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A review of the kinetic modelings
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1 - Introduction

One of the most challenging goals in physics is gaining an understanding of
relations between alternative descriptions of matter: microscopic, statistical, and
macroscopic. From the phenomenological point of view the state of a system (for
example, air in a room, or fluid in a glass) is given in terms of the variables that
describe space distribution of physical quantities, e.g., local density, local velocity
or local temperature. These quantities are related to each other through the basic
equations of the macroscopic theory: the Euler and Navier-Stokes equations. The
equations reflect the balance of certain physical quantities such as mass, momen-
tum, energy, and possibly higher order quantities, if one considers the extended
thermodynamics.

However, in order for this macroscopic theory to work, we must supplement
not only the appropriate boundary conditions, but also the values of thermo-
physical constants such as

l equation of state data: e.g., p4nkB T for ideal gas;
l transport and structure coefficients (as well as constitutive relations: e.g.,

Pxy42 h
¯ux

¯y
,(1.1)
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where Pxy is the shear stress, ¯ux

¯y
is the strain rate, and h is the shear

viscosity).

These data cannot be obtained from the macroscopic theory. Historically,
they have been supplied by experiments and/or various phenomenological, often
ad hoc, considerations. One of the most important goals of the statistical mecha-
nics and the kinetic theory of fluids is to predict these thermophysical constants
from knowledge of molecules’ interaction potentials.

The above described goal is particularly challenging for a special class of che-
mical reactions: combustion and detonation processes. Combustion and detonation
have a long tradition in human endevours and great economic and technical im-
portance (see, e.g., [1], [2], and [3] and references there). However, until recently
very little scientific investigations has been done in this area from the statistical
mechanics and/or the kinetic theory point of view.

One would like to construct robust and viable microscopic models for non-
reacting and reacting dense fluids that

l provide consistent macroscopic theory (in the hydrodynamic limit);
l predict transport and structural coefficients for difficult to measure pro-

cesses (e.g., exothermic shock waves);
l describe well large heat and mass transfers and large activation energies

(combustion/detonation processes) for the reactive fluids.

These very challenging goals cannot be accomplished without initial modelings
of inert dense fluids. Indeed, existent kinetic models, based mainly on the Boltz-
mann equation, are valid only for dilute gases. Furthermore, very often collid-
ing molecules are treated as mass points without any internal geometry and zero
excluded volume. Finally, good understanding of inert dense fluids will allow one
to use it as a consistency check when in more complicated models (that involve
chemical reactions) the reactions are turned off. This turning off is usually done
by setting to zero suitable parameters of the model. In the process of developing
kinetic models of inert dense fluids one encounters several outstanding problems.
Some of them are related to polydisperse fluids (section 2.3), phase transitions
(section 2.4), and hydrodynamic limits (section 2.6). Good understanding of these
problems in the inert case is crucial in studying more complicated chemically
reacting fluids (section 3). In addition, mathematical problems encountered in
chemically reacting fluids, although more intricate, belong to the same category
as in the case of inert fluids, at least for the models considered here. That is why
a success in inert cases can be considered as a good indicator of proving similar
results for reactive fluids.
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In the kinetic theory approach, one abandons detailed description of each par-
ticle of the system in favor of knowing only particles’ probability distribution (of
positions and velocities) as a function of time. Time evolution of the probability di-
stribution is governed by a corresponding kinetic equation (e.g., the Boltzmann
equation). Although the Boltzmann equation is a good model for a rarefied gas,
another approach is needed in the case of dense gases.

A good kinetic theory possesses a Liapunov functional (often called an H-func-
tion) that drives an initial distribution to the equilibrium state. These functionals
arise in the kinetic theories as the indicators of the dissipativity of a physical
system and, in many situations, describe the way the system approaches an equili-
brium state. The most celebrated example of the above-mentioned functionals is
the H-function for the Boltzmann equation. They provide the information about
the unifying notion underlying each dynamical system considered in the kinetic
theory, i.e. its irreversibility in the limit when tKQ ([4], [5]). In addition, they
play an essential role ([6], [7]) in the methods used to obtain existence theorems
and asymptotic and stability results.

In contrast to the kinetic theory of dilute gases (based on the Boltzmann equa-
tion), the kinetic theories of dense fluids do not neglect configurational correla-
tions of the particles in the system. This results in the desired departure from
the ideal fluid model, on the macroscopic level, and much better prediction of
transport coefficients. For example, the transport coefficients based on the En-
skog equation are correct within 5% error for densities up to 3/4 of close packing
density ([8]). I point out that Boltzmann’s transport coefficients do not depend on
density!

Furthermore, in order to have any chance of describing even simple fluids
(i.e., chemically inert fluids with spherically symmetric interaction potentials), not
to mention molecular or macromolecular liquids, one needs to go beyond the kinetic
models that are obtained from the dilute-gas limit procedure (e.g., the Boltz-
mann equation). In the case of N hard spheres with the diameter a , the dilute-gas
limit is equivalent to taking the following limits (an analog of the thermodynamic
limit in equilibrium statistical mechanics):

aK0, NKQ , and Na 2KconstD0 .(1.2)

The limit in (1.2) is also called the Boltzmann-Grad limit. In a fluid obtained
through the dilute-gas limit (or zero-density limit) the volume occupied by fluids’

particles (excluded volume) is zero. Indeed, in the limit (1.2), N 4

3
pg a

2
h3

, the volu-
me of hard spheres is zero.
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In order to appreciate further inadequacy of the zero-density limit in descri-
bing more complicated fluids, it is interesting to consider the dilute-gas limit of
the (hydrostatic) equilibrium pressure for systems with pairwise additive interac-
tion potential, !

iE j
f(Nri2rjN), in the canonical ensemble:

p4
NkB T

V
2

1

6V
�Nr12r2N

df(Nr12r2 N)

dr
n2 (r1 , r2 ) dr1 dr2 ,(1.3)

where n2 (r1 , r2 ) is the two-body density function (also called the pair density).
The dilute-gas limit of (1.3) can be most easily obtained for an isotropic fluid, n2(r12r2)
4n 2 g2 (Nr12r2 N), n4N/V , and hard-sphere potentials

f HS (r)4
.
/
´

1Q ,

0 ,

if rGa ;

if rDa ,
(1.4)

Indeed, one quickly obtains,

p

nkB T
412

2pn

3kB T
�

0

Q

r 3 df HS (r)

dr
g2 (r) dr(1.5)

411 g 2

3
pa 3 nh g2 (a 1 ) K

2

3
pna 3K0

( dilute-gas limit )

1 ,(1.6)

where g2 (a 1 ) (see (2.5)) denotes the contact value of the equilibrium radial distri-
bution function for hard-spheres system and formally approaches 1 in the above
limit. Thus, (1.3) reduces to the equation of state for an ideal gas! As before,
2

3
pa 3 n4 4

3
p g a

2
h3

n4 4

3
p g a

2
h3

N

V
is just the excluded volume that approaches

zero in the dilute-gas limit. It was Enskog, in 1921 ([9]), who first noticed the im-
portance of nonzero excluded volume in description of the behavior of dense
systems. In analogy to (1.2) the (moderately) dense gas limit can be formulated as

aK0, NKQ , and Na 3KconstD0 .(1.7)

The presence of the excluded volume increases the pressure of the system.
This easily follows from (1.7) applied to (1.5)-(1.6).

