, J ,(3.37)
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and compute:

lj
(0)412 i

R

2
1

s j

2
2

i

2
4
k(R 21s j

2 )[R 21 (s j14)2 ] e iW j /2

412 i
R

2
1

s j

2
2

i

2
4
kR 224s j2s j

212 iR(s j12) ,

(3.38)

lj
(1)4 iR2

i

2
4
k(R 21s j

2 )[R 21 (s j14)2 ] e 2iW j /2]m j1e 2iW j1t j( ,(3.39)

and for nF2 we compute using the definition of E:

sj
(n)42

i

2
4
k(R 21s j

2 )[R 21 (s j14)2 ] e iW j /2 e 2inW j

{Pn (m j )1 (l j1l j
212t j )

���
422m j

Pn21 (m j )1Pn22 (m j )} .

(3.40)

With the recurrence relation of the Legendre polynomials

m j Pn21 (m j )4
n

2n21
Pn (m j )1

n21

2n21
Pn22 (m j ) , nF1 ,

we finally get

(3.41) sj
(n)4

i

2
4
k(R 21s j

2)[R 21(s j14)2] e iW j / 2e 2inW j
Pn(m j)2Pn22(m j)

2n21
, nF2 .

R e m a r k 3.7. The coefficient lj
(0) can also be calculated with [11, Theorem

39.1] by

lj
(0)4 lim

zKQ
n 2 (z)412 i

R

2
1

s j

2
2

i

2
1
k(R1 is j )(R1 i(s j14) ) .(3.42)

We summarize our results in the following theorem:
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T h e o r e m 3.8 ([3]). The left (at j40) and right (at j4J) discrete TBCs for
the Crank-Nicolson discretization (3.1) of the 1D Schrödinger equation are
respectively

c 1
n2s0

(0) c 0
n4 !

k41

n21

s0
(n2k) c 0

k2c 1
n21 , nF1 ,(3.43a)

c J21
n 2sJ

(0) c J
n4 !

k41

n21

sJ
(n2k) c J

k 2c J21
n21 , nF1 ,(3.43b)

with

(3.44) sj
(n)4y12i

R

2
1

s j

2
z d n

01y11i
R

2
1

s j

2
z d n

11a je
2inW j

Pn(m j)2Pn22(m j)

2n21
,

W j4arctan
2R(s j12)

R 224s j2s j
2

, m j4
R 214s j1s j

2

k(R 21s j
2 )[R 21 (s j14)2 ]

,

s j4
2Dx 2

ˇ2
Vj , a j4

i

2
4
k(R 21s j

2 )[R 21 (s j14)2 ] e iW j /2 , j40, J .

Pn denotes the Legendre polynomials (P21fP22f0) and d n
j the Kronecker

symbol.

The Pn only have to be evaluated at the two values m 0 , m J� (21, 1 ), and
hence the numerically stable recursion formula for the Legendre polynomials can
be used [16].

T h e r e c u r r e n c e f o r m u l a f o r t h e s u m m e d c o e f f i c i e n t s . In this sub-
section we shall give two different derivations for the recursion formula of the
convolution coefficients sj

(n). The first one is based on the explicit representation
(3.41) of sj

(n) by first calculating a recursion formula for Pn11 (m j )2Pn21 (m j ). The
second derivation does not require the explicit form of the coefficients sj

(n) but
only the growth functions n 1, 2 (z) from the Z-transformed DTBCs (3.18) and
(3.19).

F i r s t d e r i v a t i o n . Here we start with the standard recursion formula [1]
for the Legendre polynomials Pn11 (m j ), Pn21 (m j ):

(n11) Pn11 (m j )4 (2n11) m j Pn (m j )2nPn21 (m j ) , nF0 ,

(n21) Pn21 (m j )4 (2n23) m j Pn22 (m j )2 (n22) Pn23 (m j ) , nF2 ,
(3.45)
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and

Pn21 (m j )22m j Pn22 (m j )1Pn23 (m j )4
Pn23 (m j )2Pn21 (m j )

2n23
, nF2 .(3.46)

The expression Pn11 (m j )2Pn21 (m j ) is converted in the following way:

(n11)[Pn11 (m j )2Pn21 (m j ) ]

4 (2n11) m j Pn (m j )2 (2n11)
2n23

n21
m j Pn22 (m j )1 (2n11)

n22

n21
Pn23 (m j )

4 (2n11) m j [Pn (m j )2Pn22 (m j ) ] ]2
(n22)(2n11)

2n23
[Pn21 (m j )2Pn23 (m j ) ] ,

where we have used the relation

Pn23 (m j )2m j Pn22 (m j )4
1

2
y Pn23 (m j )2Pn21 (m j )

2n23
2Pn21 (m j )1Pn23 (m j )z

42
n21

2n23
[Pn21 (m j )2Pn23 (m j ) ] .

Finally, we obtain for nF2 the following recursion formula for Pn11 (m j )
2Pn21 (m j ):

Pn11 (m j )2Pn21 (m j )

4
2n11

n11
m j [Pn (m j )2Pn22 (m j ) ]2

(n22)(2n11)

(n11)(2n23)
[Pn21 (m j )2Pn23 (m j ) ] .

(3.47)

Since the sj
(n) are determined by

sj
(n)4a j

l j
2n

2n21
[Pn (m j )2Pn22 (m j ) ] , nF2 ,(3.48)

we get from (3.47) the recurrence relation for the summed convolution coeffi-
cients:

sj
(n11)4

2n21

n11
m j l j

21 sj
(n)2

n22

n11
l j
22 sj

(n21) , nF2 ,(3.49)
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which can be used after calculating the first values sj
(n) for n40, 1 , 2 by the for-

mula (3.44).

S e c o n d d e r i v a t i o n . Next we shall present an alternative derivation of the
first convolution coefficients sj

(n) , n40, 1 , 2 and the recurrence relation (3.49).
The advantage of this alternative approach is that we shall only need the growth
functions n 1, 2 (z) from the Z-transformed DTBCs (3.18) and (3.19). Hence this ap-
proach might also apply to a bigger class of linear evolution equations, where it is
not possible (or too tedious) to derive an explicit representation of the convolution
coefficients.

We remark that an even more advantageous approach might be based on the
polynomial equation (3.17) for the growth function n(z), rather than on its explicit
solution. The benefit of such a strategy would lie in the possibility to obtain the
convolution coefficients also for higher order difference schemes, that would lead
to quartic (or even higher order) equations for n(z). To our knowledge this has,
however, not been accomplished yet.

In this second approach we shall first derive a first order ODE for the growth
function n(z), which is explicitly given by (3.21). In fact, it is more convenient to
consider

nA(z) »4 (z11) n(z)4 !
n421

Q

sj
(n11) z 2n .(3.50)

Using the constants (3.22) and (3.24) it has the explicit form

nA1, 2 (z)4z g12 iR

2
1

s j

2
h1 g11 iR

2
1

s j

2
h

6
i

2
1
kR 214s j1s j

21oz 2 l

m
22z1

1

lm
.

(3.51)

The index j40, J again denotes the grid point where the DTBC is to be construc-

ted. Multiplying nA84
dnA

dz
by gz 2 l

m
22z1

1

lm
h then yields an inhomogeneous

first order ODE for nA(z):

gz 2 l

m
22z1

1

lm
h nA(z)82 gz l

m
21h nA(z)4b(z) »4b 21 z1b 0 ,(3.52)
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with

b 214

b 04

2
l

m
g11 iR

2
1

s j

2
h1 g211

iR

2
2

s j

2
h ,

1

lm
g12 iR

2
1

s j

2
h1 g11 iR

2
1

s j

2
h .

(3.53)

Its general solution includes nA1, 2 (z) as defined in (3.51). Using the Laurent series
(3.50) of nA and nA8 in (3.52) immediately yields the desired recursion for the coeffi-
cients sj

(n):

2
l

m
sj

(1)2sj
(0)4

22
l

m
sj

(2)1sj
(1)1

1

lm
sj

(0)4

2(n11) sj
(n11)1 (2n21)

m

l
sj

(n)2 (n22)
1

l 2
sj

(n21)4

b 21 ,

b 0 ,

0 , nF2 ,

(3.54)

which coincides with (3.49).
The starting coefficient of the recursion can be determined as in (3.42):

sj
(0)4 lim

zKQ

nA(z)

z
412 i

R

2
1

s j

2
6

i

2
kR 214s j1s j

21o l

m
.

Here, the sign has to be fixed such that Nn 1 (z)NE1 for the right DTBC and
Nn 2 (z)ND1 for the left DTBC. This can be done for e.g. for z4Q.

S t a b i l i t y o f t h e r e c u r r e n c e r e l a t i o n . For proving that the recurrence
relation (3.49) is well-conditioned we follow the notation in [16] and write (3.49)
as the second order difference equation

sj
(n11)1aj

(n) sj
(n)1bj

(n) sj
(n21)40 , nF2 ,(3.55)

with

aj
(n)42

2n21

n11
m j l j

21 , bj
(n)4

n22

n11
l j
22

c0 .(3.56)
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There are two linearly independent solutions sj , 1
(n) , sj , 2

(n) to (3.55). If they have the
property

lim
nKQ

sj , 2
(n)

sj , 1
(n)

40(3.57)

then sj , 2
(n) is called a minimal solution and serious numerical problems arise if one

tries to compute the solution sj , 2
(n) in a straightforward way by using the recursion

(3.49): A (small) initial error would induce arbitrarily large relative errors in sj , 2
(n) ,

even when evaluating the recursion (3.49) with infinite precision. Methods of cal-
culating minimal solutions of three-term recurrence relations can be found in [16]. To
prove that (3.49) is well-conditioned we have to show that the seeked solution is not a
minimal solution to (3.55). This type of solution is called dominant.

Since the coefficients aj
(n) , bj

(n) in (3.55) have the finite limits

aj4 lim
nKQ

aj
(n)422m j l j

21422
Bj

Aj

, bj4 lim
nKQ

bj
(n)4l j

224
Cj

Aj

, j40, J ,(3.58)

one calls (3.55) a Poincaré difference equation and

F j (t)4 t 21aj t1bj(3.59)

the characteristic polynomial of (3.55). The characteristic polynomial has the
complex conjugate zeros tj

(1 , 2)4 (Bj6 i4/R) /Aj . The zeros have the same moduli:
Ntj

(1 , 2) N41, and therefore the classical Theorem of Poincaré (formulated below
for the special case of a second-order difference equation) cannot be applied to di-
stinguish two solutions with distinct asymptotic properties.

T h e o r e m 3.9 (Poincaré theorem, [14]). Suppose that the zeros tj
(1) , tj

(2) of
the characteristic polynomial (3.59) have distinct moduli. Then for any nontri-
vial solution sj

(n) of (3.55)

lim
nKQ

sj
(n11)

sj
(n)

4 tj
(k)

for k41 or k42.

R e m a r k 3.10. If equation (3.55) has characteristic roots with equal moduli
then Poincaré’s Theorem may fail (cf. example of Perron [14]).

It is well-known that the Legendre polynomials Pn(m j) and the Legendre func-
tions of the second kind (of order zero) Qn (m j ) satisfy the same three-term recur-
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rence relation (3.45). Therefore, the two linearly independent solutions to (3.55)
are the convolution coefficients sj , 1

(n)4sj
(n) (3.48) and sj , 2

(n) given by

sj , 2
(n)4b j

l j
2n

2n21
[Qn (m j )2Qn22 (m j ) ] , nF2 ,(3.60)

with some constant b j .
Now we want to study the asymptotic behaviour of these two solutions. With

the notation m j4cos u j , 0Eu jEp , we use Lemma 3.6 which gives

Pn ( cos u j )2Pn22 (cos u j )

42
2 k2ksin u j

kp

sin kgn2
1

2
h u j2

p

4
l

kn
1O(n 23/2 ) ,

(3.61)

and from (3.48) we see that

sj
(n)A2a jk2

ksin u j

kp
l j
2n

sin kgn2
1

2
h u j2

p

4
l

gn2
1

2
h kn

, nKQ .(3.62)

An analogous formula to (3.33) for the Legendre functions of the second kind
Qn (m j ) is given by the following Lemma:

L e m m a 3.11 (Theorem 8.21.14, [41]). For 0Eu jEp

Qn ( cos u j )4
kp

k2ksin u j

cos kgn1
1

2
h u j1

p

4
l

kn
1O(n 23/2 ) .(3.63)

This holds uniformly in the interval [e , p2e].