Below, I list the criteria that are used in this review to construct various kine-
tic models of dense fluids:
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l built in conservation laws;
l built in trend to equilibrium (H-theorem);
l their equilibrium states are different from the equilibrium states corre-

sponding to noninteracting particles system (the case of the dilute gas as
viewed from the statistical mechanics of view). In other words, I want to
consider kinetic models whose underlying fluid (on the hydrodynamic level)
is NOT an ideal gas.

Once the model is constructed, I will be also interested in the responses of the
model, on the kinetic and on the hydrodynamic levels, to various (stochastic) per-
turbations imposed on the original model. A good perturbation is another kinetic
model that preferably satisfies the above criteria together with certain stability
conditions.

First, I start with the revised Enskog theory (RET, see section 2.1) and the
square-well kinetic theory (KVTIII, see section 2.2). Next, I consider perturba-
tions of these models. I will be particularly interested in controlling the equation
of state, the internal energy, the specific heats, and the transport and structure
coefficients of the underlying fluids through the (often stochastic) inputs (see sec-
tions 2.3 and 2.6) that characterize these perturbations. These goals are very im-
portant in understanding the microscopic roots of the fluid’s properties. This is
particularly true when one adds reactive terms to the model. Some of these new
models correspond to the class of polydisperse systems, including polydispersity
in mass. A new frontier in the kinetic theory would be to consider models of con-
vex bodies (spheroids, spherocylinders, or truncated spheres). The equilibrium
statistical mechanics of some convex bodies [10] is rather well known. This raises
hopes for the development of their non-equilibrium counterpart: the kinetic the-
ory of convex bodies. Such a theory would play a very important role in under-
standing the behavior of macromolecules and liquid crystals. This is particularly
interesting for chemically reacting macromolecules or liquid crystals.

The construction of a kinetic theory for chemically reacting fluids is the most
challenging one. With very few exceptions (most notably hard-sphere-like models)
only Boltzmann-like models have been considered in the literature. From the
physical point of view, the most important goal is to find possible analogs of the
RET and the KVTIII for chemically reacting fluids that satisfy the above criteria
of the well behaved kinetic theories. Relative simplicity of hard-spheres and squa-
re-well potentials increases chances of a success in this area. Finally, the regimes
of combustion/detonation fall naturally into the problems of shock waves (already
known in an inert case) for chemically reacting mixtures corresponding to large
mass and heat transfer, and/or large activation energies.
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In addition to the kinetic modeling, there are many outstanding mathematical
problems that appear in a natural way and their resolution would strengthen the
physical foundations of the considered models. I list them in the framed-boxes of
the diagram below.

BBGKY hierarchy: reduced distribution functions
I

Dense gas limit:
.
/
´

aK0, NKQ

Na 3KconstD0

ˆ
¨
˜
¨Na 2KQ

I
Kinetic level: one-particle distribution functions

convergence of g2

existence and uniqueness
trend to equilibrium

phase transitons
spectral analysis

I
Hydrodynamic limit:

Euler level
Navier-Stokes level

Macroscopic equations

The rigorous derivation of Boltzmann equation from the BBGKY hierarchy in
the dilute-gas limit (1.2) is relatively well established ([11], [12], [13]). This is to be
contrasted with almost no results in this direction for the dense gas limit, whether
for the RET or the KVTIII equations. Initial progress for the Boltzmann-Enskog
equation, where only the first term of the density expansion of the pair correlation
function g2 is retained (see (2.7)), has been done in [14] and [15]. Likely, the con-
vergence of the Mayer cluster expansion for g2 (in (2.7) and (2.20)) is one of the
important ingredients to the solution of this problem.

In the last 15 years there has been important progress in the fundamentals of
statistical mechanics of dense gases and liquids ([16], [17], [18], [19]). This research,
carried out mainly by physicists and chemists, begins to provide for the first time
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the physical framework and computational analysis for the models of dense fluids.
Following the breakthrough work of DiPerna and Lions [6] on the global existen-
ce theorem for the Boltzmann equation, many authors applied their ideas to the
Enskog (or the Boltzmann-Enskog) equation ([20], [7], [33], [35], [34], [21]), the
KVTIII theory ([22], [23]), and the chemically reacting kinetic theory ([24]).

I end this introduction by listing some of the outstanding problems and que-
stions in the kinetic theory of non-reactive and reactive dense gases and
liquids.

l Does there exist a model of the kinetic theory whose underlying fluid has
features similar to the fluids described by the van der Waals equation of
state

p4
nkB T

12bn
2an 2 ,

or by the van der Waals-Maxwell equation of state,

p4pHS2an 2 ?

Remark: Here, pHS is given in (2.6) and pHSc (nkB T) /(12bn), except
for hard rods. This problem is particularly interesting in view of the fact
that the van der Waals equation is rigorously valid in the thermodynamic li-
mit of the system with the Kac’s potential (hard-core plus a smooth and ra-
pidly decreasing tail, see, for example, [25]).

l Find a model of the kinetic theory whose transport coefficients behave simi-
larly to the transport coefficients of the realistic gases and liquids, for
example,
shear viscosity h increases as TH; (for gases)
shear viscosity h decreases as TH. (for liquids)

l Find models of the kinetic theory that describe well chemically reacting ga-
ses and liquids that also undergo fast chemistry, large heat and mass tran-
sfer, and large activation energies (combustion/detonation processes).
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2 - Non-reactive kinetic theories.

2.1 - The revised Enskog theory

In an attempt to generalize the Boltzmann equation to moderately dense ga-
ses, Enskog [9] proposed a kinetic theory that generalized Boltzmann’s original
stosszahlansatz in two ways:

1. by taking into account the fact that the centers of two colliding spheres are
at a distance a , equal to the diameter of hard spheres.

2. by increasing the collision frequency by a factor Y0 which nowadays is iden-
tified with the radial pair correlation function g2 (r) for the system of hard
spheres at a uniform equilibrium.

I want to note that the advantage of considering hard sphere systems resides
in two facts: the collisions are instantaneous and influence of multiple collisions
(i.e. simultaneous encounters of more than two spheres) is negligible. In fact, the
volume of the phase space corresponding to triple, quadruple, and n-tuple colli-
sions is zero; at least for integrable functions.

Furthermore, in moderately dense gases the molecular diameter is no longer
small compared with the mean free path between collisions. An important conse-
quence of this is that the transport of momentum and energy during collisions
(negligible in the dilute-gas limit, and consequently in the Boltzmann equation) ta-
kes place over distances comparable to the separation of the molecules.