As before we can deduce from (3.60) that

sj , 2
(n)A2 b j

kpksin u j

k2
l j
2n

sin kgn2
1

2
h u j1

p

4
l

gn2
1

2
h kn

, nKQ(3.64)



83DISCRETE TRANSPARENT BOUNDARY CONDITIONS...[27]

holds. Therefore the ratio of the two solutions behaves asymptotically as

sj , 2
(n)

sj
(n)

A
b j

a j

p

2

sin kgn2
1

2
h u j1

p

4
l

sin kgn2
1

2
h u j2

p

4
l 4

b j

a j

p

2
tan kgn2

1

2
h u j1

p

4
l , nKQ ,

i.e. neither sj
(n) nor sj , 2

(n) can be a minimal solution. Consequently, the problem of
determining the required values of the convolution coefficients is well-conditioned
[16]: they can be computed numerically from the recurrence relation (3.49) in a
stable fashion.

R e m a r k 3.12. In the special case u j4p/2 we observe the asymptotic
behaviour

sj , 2
(n)

sj
(n11)

A
b j

a j

p

2
, nKQ .

D e c a y r a t e o f t h e c o n v o l u t i o n k e r n e l . Since Nl jN41 the relation
(3.62) shows that s0

(n) , sJ
(n)4O(n 23/2 ), which agrees with the decay of the convolu-

tion kernel in the differential TBCs (2.8), (2.9). To show this property we consider
the left TBC (2.9) and obtain after an integration by parts

c x (0 , t)4c
d

dt
�

0

t
c(0 , t)

kt2t
dt

4c y d

dt
�

t2e

t
c(0 , t)

kt2t
dt2

1

2
�

0

t2e
c(0 , t)

(t2t)3/2
dt1

c(0 , t2e)

ke
z

(3.65)

with

c4o 2

ˇp
e
2i p

4 4
12 i

kˇp
.(3.66)

To compare the discrete convolution in the DTBCs with the continuous convolu-
tion in the differential TBCs we consider the following discretization (with
e4Dt)

2
c

2
�

0

t2e
c(0 , t)

(t2t)3/2
dtB2

c

2
!

k41

n21

c 0
k [ (n2k) Dt]23/2 Dt .(3.67)
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(n)
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s0
(n)  asympt.

n -3/2  rate

Fig. 4 - New discrete TBC: convolution coefficients s0
(n) compared to the r.h.s. of (3.62) and

the decaying rate (3.69).

If we compare this with (3.43a) written in the form

c 1
n2c 0

n

Dx
4

1

Dx
k !

k41

n21

s0
(n2k) c 0

k2c 1
n211s0

(0) c 0
n2c 0

nl , nF1 ,(3.68)

we would roughly expect

s0
(n)A2

cDx

2 kDt
n 23/24

i21

2 kˇp

Dx

kDt
n 23/2 , nKQ .(3.69)

In Figure 4 we compare the s0
(n) for increasing time levels n with the r.h.s. of

(3.62). The used parameters are ˇ41, Dt41026 , Dx41/160 and the potential is
set to zero. Figure 4 displays a quite good agreement of the asymptotic behaviour
of the s0

(n) with the predicted one in (3.62). The values of s0
(n) oscillate around the

rate (3.69).
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3.4 - Stability of the resulting scheme

We shall now discuss the stability of the Crank-Nicolson finite difference sche-
me in connection with the DTBCs (3.43).

Since the discrete whole-space solution satisfies the discrete TBCs (3.43), it is
trivial that the implicit scheme (3.1), (3.43) for the IBVP can be solved at each
time level n. To prove unique solvability and stability of the scheme, a discrete
analogue of (2.19) can be derived. We sum up (3.2) for the finite interior range
j41, 2 , R , J21, use the summation by parts rule:

Dx !
j41

J21

gj D 2
x fj42Dx !

j40

J21

fj D 1
x gj1 fJ21 gJ2 f0 g0(3.70)

and obtain (note that D 2
x 4D 2

x D 1
x )

Dx !
j41

J21

c j
n1 1

2 D 1
t c j

n42
iˇDx

2
!
j40

J21

ND 1
x c j

n1 1

2 N22
iDx

ˇ
!
j41

J21

Vj
n1 1

2 Nc j
n1 1

2 N2

1
iˇ

2
kc J

n1 1

2 D 1
x c

J21

n1 1

2 2c 0
n1 1

2 D 1
x c 0

n1 1

2
l .

(3.71)

Finally, taking the real part using (3.5) yields

D 1
t Vc n

V2
24ˇkRe mic J

n1 1

2 D 2
x c J

n1 1

2
n2Re mic 0

n1 1

2 D 1
x c 0

n1 1

2
nl ,(3.72)

with the discrete L 2-norm defined by Vc n
V2

2 »4Dx !
j41

J21

Nc j
nN2. After summation

with respect to the time index we get from (3.72):

Vc N11
V2

24Vc 0
V2

21ˇDtkRe mi !
n40

N

c J
n1 1

2 D 2
x c J

n1 1

2 n2Re mi !
n40

N

c 0
n1 1

2 D 1
x c 0

n1 1

2 nl
4Vc 0

V2
22

ˇDt

Dx
Re mi !

n40

N

c J
n1 1

2 (c J
n1 1

2 * l
A

J
(n) )n

2
ˇDt

Dx
Re mi !

n40

N

c 0
n1 1

2 (c 0
n1

1

2 * lA0
(n) )n ,

(3.73)

where lAj
(n) »4 lj

(n)2d n
0 , j40, J. Again, as in the continuous case, it remains to

show that the boundary-memory-terms in (3.73) are of positive type. We concen-
trate on the boundary term at j4J and define the finite sequences

fn4c J
n1 1

2 * lAJ
(n) , gn4c J

n1 1

2 , n40, 1 , R , N ,(3.74)
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with fn4gn40 for nDN , i.e. Re mi !
n40

N

fn gnnF0 is to show. A Z-transformation

using the transformed DTBC (3.18) yields

Z] fn(4 f×(z)4
z11

2
c× J

N (z)[n 2 (z)21]