The standard Enskog equation (SET) [26] for the one-particle distribution
function f is a nonlinear integro-partial differential equation

¯f

¯t
1v1

¯f

¯r1

4E( f )4E 1 ( f )2E 2 ( f ) ,(2.1)

with

(2.2) E 1 ( f )4a 2 ��
R33S1

2

Y0kn gr12
ae

2
hl f (t, r1 , v18) f (t, r12ae, w 8)ae, v12wb de dw

and

(2.3) E 2 ( f )4a 2 ��
R33S1

2

Y0kn gr11
ae

2
hl f (t, r1 , v1) f (t, r11ae, w)ae, v12wb de dw

where aQ , b is the inner product in R3 , S1
2 4]e�S2 : ae , v12wbF0(, v18 , w 8 are
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post-collisional velocities

v184v12eae , v12wb , w 84w1eae , v12wb ,

n(r1 )4� f (r1 , v1 ) dv1 , and

Y0 (n(r1 ) )411 g 2pa 3

3
h b3 n(r1 )1 g 2pa 3

3
h2

b4 n 2 (r1 )1R .(2.4)

The expansion in (2.4) is just the contact value density expansion (i.e., for
Nr12r2N4a) of the radial pair correlation function g2 for the system of hard
spheres at uniform equilibrium:

g2 (a 1 )411 g 2pa 3

3
h b3 n1 g 2pa 3

3
h2

b4 n 21R ,(2.5)

where bk are expressed in terms of the virial coefficients Bk , appearing in the
equation of state for the hard sphere system

p

nkB T
411 !

k41

Q

Bk11 n k 4
see (1.6)

11 g 2

3
pa 3 nh g2 (a 1 )(2.6)

In 1973, H. van Beijeren and M. H. Ernst ([27]) modified the original Enskog the-
ory by replacing the radial pair correlation function g2 at uniform equilibrium by
the exact pair correlation function g2 (r1 , r2Nn) that takes full account of spatial
non-uniformities in the local equilibrium. The Mayer cluster expansion of
g2 (r1 , r2Nn) ([28]) has the form

g2 (r1 , r2Nn)4exp (2bf HS (Nr12r2 N) )

3m11�V(12N3) n(t , r3 ) dr31
1

2
��V(12N34) n(t , r3 ) n(t , r4 ) dr3 dr4

1R1
1

(k22) !
�dr3 R�drk n(3) Rn(k) V(12N3Rk)1Rn ,

(2.7)

where n(k)4n(t, rk), b41/kBT, V(12N3R k) is the sum of all graphs of k labeled points
which are biconnected when the Mayer factor fij4exp (2bfHS(Nri2rjN))21
is added. Here, f HS is the hard-sphere potential given in (1.4). For example, if V
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denotes the spatial domain, the second term in (2.7) has the form

�n(r3 ) V(12N3) dr34�n(r3 ) f13 f23 dr34 �
VO

.
/
´

Nr12r3NGa
Nr22r3NGa

ˆ
¨
˜

n(r3 ) dr3 ,(2.8)

and similarly for higher order coefficients.

R e m a r k 2.1. I want to point out that in the uniform equilibrium (when
n(r1 )4n) the series (2.7) evaluated at contact value (i.e., when Nr12r2N4a) be-
comes (2.5). It is at this point one can see that Y0’s dependence on r1 in (2.2)-(2.3)
and (2.4) is artificial.

Now, the corresponding revised Enskog equation (RET) has the form (2.1)
with E 1 ( f ) and E 2 ( f ) replaced by

E 1
RET ( f )4a 2 ��

R33S1
2

g2 (r1 , r12aeNn(t) ) f (t , r1 , v18 ) f (t , r12ae , w 8 )

3ae Q, v12wb de dw

(2.9)

and

E 2
RET ( f )4a 2 ��

R33S1
2

g2 (r1 , r11aeNn(t) ) f (t , r1 , v1 ) f (t , r11ae , w)

3ae Q, v12wb de dw .

(2.10)

The RET has an H-functional [29] (and the corresponding local H functional
[30])

HRET4HB (t)1Hcorr (t)4�� f (t , r1 , v1 ) log f (t , r1 , v1 ) dv1 dr1

2 !
k42

Q 1

k!
�dr1 R �drk n(1) Rn(k) V(1Rk) ,

(2.11)

where V(1 R k) is the sum of all irreducible Mayer graphs which doubly connect
k particles.

In contrast to Botzmann’s H-function, HRET consists of two parts: the kinetic
part (HB (t)) and the correlational part. 2HRE (t) (modulo an additive constant) is
the equilibrium (non-uniform) entropy for the infinity system of hard-spheres. In
addition, one recognizes that

2bHcorr4 Aexcess(2.12)
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is the excess free energy for the system hard-spheres in the non-uniform
equilibrium.

In spite of some progress made recently in obtaining rigorous results for the
Enskog equation ([31], [32], [20], [33], [34], [7], [35], [21], and [36]), there are still
basic and unresolved problems for both the standard and revised Enskog equations.

The first natural problem in the RET concerns the convergence of the series
in (2.7). In the homogeneous case, i.e., when n does not depend on the spatial va-
riable r , the series in (2.7) is convergent for sufficiently small densities n (e.g.,
[37]). It is not clear whether this result can be extended to the non-homogeneous
case. But even if that is the case, there are still difficulties in applying this fact to
the existence theorems for the RET. It is not clear whether the RET preserves
the boundedness of the density with time evolution. Together with G. Stell, I ela-
borated further on this topic in [21] and its relation to Resibois’ work [29].

The existence theorems obtained so far dealt only with the modifications of the
revised or standard Enskog equations. In [31] and [32] the authors obtained small
initial data and vacuum solutions with g2 (given in equation (2.7)) assumed to be
smooth and bounded. This condition cannot be checked for the series in (2.7) before
its convergence is confirmed. The authors in [20], [7], [34] and [33] have obtained
weak solutions in L 1 , using the weak compactness method, originally applied to
the Boltzmann equation by DiPerna and Lions [6]. They consider either the cases
of g2f1 (the Boltzmann-Enskog equation) or the cases of g2 that are bounded
and with compact support. In [21] and [36] some progress has been made by con-
sidering the approximation of g2

G4exp (2bf HS (Nr12r2 N) )

3{11 !
k43

i 1

(k22) !
�dr3 R�drk n(3) Rn(k) V(12N3 R k)} ,

(2.13)

for iF2, and with the convention that G4exp (2bf HS (Nr12r2 N) ) for i42. The
case of i42 corresponds to the Boltzmann-Enskog equation, i.e., the case when
Gf1.

Finally, recent derivations of the two-particle dense kinetic theory in the con-
text of maximum entropy formalism raise [39]-[42] hopes for possible extensions
of the hard-spheres kinetic theory to its two-particles’ version.

2.2 - Square-well kinetic theories

While in the dilute-gas regime, the Boltzmann equation, and for moderately
dense fluids the RET, are sufficient in providing accurate predictions of hard-
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sphere transport coefficients, the case of dense gases and liquids is rather diffe-
rent. Indeed, many-particle interactions and the fact that the energy density is
not determined by the one-particle distribution function alone, but requires the
two-particle distribution function, present us with difficulties that cannot be resol-
ved on the one-particle level. (Although, interestingly enough, one of this compli-
cations is absent for hard-sphere systems, where the potential energy of inter-
particle interactions is zero.) This together with the fact that real molecules are
not hard spheres has led many in search of a generalization of the RET to the ki-
netic equations with more realistic potentials. Since smooth potentials can be ap-
proximated by a sequence of step functions, the square-well potential f SW can be
considered as the lowest-order approximation of this type. For gD0, 0EaER ,
and

f SW (r)4
.
/
´

Q ,

2g ,

0

for rGa .

for aErER ,

for rFR ,

(2.14)

the authors in [43], [44] and [45] have developed a new approach to partially re-
medy the above situation. It is based on the maximization of the fine-grained en-
tropy, subject to appropriate constraints, which yields what has come to be called
kinetic variational theory (KVT) [46], [47]. Use of a set of increasingly stringent
constraints which is a subset of the exact constraints in the problem yields increa-
singly accurate quantitative assessments of transport coefficients and related ma-
croscopic quantities. In particular, the version that is based upon a local energy-
density constraint (called by the authors KVTIII, because it is generated by the
third in the sequence of constraints mentioned above) has been investigated in de-
tail and the transport coefficients obtained from the KVTIII are in good agree-
ment with experimental data and computer simulation results for moderately den-
se fluids.

In contrast to the RET or the Boltzmann equation, the KVTIII consists of two
coupled equations for the one-particle distribution function and the potential en-
ergy density up . The function up (t , r1 ) is given in terms of the two-particle distri-
bution function f2 by

up (t , r1 )4
1

2
�

V3R33R3

f SW (Nr12r2N) f2 (t , r1 , v1 , r2 , v2 ) dv1 dv2 dr2 .(2.15)

The collisions are understood to be instantaneous and take place at the points
where f SW is discontinuous. There are four different type of collisions that can be
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distinguished in the case of the square-well potential: (1) a collision at the hard
core (at r4a 1), (2) a collision entering the square-well (at r4R 2), (3) a collision
leaving the square-well (at r4R 1), and (4) a collision rebounding at the inner si-
de of the square-well (at r4R 2). The last type of collision occurs when the radial
relative velocity is too small for escape from the well, i.e., is smaller than
Nvesc N4k4g .

Similarly to the case of hard-sphere systems one can derive the pseudo-Liou-
ville equation that governs the exact dynamics of the system interacting with the
square-well potential f SW , as well as the corresponding analog of the BBGKY
hierachy for hard-sphere systems (e.g., [8]). The first hierarchy equation for the
one-particle distribution function f has the form

¯f

¯t
1v1

¯f

¯r1

4Q SW ( f2 )fQ1 ( f2 )1Q2 ( f2 )1Q3 ( f2 )1Q4 ( f2 )(2.16)

where Qi , for i41, 2 , 3 , 4 , are the collisions operators corresponding, respect-
ively, to the four types of collisions mentioned above.

From the second hierarchy equation, the equation for up (t , r1 ) has the
form

¯

¯t
up (t , r1 )

1
1

2

¯

¯r1

���
V3R33R3

f SW (Nr12r2N) f2 (t , r1 , v1 , r2 , w) dw dv1 dr24J( f2 )
(2.17)

where, as in (2.16), J is an explicit operator depending on f2 . Next, the just men-
tioned maximization of fine-grain entropy yields the expression for f2 ,

f2 (t , r1 , v1 , r2 , v2 )4 f (t , r1 , v1 ) f (t , r2 , v2 ) g2 (r1 , r2 Nn(t , Q), b(t , Q) ) ,(2.18)

and this closes the system of equations (2.16)-(2.17) for f (t , r1 , v1 ) and up (t , r1 ).
Indeed, as in the case of the RET, the pair correlation function g2 is a functional

of n(t , r1 )4 �
R3

f (t , r1 , v1 ) dv1 and b(t , r1 ), and can be expressed in terms of the

Mayer expansion, where each vertex is weighted by the density field n(t , r1 ) and
the Mayer factors assume the form

fij4exp m 1

2
[b(t , ri )1b(t , rj ) ] f SW (Nri2rjN)n21 .(2.19)

The field kB b(t , r1 ) can be interpreted as the inverse of the local potential energy
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temperature that in equilibrium coincides with the usual kinetic energy tempera-
ture.

Furthermore,

(2.20) g2 (r1 , r2Nn, b)4exp g2 1

2
[b(t, r1)1b(t, r2)] f SW (Nr12r2N)h x(r1 , r2Nn, b)

where

x(r1 , r2Nn , b)

411 !
k43

Q 1

(k22) !
�

V

dr3 R�
V

drk n(3) Rn(k) V(12N3Rk) .
(2.21)

Here, n(k)4n(t , rk ), V(12N3 R k) is the sum of all graphs of k labeled points
which are biconnected when the Mayer factor

f124exp [2b 12 f SW (Nr12r2N) ]21

is added. Except for a different expression of the Mayer factors fij , the above
expansion has the same algebraic structure as the Mayer expansion of g2 in the
RET!

From (2.15), up (t , r1 ) is also a functional of n(t , r1 ) and b(t , r1 ), and by for-
mally inverting this relation, one can express b(t , r1 ) as a functional of up (t , r1 )
and n(t , r1 ). Therefore, inserting (2.18) and (2.20) into (2.16) and (2.17) yields the
square-well kinetic theory consisting of the coupled equations for f and up . Equi-
valently, instead of f (t , r1 , v1 ) and up (t , r1 ), one has an option of switching to
f (t , r1 , v1 ) and b(t , r1 ) as the unknown functions appearing in equations (2.16)
and (2.17).

The resulting kinetic theory has an H-functional [43] (and the corresponding
local H-functional [45])

HSW ( f , b)(t)4HB (t)1Hcorr
SW (t)1Hp (t)

4 ��
V3R3

f (t , r1 , v1 ) log f (t , r1 , v1 ) dv1 dr1

2 !
k42

Q 1

k!
�

V

dr1 R�
V

drk n(1) Rn(k) V(1 R k)2�
V

b(t , r1 ) up (t , r1 ) dr1 ,

(2.22)

where V(1 R k) is the sum of all irreducible Mayer graphs (2.19), which doubly
connect k particles.
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Similarly to RET’s H function (see (2.11) and relation (2.12))

2bHcorr
SW1�

V

b(t , r1 ) up (t , r1 ) dr14 Aexcess(2.23)

is the excess free energy for the system with the square-well interaction potential
(2.14) at non-uniform equilibrium.

The existence of an H-function raises hopes for existence and stability results
for this important set of kinetic equations; an initial progress has been reported in
[22]. As in the case of the RET the convergence of (2.21) is of prime concern. For-
tunately, due the same algebraic structure of both of Hcorr in (2.11) and Hcorr

SW in
(2.21), the methods that imply convergence of the former should most likely yield
the convergence of the latter series too.

2.3 - Perturbations of the basic models and polydisperse extensions

The simplicity of geometry and the finite total cross-section were always main
advantages in considering hard-sphere systems. However, hard-sphere’s scatter-
ing law implying that the cross-section is independent of the relative translational
kinetic energy in the collision, is its disadvantage. Several ad hoc remedies had
been proposed: the variable hard sphere [48], the variable soft sphere [49], [50]
and generalized hard sphere models [51]. All of them, however, were concentra-
ted on better computations of the transport coefficients as compared to with reali-
stic gases and not the actual properties of the models.