4
iR

4
c× J

N (z)][z211 ik (z11) ]Z1kAz 222Bz1C( ,

(3.75)

where c× J
N (z)4 !

n40

N

c J
n z 2n is analytic on NzND0. The expression above in the cur-

ly brackets is analytic for NzND1 and continuous for NzNF1, since the zeros z1, 2

of the square root are given by z1, 24 (B6 i4/R) /A with Nz1, 2N41. Therefore f×(z)
is analytic on 1ENzNEQ. Note that we have to choose the sign in (3.75) such
that it matches with n 2 (z) for NzN sufficiently large. For the second sequence gn

we obtain

Z] gn(4g×(z)4
z11

2
c× J

N (z) ,(3.76)

i.e. g×(z) is analytic on 0ENzNEQ.
Now the basic idea is to use Plancherel’s theorem in the form

!
n40

Q

fn gn4
1

2p
�

0

2p

f×(e iW ) g×(e iW ) dW ,

which gives

Re mi !
n40

N

fn gnn4 1

8p
Re {i �

0

2p

Nz11N2 Nc× J
N (z)N2 [n 2 (z)21]Nz4e iW dW}

42
1

8p
Im { �

0

2p

n 2(e iW ) dW} .

(3.77)

We remark that the pole of n 2 (z) at z421 is «cancelled» by Nz11N2. From
(3.77) we conclude that the discrete L 2-norm (3.73) is non-increasing in time if

Im n 2 (e iW )G0 , (W� [0 , 2p] ,(3.78)

holds. This property of n 2 can be shown in the following way. If we define

y42
iR

2
g z21

z11
1 ikh(3.79)



87DISCRETE TRANSPARENT BOUNDARY CONDITIONS...[31]

then (3.21) simply reads

n 2 (y)411y21ky(21y) .(3.80)

On the unit circle z4e iW , 0GWG2p , we have (z21) /(z11)4 i tan (W/2 ) and
therefore

y4
R

2
tan

W

2
1

Rk

2
4

(Dx)2

ˇ
k 2

Dt
tan

W

2
1

VL

ˇ
l , 0GWG2p(3.81)

is real. Consequently, n 2 (e iW ) becomes complex only in the interval W aEWEW b ,
where W a , W b� [0 , 2p] solve

tan
W a

2
42Dt g VL

2ˇ
1

ˇ

(Dx)2 h , tan
W b

2
42

Dt

2ˇ
VL ,(3.82)

and we have the requested result

Im n 2 (e iW )42Im 1ky(21y)G0, 0GWG2p .(3.83)

The situation is illustrated in Figure 5, where we have set ˇ41, VL42 Q104 and

Fig. 5 - Imaginary part of n 2 (z) on the unit circle z4e iW , 0GWG2p.
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used the parameters Dx41/500 , Dt42 Q1025. This gives the following values for
W a , W b : W a42p12 atan (25.2)B3.5216, W b42p12 atan (20.2)B 5.8884.

We then have the main result of this Section:

T h e o r e m 3.13 ([3]). The solution of the discretized Schrödinger equation
(3.1) with the discrete TBCs (3.43) is uniformly bounded

Vc n
V2

2 »4Dx !
j41

J21

Nc j
nN2GVc 0

V2
2 , nF1 ,(3.84)

and the scheme is thus unconditionally stable.

R e m a r k 3.14. It can also be shown that (3.43) is a consistent discretization
of the differential BCs (2.8), (2.9).

S i m p l i f i e d D T B C . The decay of the sj
(n) shown in (3.62) motivates to consi-

der a simplified version of the DTBC (3.43) with the convolution coefficients cut
off at an index M. This means that only the «recent past» (i.e. M time levels) is
taken into account in the convolution in (3.43):

c 1
n2s0

(0) c 0
n4 !

k4n2M

n21

s0
(n2k) c 0

k2c 1
n21 , nF1 ,(3.85a)

c J21
n 2sJ

(0) c J
n4 !

k4n2M

n21

sJ
(n2k) c J

k 2c J21
n21 , nF1 .(3.85b)

This, of course, reduces the perfect accuracy of the DTBC (3.43), but it is numeri-
cally cheaper while still yielding reasonable results for moderate values of M. We
remark that the numerical stability of the scheme with simplified DTBC depen-
ding on the value of M is not anymore obtained automatically. This issue is cur-
rently under investigation [2].

3.5 - Numerical results

In this Section we present an example to compare the numerical results from
using our new discrete TBC to the solution using other discretization strategies of
the TBC for the Schrödinger equation (2.1). We also show the numerical effect if
the DTBC is simplified by (3.85). Due to its construction, our DTBC yields exactly
(up to round-off errors) the numerical whole-space solution restricted to the com-
putational interval [0, L]. The calculation with discretized TBCs requires the same
numerical effort. However, the solution may (on coarse grids) strongly deviate
from the numerical whole-space solution.
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Fig. 6 - Solution Nc(x , t)N at time t40.004, t40.006, t40.008, t40.01: the solution with
the new discrete TBCs (——) coincides with the whole-space solution, while the solution
with the discretized analytic TBCs (3.7) from [30] (– – –) or from [6] (Q Q Q) introduces strong
numerical reflections.

E x a m p l e . This example shows a simulation of a right travelling Gaussian
beam [c I (x)4exp (i100x230(x20.5)2 ) ] at four consecutive time steps evolving
under the free Schrödinger equation (ˇ41) with the rather coarse space discreti-
zation Dx41/160 and the time step Dt42 Q1025. Discretizing the analytic TBCs
via (3.7) (scheme of Mayfield [30]) or as in Baskakov and Popov [6] induces strong
numerical reflections. Our discrete TBCs (3.43), however, yield the smooth nume-
rical solution to the whole-space problem, restricted to the computational interval
[0 , 1 ] (up to round-off errors).

We observe in Figure 6 the artificial reflections travelling to the left induced
by discretizing the analytic TBC while the solution with the new discrete TBC
leave the computational domain without any numerical reflections. At time
t40.01 the solution with the DTBC has almost completely left the domain [0 , 1 ]
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and the solutions with discretized TBCs contain a reflected wave packet with the
maximum modulus (which corresponds to the maximum error) of around 0.17
for the approach of Mayfield and around 0.025 in case of the discretized TBC of
Baskakov and Popov.