Recently, the authors in [52] considered the kinetic models that address some
of the drawbacks mentioned above, and at the same time constitute the well defin-
ed kinetic theories with built in conservation laws and trend to equilibrium. The
main idea is to introduce a smearing-type effect in the collision process by intro-
ducing varying diameters of hard spheres and the widths of the square-well in the
KVTIII. For example, the perturbation of the RET has the form

¯f

¯t
1v1

¯f

¯r1

4Estoch ( f )fE 1
stoch ( f )2Estoch

2 ( f ) ,(2.24)

with

E 1
stoch ( f )4 ���

[a , b]3R33S2

f (t , r1 , v 81 ) f (t , r12ae , w 8 ) a 2 P(a , u , Nv2wN)

3g2 (r1 , r12a 1 e)ae , v12wb de dw da ,

(2.25)
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E 2
stoch ( f )4 ���

[a , b]3R33S2

f (t , r1 , v1 ) f (t , r11ae , w) a 2 P(a , u , Nv2wN)

3g2 (r1 , r11a 1 e)ae , v12wb de dw da ,

(2.26)

where u is the angle between e and v12w . The function P is a given nonnegative
probability density. In the case P(a , u , Nv2wN)4d(a2d), equation (2.24) redu-
ces to revised Enskog equation. Similarly, one can introduce this smearing-type
effect to the square-well kinetic theory (KVTIII) (2.16)-(2.17). In the KVTIII
however, this smearing effect can take place not only at the hard-core but also at
the square-well edge. Thus, the width of square-well can vary according to an ad-
ditional probability density PSW (R , u , Nv12wN).

Similar models to (2.24) had been known for the Boltzmann equation [53].
From the mathematical point of view, the authors in [54] (see also references in
[55]) utilized similar searing-type effects to pass to the Euler level from a stocha-
stic BBGKY-hierachy equations, while the authors in [56] proved the convergence
to absolute equilibrium for the stochastic (Povzner-like) Boltzmann equation.

One of the important goals in developing the above model (both for the RET
and KVTIII) is to provide prescriptions for functions P and/or PSW . This is preci-
sely at this point where the attractiveness of (2.24) becomes apparent. It turns out
[52] that the self-diffusion coefficient computed from (2.24) (or more precisely,
from the corresponding stochastic mixture model, when P4P(a)),

Dstoch4
3

8n

1

u �
0

Q

a 2 P(a) g2 (a 1 ) dav
g kB T

pm
h1/2

,(2.27)

is strikingly similar to the self-diffusion coefficient, obtained by J. A. Leegwater
[57]

D4
3

8n

1

u �
a

b

W(a) g2 (a 1 ) dav
g kB T

pm
h1/2

.(2.28)

The authors in [58] and [57] tried to improve the hard-spheres’s transport coeffi-
cients by considering more realistic Lenard-Jones interactions through the
method similar to Green-Kubo’s approach, without, of course, considering the ki-
netic model (2.24). They also indicated how to construct W(a) (or a 2 P(a) in our
case) for a variety of potentials. This unexpected link allows one to obtain all
other transport coefficients!
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Polydisperse extensions

In a series of papers [59], [60], and [61] J. Xu and G. Stell generalized the
hard-sphere mixture revised Enskog transport coefficients to the case in which
one the species (for example, the solute) becomes polydisperse. They started with
the hard-sphere finite-species mixture (indexed by i) transport coefficients and
formally generalized it to the case of infinite (uncountable) species mixture by re-
placing sums with the integrals over new random variable s that denotes parti-
cle’s diameter. They also replaced concentrations xi by the probability h(s) ds of
finding a particle with diameter in the range s to s1ds . Here, h(s) is the proba-
bility density of the random variable s . The formulas for transport coefficients of
polydisperse fluid collapse to a single-component hard-sphere fluid when h(s)
4d(s2d).

The following important question arises:
Is it possible to find a kinetic model, with built in conservation laws and trend

to equilibrium, whose transport coefficients coincide with the transport coefficien-
ts of the above polydisperse fluids?

2.4 - Stationary solutions and their connections to the BBGY hierarchy

One of most interesting features of the revised Enskog (RET) and square-well
(KVTIII) kinetic equations (but not the Boltzmann and standard Enskog equa-
tions) is their exactness at a local equilibrium. Indeed, for f4v with

v4
n(r1 )

(2pkB T)3/2
exp g2 v1

2

2kB T
h ,(2.28)

T4const , and and some external potential Fexternal42 dF/dr , the RET and the
KVTIII become

¯ log n

¯r1

1
¯

¯r1
g F(r1 )

T
h4�

V

g ¯f12

¯r1
h g2 (r1 , r2Nn) n(r2 ) dr2 ,(2.29)

where

g2411�
V

f13 f23 n(t , r3 ) dr3

1R1
1

(k22) !
�

V

dr3 R�
V

drk n(3) Rn(k) V(12N3 R k) R ,
(2.30)

with V(12N3 R k) given in (2.7) for the RET, and by (2.20)-(2-21) for the KVTIII.
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The Mayer functions in V(12N3 R k) are equal to the corresponding factors in the
hard-sphere and square-well systems. In particular,

¯f12

¯r1

4

.
/
´

d(Nr12r2N2a 1) r×12 , (RET)

d(Nr12r2N2a 1)r×121k12exp g g

kBT
hl d(Nr12r2N2R 1) r×12 , (KVTIII) ,

(2.31)

where r×124 (r12r2 ) /Nr12r2N and V is a spatial domain of the fluid. The system
of three equations (2.29) is the first member of the BBGY equilibrium hierarchy
for the system of hard-spheres or for the square-well interaction potential. Since
g2 is expressed only in terms of n (and also in terms of T4const for the KVTIII),
the above equations are closed and exact.

From the mathematical point of view almost nothing is known about the
system (2.29). For the one-dimensional hard-sphere system (i.e., hard-rods) H. J.
Ravache and C. A. Stuart [62] proved the uniqueness of solutions to (2.29) when
the external potential F40. It is easy to check that for F40, n4const is always
a solution of (2.29).

The attractive part of the square-well interaction potential makes equations
(2.29) particularly interesting. Indeed, these equations should describe phase
transitions of the corresponding equilibrium square-well system. To check for this
possibility one needs to show that, in addition to constant solutions, the BBGY
hierarchy allows also for periodic (in r1) solutions (a bifurcation problem). If true,
this would provide the first kinetic description of phase transitions! An initial pro-
gress in this direction has already been reported by J. Polewczak in [23] and [63],
where for some truncated cases of g2 in (2.30) and small enough (Na 3 ) /vol (V),
n4const is the only solutions, while for some other choices of V , the parameter
N/vol (V) and the diameter a , there are also periodic solutions. Here,

N4�
V

n(r1 ) dr1 . For the solutions obtained in [63], the following situation arises.

We already know that this solution f (tn , r1 , v1 ) converges (pointwise) to v , given
in (2.28), as tnKQ , where

n(r1 )4
.
/
´

is constant ,

is periodic ,

fot
N

vol (V)
a 3 small ;

for some choices N , vol (V), and a .

(2.32)
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Suppose that we pick initial data with N4�
V

n(r1 ) dr1 , vol (V), and the diameter a

corresponding to the case where (2.29) has, in addition, also a periodic solution
n(r1 ). The next question is of great interest:

Does f(tn , r1 , v1 ) converge to v(r1 , v1 ) with n(r1 )4const, or a periodic func-
tion in r1 ?