Now we present the results when using the simplified DTBC (3.85) and want
to compare the outcome with the discretized TBCs at time t40.01. All these boun-
dary conditions need a comparable computational effort. The cut-off value M is
chosen appropriately, such that the simplified DTBC yields similar results with
respect to the numerical reflections at the right boundary x41. As a reference
we also plot the solution with the discrete TBCs (Q Q Q).

We see in Figure 7 that the solution with the simplified discrete TBCs (3.85)
with M45 is already better than the solution with the discretized analytic TBCs
(3.7) from [30].

We observe in Figure 8 that the error of the solution with the discretized ana-
lytic TBC from [6] lies between the errors of the solutions with the simplified di-
screte TBCs (3.85) using the cut-off value M430, M435.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

|ψ
|

Schroedinger: t=0.01

discretized TBC (Mayfield)
discrete TBC
discrete TBC: M=5
discrete TBC: M=4

Fig. 7 - Solution Nc(x, t)N at time t40.01: the solution with the discretized TBCs of May-
field [30] (——) in comparison to the solution using the simplified DTBC (3.85) with M44
(–Q–Q) and M45 (– – –).
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Fig. 8 - Solution Nc(x , t)N at time t40.01: the solution with the discretized TBCs of Baska-
kov and Popov [6] (——) in comparison to the solution using the simplified DTBC (3.85)
with M430 (–Q–Q) and M435 (– – –).

4 - DTBC for non-compactly supported initial data

In this Section we show how to drop assumption (A1), i.e. here the initial data
c I (x) need not be compactly supported inside the computational domain. We only
assume that the initial function c I (x) is continuous. First we review the deriva-
tion of the TBC on the continuous level and mimick this derivation strategy after-
wards for the discrete scheme.

4.1 - The transparent boundary condition

Here we review the derivation of the (continuous) TBC from [25]. In the case
of the free Schrödinger equation with non-compactly supported initial data c I the
Laplace transformed right exterior problem (2.5) now reads

v×xx1c 2 sv×4c 2 c I (x) , xDL ,(4.1a)

v×(L , s)4F×(s) ,(4.1b)
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where we set c4 (11 i) /kˇ. Again, the idea is to solve this inhomogeneous
second order differential equation (4.1) explicitly. The homogeneous solution is

v×hom (x , s)4C1 (s) e icks(x2L)1C2 (s) e 2icks(x2L) , xDL ,(4.2)

and according to [22] (14.31) a particular solution of (4.1a) is given by

(4.3) v×par (x, s)4
c

2iks
y �

L

x

e icks(x2x 8)c I (x 8) dx 82�
L

x

e icks(x 82x)c I (x 8) dx 8z , xDL ,

i.e. the general solution is

v×(x, s)4v×hom(x, s)1v×par (x, s)

4yC1 (s) e 2icksL1
c

2iks
�

L

x

e 2icksx 8c I (x 8) dx 8z e icksx

1yC2 (s) e icksL2
c

2iks
�

L

Q

e icksx 8c I (x 8) dx 81
c

2iks
�

x

Q

e icksx 8c I (x 8) dx 8z e 2icksx.

(4.4)

We note that the last term in (4.4) is bounded for fixed s and xKQ. Since the sol-
utions have to decrease as xKQ , the idea is to eliminate the growing factor

e 2icksx4e
12 i

ˇ
ksx

by simply choosing

C2 (s)4
c

2 iks
�

L

Q

e icks(x 82L) c I (x 8 ) dx 8 .(4.5)

Consequently, we obtain C1 (s) from the boundary condition (4.1b):

C1 (s)4F×(s)2
c

2 iks
�

L

Q

e icks(x 82L) c I (x 8 ) dx 8 .(4.6)

From this we get the following representation of the transformed right
TBC:

v×x (x , s)4 icks C1 (s)2
c 2

2
�

L

Q

e icks(x2L) c I (x 8 ) dx 8

4 icks F×(s)2c 2�
L

Q

e icks(x 82L) c I (x 8 ) dx 8 .

(4.7)

It remains to inverse transform (4.7). If we further assume that c I is continuously
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differentiable, then integration by parts yields:

v×x (L , s)4
ic

ks
[sF×(s)2c I (L) ]2

ic

ks
�

L

Q

e icks(x 82L) c I
x (x 8 ) dx 8 .(4.8)

The inverse Laplace transformation using the convolution theorem gives

c x (L , t)4
ic

kp
�

0

t
c t (L , t)

kt2t
dt2 ic L21{ 1

ks
�

L

Q

e icks(x 82L) c I
x (x 8 ) dx 8} .(4.9)

Finally, if c I
x is integrable for xDL , Levy proved ([25], Theorem 3.1), that the in-

tegration and the inverse Laplace transform can be interchanged in (4.9) to obtain
the right TBC

c x (L , t)4
ic

kp
�

0

t
c t (L , t)

kt2t
dt2

ic

kpt
�

L

Q

c I
x (x) e

i(x2L)2

2ˇt dx .(4.10)

R e m a r k 4.1. Clearly, if c I (x)40 for xDL then (4.10) reduces to the
p r e v i o u s l y o b t a i n e d r i g h t T B C ( 2 . 8 ) i n t h e p o t e n t i a l - f r e e c a s e ( n o t e t h a t

2k2e
2i p

4 4 i21).
As motivated in the previous Section we will not discretize this TBC. Instead

we will show now how to derive the TBC on a fully discrete level by mimicking
the derivation of the continuous TBC.