Since the H-theorem already did its job we must find another way to answer
this question. Of course, from the physical point of view we would choose n in
(2.28) with the lowest excess free energy (see, for example, [64]) How this could
be translated into a mathematical argument is not yet clear.

Finally, I want to add that the stochastic models’ versions (see section 2.3) of
the BBGY equilibrium hierarchy have a very similar form to (2.29), except for ap-
pearance of the stochastic input functions P and PSW and additional integrations
with respect to a and R . The following question arises:

For what choices of P and PSW can one induce or suppress the bifurcation of
solutions in (2.29)?

2.5 - Problems in the transport theory of dense fluids

One of the most desirable features in a kinetic theory is to provide theoretical
predictions of transport coefficients. This problem is intrinsically related to the
study of the spectrum of the corresponding linearized kinetic equation (linearized
about an absolute maxwellian). Knowledge of the spectrum of the linearized Boltz-
mann operator is rather complete ([65] and [66] are good reviews of the topic). In
particular, [67] and [68] provide a rigorous analysis of the linearized Boltzmann
equation with respect to those aspects of its behavior that are important to a
hydrodynamic description of a fluid.

The works of B. Cichocki and J. B lCawzdziewicz ([69] and [70]) for the linear
RET, and the works of H. van Beijeren, J. A. Leegwater, and J. P.J. Michels ([71]
and [8]) for the linear KVTIII, provide good physical backgrounds for the sub-
ject; at the same time a rigorous analysis of the linearized RET or KVTIII is not
available at this time. I intend to work on this problem.

The linearized (about an absolute Maxwellian) revised Enskog equation has
the form

¯f

¯t
1v1

¯f

¯r1

4L E ( f ) ,(2.33)

where L E ( f ), after taking the Fourier transform with respect to the spatial varia-
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ble r1 , can be written as

L×E ( f )fLk
E ( f )4L B

k ( f )1Ak ( f ) .(2.34)

For simplicity, in the right hand side of (2.34) I have suppressed the Fourier
variable k (conjugate to r1). The operator L B

k ( f ) is essentially the linearized Boltz-
mann operator corresponding to the hard-sphere potential, and Ak ( f ) is the Ens-
kog perturbation. In particular, L B

k ( f ) is a closed and nonpositive operator in the
L 2 (R 3 ) space weighted by a Maxwellian and, for each k , the closed operator
Ak ( f ) is a relatively compact perturbation of L B

k ( f ). Hence, by a variant of
Weyl’s theorem, the essential spectrum of Ak ( f ) is the same as the essential spec-
trum of L B

k ( f ). In other words, except for a finite number of eigenvalues with fini-
te multiplicities, the study of the spectrum of Lk

E ( f ) is reduced to the study of the
spectrum of L B

k ( f ). It is not clear at this time whether Lk
E ( f ) is dissipative in the

scalar product of L 2 weighted by the absolute Maxwellian. Recently, M. Lacho-
wicz ([72]) has shown that, in fact, the Boltzmann-Enskog linearized operator,
corresponding to the truncation of g2 in (2.7) to the first term only, is not necessa-
rily dissipative in the above scalar product. Possibly, some changes in the weight
of L 2 (R 3 ) are necessary to obtain a desired dissipativity of Lk

E ( f ) for the original
(un-truncated) g2 . From the physical point of view, the last property is related to
the stability of the system.

It seems likely that a study of the linearized KVTIII operator, with some
necessary changes, can be investigated along the lines indicated above for the re-
vised linearized Enskog operator.

2.6 - Hydrodynamic limits

The goal of any kinetic theory is not complete without understanding the pro-
perties of the underlying fluid. In our case, this is done by investigating the
hydrodynamic level of the revised Enskog and the KVTIII equations. The fluids
described by the RET and the KVTIII are not ideal fluids. In the case of the
RET the equation of state is given in (2.6). For the KVTIII the equation of state
has the form

p

nkB T
411 g 2

3
pa 3 nh g2 (a 1 )1 g 2

3
pR 3 nh k12exp g g

kB T
hl g2 (R 1 ) ,(2.35)

where g2 (a 1 ) and g2 (R 1 ) denote the contact values of the (uniform) equilibrium
radial correlation function of the square-well system, evaluated at the hard core
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and square-well edge, respectively. Furthermore, both g2 (a 1 ) and g2 (R 1 ) de-
pend on the density n and the temperature T .

Below, I present some of the ideas of how to attack the problem by consider-
ing only the Euler level for the revised Enskog equation. The Euler level for the
KVTIII and the Navier-Stokes level require further adjustments and for brevity
are not presented here.

First, the usual time-space scaling (hyperbolic or Euler scaling)

tO
t

d
, xO

x

d
(2.36)

does not work here due to existence of the factors g2 (r1 , r16aeNn)c1 in the re-
vised (or standard) Enskog equation. In addition, we have to deal with two small
parameters aD0 and dD0:

aK0

( diameter of hard spheres)

dK0

( mean free path , dB1/(na 2 ) ) .
(2.37)

If we recall that the Enskog theory is valid in the limit

aK0, nKQ , (dense gas limit) na 3KconstD0 ,(2.38)

then the following scaling of the revised Enskog equation might be of interest

fO
f

d 3
with dB g a

d
hm

, mD0 ,(2.39)

where dD0 is fixed. Indeed, in recent work [63], I showed (without considering
the convergence question of the density expansion for g2) an important invariance
of g2 (r1 , r16aeNn) (given in (2.7)) and under the scaling (2.39).

I n v a r i a n c e L e m m a . For smooth n(r1 ) and d4 (a/d)m , with 0EmG1
and dD0,

lim
aK0, dK0

g2 (r1 , r16aeN(1 /d 3 ) n)4
.
/
´

1 ,

g2 (d 1 , n(r1 ) ) ,

0EmE1 ;

m41 ;
(2.40)

pointwise, where g2 (d 1 , n(r1 ) ) is the pair correlation function for the system of
hard spheres, in the uniform equilibrium, with diameter d and with density
n(r1 ). Function g2 (d 1 , n(r1 ) ) has the density expansion given in (2.5), with a re-
placed by d .
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Let us observe that the pair correlation function in (2.40), before the limit is
taken, is the contact value of the non-uniform equilibrium pair correlation of the
hard-sphere system that appears in the revised Enskog collision operator (2.9)-
(2.10). Under the scaling (2.39), and in the hydrodynamic limit with m41, g2 is
being transformed into the uniform equilibrium object. This property yields the
expected Euler level hydrodynamics with the equation of state of the underlying
fluid given by (2.6). On the other hand, when 0EmE1, g2 collapses to the dilute-
gas limit value 1 , and thus, the corresponding fluid becomes an ideal fluid. This
important interplay between two small parameters a and d is at the center of the
hydrodynamic limit in the RET. Indeed, in addition to the excluded volume of
hard spheres taken into account, the RET, in contrast to the Boltzmann equation,
does not ignore the difference in position between colliding particles. Therefore,
collisional transfers of momentum and energy from the center of one colliding
sphere to the other are taken into account. (Thus the differences in the transfer
equations between the revised Enskog and the Boltzmann equations). These trans-
fers take place over distances proportional to a , the diameter of hard spheres.
This is to be contrasted with the convective transport over a distance of order d

mean free path between collisions). As a consequence, the convective transport
dominates at low densities, where d/a c 1 (or 0EmE1). On the other hand, at
high densities d/aG1, and the collisional transfer dominates the transport. Since
the mean free path dB1/(na 2 ), the case of m41, i.e., dBa , corresponds to
na 3B1. This is in a complete agreement with the scaling fO f /d 3 as well as the
dense gas limit (2.38).