4.2 - The discrete transparent boundary condition

First we show how to solve an inhomogeneous second order difference equa-
tion with constant coefficients of the form

Uj111aUj1bUj214g j , jFJ21 .(4.11)

We already know from Section 3 that the two linearly independent homogeneous
solutions take the form a j , b j , jFJ with ab4b. A particular solution Vj of (4.11)
can be found with the ansatz of «variation of constants» [31], [14]:

Vj214cj a j211dj b j21 , jFJ .(4.12)

It follows that

Vj4cj11 a j1dj11 b j4cj a j1dj b j , jFJ21 ,(4.13)
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if we force the condition

(D1 cj ) a j1 (D1 dj ) b j40(4.14)

to hold. Here D1 denotes the usual forward difference operator, i.e. D1 cj

4cj112cj. Analogously, again assuming (4.14), we obtain for Vj11

Vj114cj a j111dj b j111 (D1 cj ) a j111 (D1 dj ) b j11 .(4.15)

Inserting (4.12), (4.13), (4.15), into the difference equation (4.11) gives

(D1 cj ) a j111 (D1 dj ) b j114g j ,(4.16)

together with the condition (4.14). This can easily be solved to obtain

D1 cj4
1

a2b
a 2j g j , D1 dj42

1

a2b
b2j g j ,(4.17)

i.e. we get the coefficients

cj4cJ1 !
m4J

j21

D1 cm4cJ1
1

a2b
!

m4J

j21

a 2m g m , jFJ ,(4.18)

dj4dJ1 !
m4J

j21

D1 dm4dJ2
1

a2b
!

m4J

j21

b2m g m , jFJ .(4.19)

Consequently, the particular solution reads

Vj4cj11a j1dj11b j

4ycJ1
1

a2b
!

m4J

j

a2mg mza j1ydJ2
1

a2b
!

m4J

j

b2mg mz b j, jFJ21 ,
(4.20)

and the general solution of (4.11) is of the form

Uj4ca j1db j1
1

a2b
k !

m4J

j

a j2m g m2 !
m4J

j

b j2m g ml , jFJ21 ,(4.21)

which is the discrete analogue to the solution formula (4.3) in the continuous
case.

Now we use (4.21) to design a boundary condition at j4J. For that purpose
we assume NaNE1, NbND1 (recall that b4ab41 for the Crank-Nicolson scheme
for solving the Schrödinger equation). Proceeding analogously to the continuous
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case we have to eliminate the growing factor b j by choosing d appropriately as

d4
1

a2b
!

m4J

Q

b2m g m .(4.22)

We obtain from (4.21)

Uj4 yc1 1

a2b
!

m4J

j

a 2m g mz a j1
1

a2b
!

m4 j11

Q

b j2m g m , jFJ21 .(4.23)

The value of c can be expressed with UJ21 :

c4
UJ21

a J21
2 g b

a
hJ21 1

a2b
!

m4J

Q

b2m g m ,(4.24)

and inserting this into (4.23) with j4J :

UJ4ca J1
1

a2b
!

m4J

Q

b J2m g m(4.25)

yields

Uj4aUj212 g12 a

b
h 1

a2b
!

m4J

Q

b J2m g m

4aUJ212b21 !
m40

Q

b2m g J1m ,

(4.26)

or equivalently

bUJ214bUJ1 !
m40

Q

b 2m a m g J1m .(4.27)

Finally, we want to apply these results to the discretized Schrödinger equation
(3.13) and derive the DTBC at j4J in the situation, when the initial data c j

0 does
not vanish for jFJ21. In this case the Z-transformed right exterior Crank-
Nicolson scheme reads:

(4.28) c× j11 (z)2k22iR g z21

z11
1ikhlc× j(z)1c× j21 (z)4

z

z11
W j , jFJ21 ,

where the inhomogeneity W j is given by

W j4D 2
x c j

01 iRc j
02Rkc j

0 , jFJ21 .(4.29)
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We can use (4.27) to obtain the transformed right DTBC:

c× J21 (z)4n 2 (z) c× J (z)1
z

z11
!

m40

Q

n 1
m (z) W J1m ,(4.30)

where n 1 , n 2 are the two solutions of the quadratic equation (3.17).

R e m a r k 4.2. Again, (4.30) reduces to the DTBC (3.18) for W jf0.

In order to formulate the DTBC we define (pm
(n) ) »4 Z21]n 1

m (z)( and set
(lJ

(n) ) »4 Z21]n 2 (z)(. Using standard rules of inverse Z-transforms (cf. [11], e.g.)
we obtain by inverse transforming (4.30)

c J21
n 2 lJ

(0) c J
n

4 !
k40

n21

lJ
(n2k) c J

k 1 (21)n W J1 !
m41

Q

!
k40

n

(21)n2k pm
(k) W J1m , nF1 .

(4.31)

Since the coefficients lJ
(n) asymptotically alternate in time, this formulation can be

improved and shortened by regarding once more sJ
(n) »4 lJ

(n)1 lJ
(n21) , which gives

finally the DTBC for non-compactly supported initial data:

c J21
n 2sJ

(0) c J
n4 !

k40

n21

sJ
(n2k) c J

k 2c J
n211 !

m41

Q

pm
(n) W J1m , nF1 .(4.32)

R e m a r k 4.3. Note that in contrast to the DTBC in Section 3 the r.h.s. (4.32)
for n41 is not zero but

c J21
1 2 l (0) c J

1 4s (1) c J
0 2c J

0 1 !
m41

Q

pm
(1) W J1m .(4.33)

In practical situations the sum (over m) in (4.32) of course has to be finite (e.g.
up to an index m4M). This means that the initial condition is still compactly
supported, but possibly outside of the computational interval. The coefficients
pm

(n) , m41, 2 , R , M , can be calculated recursively by «continued convolution»,
i.e.

(4.34) p1
(n)4 Z21]n 1 (z)( , p2

(n)4 !
k40

n

p1
(n2k) p1

(k) , p3
(n)4 !

k40

n

p2
(n2k) p1

(k) , etc .

Since this computation is rather costly (even when using fast convolution algo-
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rithms with FFTs ([32], Chapter 4) we seek for another way to calculate

SAM
(n) »4 !

m41

M

pm
(n) W J1m , nF1 .(4.35)

The key idea is to use the quadratic equation (3.17) for n 1 (z) in order to construct
a recurrence relation for the pm

(n) (w.r.t. m). Equation (3.17) for n 1 (z) gives

n 1
m11 (z)42 k12 iR

2
g z21

z11
1 ikhl n 1

m (z)2n 1
m21 (z)

4c1 n 1
m (z)2c2

z

z11
n 1

m (z)2n 1
m21 (z) , mF1

(4.36)

with c1421 iR1Rk and c242 iR. An inverse Z-transformation gives

pm11
(n) 4c1 pm

(n)2c2 !
k40

n

(21)k pm
(n2k)2pm21

(n) , mF1 ,(4.37)

with the starting sequences p0
(n)4d n

0 and p1
(n)4 Z21]n 1 (z)(, nF0. To circum-

vent the convolution in (4.37) we consider qm
(n) »4pm

(n)1pm
(n21) , pm

(21)40 and
obtain

qm11
(n) 4c1 qm

(n)2c2 pm
(n)2qm21

(n) , mF1(4.38)

to use in the DTBC of the form

c J21
n 2sJ

(0) c J
n

4 !
k40

n21

tJ
(n2k) c J

k 2c J
n212c J21

n212c J
n221 !

m41

M

qm
(n) W J1m , nF1 ,

(4.39)

where tJ
(n)»4sJ

(n)1sJ
(n21). The calculations are done by the following algorithm

1. q0
(n)4d n

0 1d n
1 nF0

2. q1
(n)4p1

(n)1p1
(n21)4sAJ

(n) nF0
3. S1

(n)4q0
(n) W J1q1

(n) W J11 nF1
4. for m41, R , M21 do

qm11
(n) 4c1 qm

(n)2c2 pm
(n)2qm21

(n) nF0

Sm11
(n) 4Sm

(n)1qm11
(n) W J1m11 nF1

pm11
(0) 4qm11

(0)

for n41, R , N do

pm11
(n) 4qm11

(n) 2pm11
(n21)

end

end
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Here N denotes the maximum time index. The computational effort of the above
implementation of the DTBC is O(M QN), and comparable to the effort when
enlarging the computational domain sufficiently. The usage of the DTBC is espe-
cially beneficial when one needs several computations with the same exterior ini-
tial data. Then the calculation of the additional term has only to be done once. The
same applies when the initial field is concentrated far outside the computational do-
main. This is the case in radiowave propagation when computing coverage diagrams
of airborn antennas.

Alternatively, a second possible implementation is to consider the transformed
DTBC (4.30) and to calculate numerically the inverse Z-transform of the finite
sum once:

Fn4 Z21m z

z11
!

m40

M

n 1
m (z) W J1mn .(4.40)

The DTBC then reads

c J21
n 2 lJ

(0) c J
n4 !

k40

n21

lJ
(n2k) c J

k 1Fn , nF1 .(4.41)

The numerical inverse Z-transformation will be the topic of the next section.

R e m a r k 4.4. While the DTBC (4.32) solves the problem of initial data that
are supported outside of the computational domain, the resulting numerical effort
of this approach is not completely settled yet and subject to further investigations.
In particular one has to compare an «optimal» computation algorithm for the
coefficients pn

(m) or qn
(m) with simulations on a sufficiently enlarged computational

domain.

4.3 - Numerical results

Here we present the numerical results when using our new discrete TBC
(4.32) for the Schrödinger equation (2.1). We use the same initial data as in Sec-
tion 3.5, but shifted such that it is partially outside the computational domain
0GxGL. Again, due to its construction, our DTBC yields exactly (up to round-
off errors) the numerical whole-space solution restricted to the computational in-
terval [0 , L].

E x a m p l e . This example shows a simulation of a right travelling Gaussian
beam [c I (x)4exp (i100x230(x20.8)2 ) ] at three consecutive times evolving
under the free Schrödinger equation (ˇ41) with the rather coarse discretization
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Fig. 9 - Solution Nc(x , t)N at time t40, t40.002, t40.004, t40.006: the solution with the
new discrete TBCs (4.32) coincides with the whole-space solution and does not introduce
any numerical reflections.

of 161 grid points for the interval 0GxG1 (i.e. Dx41/160) and the time step
Dt42 Q1025. For the right exterior (computational) domain we choose the same
space step Dx and use 60 grid points which results in the exterior interval
1ExG1.38125.

In the following Figure 9 we plotted the absolute value of the initial data and
the solution obtained with the discrete TBCs (4.32) at the time steps t40.002,
t40.004, t40.006. One clearly sees in Figure 9 that the solution is solely propa-
gated to the right and no artificial reflections are caused.

In this example the computation using the inhomogeneous DTBCs (4.32)
needs approximately the same CPU-time than just enlarging the domain to the in-
terval 0GxG1.8 using a simple Neumann boundary condition at x40 and
x41.8. From Figure 9 one can guess that the solution at t40.004 has already
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reached the right boundary at x41.8. Hence it is worthwhile in this example to
use the inhomogeneous DTBCs whenever the solution for tD0. 004 is needed.

5 - Numerical inverse Z-transformations

The crucial point in the derivation of the DTBC in Section 3 was to find the
exact inverse Z-transformations. If it is not possible to calculate the convolution
coefficients analytically then the inverse Z-transformation can be performed
numerically.

The numerical inversion of the Z-transformation is based on the simple obser-
vation that the Z-transformation of the sequence ] fn(, n40, 1 , R.

Z] fn(4 f×(z) »4 !
n40

Q

fn z 2n , z�C , NzNDR 21 ,(5.1)

is nothing else but a Taylor series in zA41/z , i.e. the problem of calculating the in-
verse Z-transformation of f×(z) is the numerical evaluation of the Taylor coeffi-
cients of the function fA(zA) »4 f×(1 /z). For that purpose we used here the FOR-
TRAN subroutine ENTCAF (Evaluation of Normalized Taylor Coefficients of an
Analytic Function) from Lyness and Sande [29].

First we want to outline the method. The (normalized) Taylor coefficients
r n fn can be obtained by Cauchy’s integral representation:

r n fn4
r n

2pi
�
C

fA(zA) zA2(n11) dzA , rER ,(5.2)

where C denotes a circle around the origin with radius r smaller than the radius
of convergence R of the Taylor series. The approximation to fn based on using an
N-point trapezoidal rule for the contour integral is fn

(N) given by

r n fn
(N)4

1

N
!

k40

N21

e
2in 2pk

N fgre
i 2pk

N h , n40, 1 , R , N21 .(5.3)

The approximation r n fn
(N) is obtained by an iterative process. First approxima-

tions f0
(N) , N41, 2 , 4 , 8 , R are computed using (5.3). The convergence criterion

is based on the knowledge of the exact value of the limit of the sequence: lim
NKQ

f0
(N)

4 f04 fA(0). After converging the second part consists in evaluating (5.3) for
n40, 1 , R , N21 using the stored function values obtained in the first part.
Since N is a power of 2 it is particularly appropriate to use a fast Fourier trans-
form technique for this part.
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The user has to specify the required absolute accuracy e req and the radius of
computation r (the only restriction is that r must be less than R). ENTCAF re-
turns an accuracy estimate e est together with approximations r n fn

(N) and a num-
ber N , which are supposed to satisfy

Nr n fn
(N)2r n fnNEe est , n40, 1 , 2 , R , N21 ,(5.4a)

Nr n fnNEe est , n4N , N11, R .(5.4b)

We see from (5.4a) that this algorithm naturally delivers approximations r n fn
(N)

with a uniform bound on the discretization error. An output status parameter in-
dicates to the user whether or not convergence or roundoff errors have occured.
Exploiting the information of this output parameter one could construct a driver
program which finds the appropriate value of r by itself.