The hydrodynamic limits for the stochastic models, considered in section 2.3,
are particularly interesting from the point of view of the control the equation of
state, the internal energy, and specific heats of the underlying fluids in terms of
the stochastic inputs P and PSW . For example, in the case of the stochastic RET
(2.24)-(2.26) (with a40 and b4sD0), it was shown [52] that under the scaling
(2.39), and with a replaced by s , the corresponding equation of state in the hydro-
dynamic limit has the form

p

nkB T
411 !

k41

Q

Ck Bk11 n k ,(2.41)

where Bk are the virial coefficients for the hard sphere system of diameter d (see
(2.6)) and Ck are just the moments of the limiting function lim

sK0
sP(sx).

Although the formal hydrodynamic limit for the Enskog equation has been
known for many years, the approach based on the above Invariance Lemma does
not invoke any approximation or truncation that are usually performed while
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using the Hilbert or Chapman-Enskog methods. The above approach, with some
modifications, is expected to work for the KVTIII and other dense kinetic
theories.

There has been important progress ([73], [74], [75]) in a rigorous passage to
hydrodynamics starting from the Boltzmann equation. The recent work [13] (with
extensive references) provides a source of various tools used in the case of the
Boltzmann equation. One would like to hope that these ideas can be applied suc-
cessfully to the RET and the KVTIII. M. Lachowicz in [76] and [77] has studied
some variants of the standard Enskog equations (albeit with not physical Y0) or
the Boltzmann-Enskog equations [78]. In contrast to the work in [74] for the
Boltzmann equation, M. Lachowicz presents convergence for times comparable to
the mean time between collisions. It seems likely that in order to make a substan-
tial progress in this direction for the full revised Enskog equation (with g2 given
in (2.7)) and the KVTIII one needs the convergence of the Mayer cluster expan-
sion in (2.7) and additional (spectral) properties of the linearized Enskog and KV-
TIII operators (see section 2.5).

3 - Reactive kinetic theories

A general nature of the methods described in sections 2.1-2.6 makes it possible
to investigate important aspects of the kinetics of chemically reacting fluids within
the framework I have already discussed. The starting point is the work done by a
number of researchers in the late 1970’s and early 1980’s [79], [80], [81], and [82].
Reports on the progress in this and other directions can be found in [83], [84] and [85].

I consider the model in which molecules behave as if they were single mass
points with two (or more) internal states of excitation. Collisions may alter the in-
ternal states. This occurs when the kinetic energy associated with the reactive
motion exceeds the activation energy. Reactive and non-reactive collisional events
are considered to be hard-spheres like. I start by considering a four component
mixture A , B , A *, B *, and the chemical reaction of the type

A1B4A *1B *.(3.1)

Here, A * and B * are distinct species from A and B , and I use the indices 1, 2, 3,
and 4 for the particles A , B , A *, and B * respectively. Reactions take place when

the reactive particles are separated by a distance s 124
1

2
(d11d2 ), where di de-

notes the diameter of the i-th particle.
In the case of elastic encounters between a pair of particles from species i and
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s , the initial velocities v , w take post-collisional values

v 84v22
m is

mi

eae , v2wb , w 84w12
m is

ms

eae , v2wb .(3.2)

Here, aQ , Qb is the inner product in R3 , e is a vector along the line passing through
the centers of the spheres at the moment of impact, i.e., e�S2

14]e�R3 : NeN41,

ae , v2wbF0(. Also, m is4
mi ms

mi1ms

is the reduced mass of the colliding pair,

where mi and ms are the masses of particles from i-th and s-th species, respect-
ively. The conservation of mass requires that m11m24m31m4 .

For the reactive collision between particles of species i and s to occur (i , s
41, R , 4), the kinetic energy associated with the relative motion along the line
of centers must exceed the activation energy g i (defined below),

1

2
m is (ae , v2wb)2Fg i ,(3.3)

with e having the same meaning as above. In the case of the reaction A1BKA *
1B * the velocities v , w take their post-reactive values

v ‡4v2
m 12

m1

e [ae , v2wb2a2 ] , w ‡4w1
m 12

m2

e [ae , v2wb2a2 ] ,(3.4)

with a24k(ae , v2wb)222Eabs /m 12 and, Eabs , the energy absorbed by the in-
ternal degrees of freedom. The absorbed energy Eabs has the property

Eabs4E31E42E12E2D0 ,(3.5)

where EiD0, i41, R4, is the energy of i-th particle associated with its internal
degrees of freedom.

Now, in order to complete the definition of the model, the activation energies
g 1 , g 2 for A and B are chosen to satisfy g 1FEabsD0, and by symmetry, g 24g 1 .
For the inverse reaction, A *1B *KA1B , the post-reactive velocities are given by

v †4v2
m 34

m3

e[ae , v2wb2a1 ] , w †4w1
m 34

m4

e[ae , v2wb2a1 ] ,(3.6)

with a14k(ae , v2wb)212Eabs /m 34 , and the activation energies for A * and
B *, g 34g 12Eabs and, as before, g 44g 3 .
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The pairs of velocities in (3.4) and (3.6) satisfy conservation of the momentum

m1 v1m2 w4m1 v ‡1m2 w ‡4m3 v ‡1m4 w ‡ ,

m3 v1m4 w4m3 v †1m4 w †4m1 v †1m2 w † ,
(3.7)

they do not, however, obey conservation of the kinetic energy. A part of kinetic
energy is exchanged with the energy absorbed by the internal states. The follo-
wing equalities hold:

m1 v 21m2 w 24m1 v ‡21m2 w ‡212Eabs4m3 v ‡21m4 w ‡212Eabs ,

m3 v 21m4 w 24m3 v †21m4 w †222Eabs4m1 v †21m2 w †222Eabs .
(3.8)

Now, for each i (i41, R , 4), let fi(t , x , v) denote the one-particle distribution
function of the ith component of the reactive mixture. The function fi(t , x , v), which
changes in time due to free streaming and collisions (both elastic and reactive), repre-
sents, at time t , the number density of particles at point x with velocity v .