Due to the asymptotic behaviour (3.36) it is not advisable to calculate the lj
(n).

Instead we show how to compute the summed convolution coefficients sj
(n) nume-

rically. The sj
(n) were defined by:

sj
(n) »4 lj

(n)1 lj
(n21) , nF1, sj

(0)4 lj
(0) , j40, J .(5.5)

We concentrate on the right BC at j4J. If we assume lj
(21)40 we have:

Z]sJ
(n)(4n 2 (z)1z 21 n 2 (z)4 (11zA) nA 2 (zA) ,(5.6)

with nA 2 (zA)4n 2 (z) and n 2 (z) given by formula (3.21).

5.1 - Numerical results

Here we present the numerical results when using the subroutine ENTCAF
to compute the convolution coefficients lJ

(n) , sJ
(n). In each example we chose

e req41026 and set the machine accuracy parameter e M to 10215.

E x a m p l e 1. The value for the potential VL was set to 2 Q104 and the discreti-
zation parameter were taken from the example of Subsection 3.5, i.e. Dx41/160 ,
Dt42 Q1025. We used the computational radius r40.92. For that parameter
choice ENTCAF returned a number of N4256 nontrivial calculated coefficients
and an estimated uniform absolute accuracy e est49.8302 Q1027 in case of the
coefficients lJ

(n). For the summed coefficients sJ
(n) we obtained N4128 and

e est44.7684 Q1027. In the following Figure 10 we present the real and imaginary
part of the numerically obtained coefficients in comparison to the exact values.
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Fig. 10 - Example 1: Values for Re lJ
(n) , Im lJ

(n).

One serious problem is the rescaling of the computed coefficients. Since the al-
gorithm yields approximations r n fn

(N) with a uniform accuracy (5.4a) the computa-
tion is only reliable to a limited number of n when calculating fn

(N) from r n fn
(N) for

rE1. Therefore some visible numerical errors occur in the calculation of Re lJ
(n)

for nF130 and Im lJ
(n) for nF170.

On the left side of Figure 10 we observe the alternating behaviour shown in
(3.36)

lj
(n)A2 iR(21)n4 i

8

ˇ

(Dx)2

Dt
(21)n4 i

125

8
(21)n .(5.7)
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Fig. 11 - Example 1: Values for Re sJ
(n) , Im sJ

(n).
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Fig. 12 - Example 1: Difference between the numerical and exact value for of the real and
imaginary part of lJ

(n) (——) and sJ
(n) (Q Q Q).

E x a m p l e 2. In this second example we set the potential to zero and
changed the computational radius to r40.95 and the step sizes Dx41/1600 ,
Dt42 Q1024. For the coefficients lJ

(n) ENTCAF returned a number of N4256
nontrivial calculated coefficients and an estimated uniform absolute accuracy
e est42.9802 Q 1026. In case of the summed coefficients sJ

(n) we obtained N4128
and e est41.2288 Q1027. As before we show the real and imaginary part of the nu-
merically obtained coefficients in comparison to the exact values. Again, on the
left side of Figure 13 one can see the alternating behaviour of the coefficients lj

(n)

and the numerical errors due to the rescaling of the computed coefficients for ap-
proximately nF30.
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Fig. 13 - Example 2: Inverse Z-transformation using ENTCAF: Numerically obtained
values for Re lJ

(n), Im lJ
(n) compared to the exact ones.
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Fig. 14 - Example 2: Inverse Z-transformation using ENTCAF: Numerically obtained
values for Re sJ

(n), Im sJ
(n) compared to the exact ones.

E x a m p l e 3. Finally we use the settings of the second example and intend
to use a computational radius r41 to circumvent the problem of the rescaling.
For the coefficients lJ

(n) this cannot be done due to the singularity of n 2 (z) at
z41. On the other hand, this singularity is removed in (5.6):

Z]sJ
(n)(4 (11zA) nA 2 (zA)

411zA2
iR

2
y2

iR

2
1og 4 i

R
(11zA)1yh y ,

(5.8)

with the abbreviation y4 (12zA1 ik (zA11) ).
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Fig. 15 - Example 2: Inverse Z-transformation using ENTCAF: Difference between the
numcerical and exact value of the real and imaginary part of lJ

(n) ——) and sJ
(n) (Q Q Q).
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Fig. 16 - Example 3: Inverse Z-transformation using ENTCAF: Numerically obtained
values for Re sJ

(n), Im sJ
(n) compared to the exact ones. In both plots only one curve is visible

since the results from both approaches match so closely.

For the summed coefficients sJ
(n) ENTCAF returned a number of N41024

nontrivial calculated coefficients and an estimated uniform absolute accuracy e est

42.2492 Q1026. The maximal absolute error for Re sJ
(n) is 2.8609 Q1026 and 2.1455

Q1026 for calculating Im sJ
(n).
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A b s t r a c t

This paper is concerned with transparent boundary conditions for the one dimen-
sional time-dependent Schrödinger equation. They are used to restrict the original PDE
problem that is posed on an unbounded domain onto a finite interval in order to make
this problem feasible for numerical simulations. The main focus of this article is on the
appropriate discretization of such transparent boundary conditions in conjunction with
some chosen discretization of the PDE (usually Crank-Nicolson finite differences in the
case of the Schrödinger equation). The presented discrete transparent boundary condi-
tions yield an unconditionally stable numerical scheme and are completely reflection-free
at the boundary.
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