The corresponding kinetic system can be expressed as follows

¯fi

¯t
1v

¯fi

¯x
4J E

i 1J R
i ,(3.9)

with

Ji
E4!

s41

4 ms 2
is ��

R33S2

[ f (2)
is (t , x , v 8 , x2s is e , w 8 )2 f (2)

is (t , x , v , x1s is e , w) ]

3U(ae , v2wb)ae , v2wb de dwn
2b ij s 2

ij ��
R33S2

[ f (2)
ij (t , x , v 8 , x2s ij e , w 8 )2 f (2)

ij (t , x , v , x1s ij e , w) ]

3U(ae , v2wb2G ij )ae , v2wb de dw ,

(3.10)

and

J R
i 4b ij s 2

ij ��
R33S2

[ f (2)
kl (t , x , v U

ij , x2s ij e , w U
ij )2f (2)

ij (t , x , v , x1s ij e , w) ]

3U(ae , v2wb2G ij )ae , v2wb de dw ,

(3.11)

Here, the function f (2)
is approximates the density of pairs of particles in collisio-

nal configurations, 0Gb ijE1 is the steric factor for reactive collisions between
species i and j , G ij4k2g i /m ij , and U is the Heaviside step function. The prime
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velocities in (3.10) are given in (3.2). The pair of velocities (v U
i , v U

j ) refers to post-
reactive velocities described either in (3.4) or (3.6), i.e., (v U

ij , w U
ij )4 (v ‡ , w ‡ ) for

i , j41, 2 , and (v U
ij , w U

ij )4 (v † , w † ) for i , j43, 4 . Also, the index pairs (i , j)
and (k , l) appearing in (3.10)-(3.11) are associated with the set of indices
(i , j , k , l) specified below

(1 , 2 , 3 , 4 ), (2 , 1 , 4 , 3 ), (3 , 4 , 1 , 2 ), (4 , 3 , 2 , 1 ) .(3.12)

The first term of (3.10) is a hard-spheres collision operator with the usual pre-col-
lisional range of integration, while the second term of (3.10) singles out those pre-
collisional states that are energetic enough to result in reaction. The collision ope-
rator in (3.11) is purely reactive.

When the steric factors b ij40, i.e., there are no reactive collisions. That is
how one can turn on (b ijD0) or turn off (b ij40) chemical reactions in the model
in order to do the consistency checks mentioned in the Introduction.

Furthermore, when b ij40 and f (2)
is is the exact two-particle distribution func-

tion, system (3.9)-(3-11) becomes the exact first BBGKY hierarchy system for a
four component hard-spheres mixture. As in the kinetic theory of non-reactive
mixtures, different ways in which one approximates the two-particle distribution func-
tion f (2)

ij give rise, in the present case, to different reactive kinetic models. For
our purpose it is convenient to write f (2)

ij in form of the closure relation

f (2)
ij (t , x , v , y , w)4Yij (t , x , v , y , wN]L i fi() fi (t , x , v) fj (t , y , w) ,(3.13)

where Yij is assumed to be given, for each i and j and for each fixed tF0,
L4(L 1 , L 2 , L 3 , L 4) is an (possibly nonlinear) operator acting on ( f1 , f2 , f3 , f4 ),
typically through one or more velocity moments, In [21] various forms of L and
the resulting kinetic equations were considered. It seems that a reasonable choice
of Yij is to take Yij4Yij RET as in the case of the revised Enskog system for non-
reactive mixtures (see, [27] and [38]) Let us recall that it has the form

Y RET
ij 4gij

(2) (x1 , x2N]ni (t , Q)() ,(3.14)

where ni (t , x)4 �
R3

fi (t , x , v) dv is the local number density of the component i and

gij
(2) is the pair correlation function for a non-uniform system at equilibrium with

the local densities ni (t , x). The notation gij
(2) (x1 , x2N]ni (t , Q)() indicates that gij

(2)

is a functional of the local densities ni . With the choice of Yij from (3.14), the reac-
tive model, being a natural extension of the hard-sphere collisional model, reduces
itself to the Enskog theory when the chemical reactions are turned off. Here
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again, one can see the importance of good understanding of inert dense cases in
constructing the reactive models.

The ideas found in [86], especially the notion of the pseudo-Liouville equation
for the reacting spheres, should make it possible to derive an analog of the
BBGKY hierarchy for chemically reacting hard-spheres. This is the first step in
obtaining an analog of the RET for the reacting hard-spheres. Finally, the pro-
gress in this direction should also help obtaining a KVTIII analog of the reacting
kinetic theory.

The simplest cases of detonation/combustion regimes for the above model oc-
cur when the activation energies g 1 , g 2 and the absorbed energy Eabs of the reac-
tion are sufficiently large. This leads to well known (from inert fluids) problems of
shock waves that should be treated on both the kinetic and hydrodynamic levels.

I want to point out that the following problems encountered in the study of
inert fluids

l polydisperse extension (section 2.3),
l phase transition (section 2.4),
l transport coefficients (section 2.5),
l hydrodynamic limit (section 2.6),

can now be easily formulated for the reactive models. As before, good understand-
ing of the inert models allows one to consider more interesting and challenging
chemically reactive fluids. The case of hydrodynamic limit is of particular interest.
Indeed, there are many phenomenological (macroscopic) models, often described
in terms of the corresponding conservation equations (analogs of the Euler and
Navier-Stokes equations), that deserve the microscopic confirmation (see, for
example, [2], [95], or [96]). Furtheremore, as in the case of inert fluid, reactive ki-
netic modeling provides almost explicit formulas for transport coefficients. If they
are found in agreement with available experimental values, these formulas can be
used to further predict transport coefficients for difficult to measure regimes or
for special mixtures.

I end with a review of relevant literature in the kinetic theories of chemically
reacting fluids. Recently some progress has been made in treating reacting dilute
gases, both from the mathematical and physical points of view. In a series of pa-
pers C. P. Grünfeld and E. Georgescu ([87], [88], and [89]) consider a general
class of Boltzmann-like kinetic equations with multiple inelastic collisions, where
they prove existence and uniqueness of vacuum-type solutions for small initial
data. M. Groppi, A. Rossani, and G. Spiga in [90], [91] and [92] formally analyze
various kinetic theories of chemically reacting gases, including gas-photon inte-
ractions. They show existence of an H-function and describe possible equilibrium
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solutions. R. Monaco, J. Polewczak, and A. Rossani in [93] and [94] provide stabili-
ty analysis of some time-dependent and stationary gas-photon interactions. Final-
ly, in [24], I analyze a simple reacting spheres model in the dilute-gas limit.

In all the works cited above the authors use either Boltzmann-type equations
or the original standard Enskog theory. The replacement of the original SET,
used in [81] and [82], by the RET should make the models more viable from the
physical and mathematical point of views. An initial progress in this direction has
been reported in [97].

Finally, two additional reacting models deserve further attention. The first is
the work of J. A. McLennan [98], in which a three-body collision term has been in-
cluded in the Boltzmann equation describing a dissociation/recombination model
of a chemically reacting fluid. An analog of the H-function obtained in [83] will
make it possible to prove an existence theorem for this rather special case of a ki-
netic equation with the three-body term explicitly included.

The second model is the Larsen-Borgnakke model [99] of inelastic collisions
with the total energy split between the translational and internal modes. The au-
thors in [100] and [101] showed the existence of an H-function and the possibility
of obtaining the internal energy of the underlying fluid as an arbitrary function of
the temperature. Larsen-Borgnakke model combined with the stochastic model
(2.24)-(2.26), in which the pressure is well controlled, could result in a simple kine-
tic model where both the internal energy and the equation of state are fully con-
trollable through the input functions characterizing the model.
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A b s t r a c t

A review of various kinetic models for non-reactive and reactive dense fluids, includ-
ing possible detonation and combustion processes.
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