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1 - Introduction

Since the pioneering works of Carleman (Cf. [18]), many results concerning
the Boltzmann equation of monoatomic rarefied gases (Cf. [22], [24], [74]) or its
variants (for example the Fokker-Planck-Landau equation, Cf. [49]) have been
proven. A large number of these results can in fact be viewed as applications of
functional properties of Boltzmann’s kernel, that is, of estimates in which the Bol-
tzmann kernel Q and a given function f4 f (v) are involved, but in which no refe-
rence is made to «the» solution f (t , v) of the (spatially homogeneous) Boltzmann
equation.

This point of view will systematically be adopted in the sequel. For each sub-
ject (e.g. uniqueness, large time behavior, etc..), we try to extract from the exist-
ing proofs the functional estimates which seem relevant to us, and to show how
they are used to get a given result for the spatially homogeneous Boltzmann
equation.

We intend in this way to try to focus on properties of Boltzmann’s kernel
which are succeptible to yield applications in many different situations (spatially
inhomogeneous Boltzmann equation, Vlasov-Boltzmann equation, Boltzmann
equation coupled with a fluid or another kinetic equation, etc.).
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2 - Various kinds of cross sections

The spatially homogeneous Boltzmann equation of rarefied gases writes

¯t f (t , v)4Q( f , f )(t , v) ,(1)

(or to be more coherent with our point of view, ¯t f (t , v)4 [Q( f (t , Q), f (t , Q) ) ](v) ),
where Q is a quadratic operator acting only on the v variable and describing the
effect of the binary collisions on the density f (t , v) of particles which at time
t�R1 have velocity v�R3.

The bilinear form associated with Q (and also denoted by Q, or QB when the
dependance with respect to B is stressed) writes

Q(g , f )(v)4 �
v *�R3

�
s�R2

] f (v 8 ) g(v 8*)2 f (v) g(v *)(

3B uNv2v * N ,
v2v *

Nv2v * N
Qsv ds dv *,

(2)

where v 8 , v 8* are the pre-collisional velocities defined by

.
`
/
`
´

v 84
v1v *

2
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Nv2v * N

2
s ,

v 8*4
v1v *

2
2

Nv2v * N

2
s ,

and B is a nonnegative cross section whose form depends on the interaction bet-
ween particles.

For interaction forces in r 2s (where r is the distance between particles and
sD2), B takes the form

B(NuN , cos u)4NuNa b s (u) .(3)

In the sequel, we shall only consider that kind of cross sections, that is, cross sect-
ions which are a tensorial product between a kinetic cross section which is some
power of NuN and an angular cross section (depending only on u).

In (3), a is given by the formula a4 s25

s21
and b s is a continuous function on

]0 , p] such that

b s (u) A
uK0

Cte(s)NuN
2 s11

s21 ,
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that is, very many grazing collisions (those collisions for which v 8 is close to v and
v 8* is close to v *, or in an equivalent way, u is close to 0) occur. Here and in the
sequel, Cte will denote any constant, sometimes depending on parameters (like s
here).

Because of the strong singularity of b s at 0, it is not possible to give a sense to
Q( f , g)(v) for a given v when f , g�Cc (R3 ). It is however possible to define
Q( f , g) in the following weak sense when sD7/3 for all f� S(R3 ), and f ,
g�L 1

2 (R3 ),

�
v�R3

Q( f , g)(v) f(v) dv4 �
v�R3

�
v

*
�R3

�
s�S 2

f (v) g(v *)

3]f(v 8 )2f(v)( Nv2v * N
a b s (u) ds dv *.

(4)

For this reason, the so-called angular cutoff of Grad (Cf. [42]) is often introduced.
It consists in replacing b s (u) by b

a

s (u)4b s (u)Rn for some large nF0 (or equi-
valently, to replace b s (u) by b s (u) if NuNFu 0 and 0 if NuNGu 0, whence the name
of «angular» cutoff). In this situation, Q( f , g)(v) is well-defined for a given v as
soon as (for example) f , g�Cc (R3 ), and we decompose Q in its positive and nega-
tive parts:

Q( f , g)(v)4Q 1 ( f , g)(v)2 f (v) Lg(v) ,

where

Q 1 ( f , g)(v)4 �
v

*
�R3

�
s�S 2

f (v 8 ) g(v 8*)Nv2v * N
a b

a

s (u) ds dv *

and

Lg(v)4 �
v *�R3

g(v *)Nv2v * N
a b

a

s (u) ds dv *.

Note that no such decomposition is available in the non cutoff case.
Note that an interesting variant of the Boltzmann equation is obtained when
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one considers

L( f , f )(v)4 lim
eK0

QBe
( f , f )(v) ,(5)

where

Be (NuN , cos u)4
NuNa

e 3
b sg u

e
h ,

that is, the angular cross section is concentrating on grazing collisions (for an early
mention of the relationship between grazing collisions and Landau’s operator, Cf.
[22]). Note that slightly different asymptotics, closer to the real physics, also lead
to L, Cf. [80] and the references therein.

It is then possible to prove that (at least formally, Cf. [10], [25], [26], [32])

L( f , f )(v)4Cte3divv �
v *�R3

Nv2v * N
a]Nv2v * N

2 Id2 (v2v *)7 (v2v *)(

] f (v *) ˜v f (v)2 f (v) ˜v
*
f (v *)( dv *.

This formula defines the Landau (or Fokker-Planck-Landau) kernel. The rela-
tionship between the cutoff Boltzmann kernel, the non cutoff Boltzmann kernel
and the Landau kernel is the following: in the first kernel, most of the collisions
are non grazing, in the second, most of the collisions are grazing, and in the last,
all collisions are grazing.

Traditionally the kinetic parts of the cross sections are classified with respect
to s. When sD5 (a�]0 , 1[), we speak of hard potentials; for s45 (a40), of
Maxwellian molecules; in the case when s�]7 /3 , 5[ (a�]22, 0[), of soft poten-
tials; and finally, for s�]2 , 7 /3[ (a�]23, 2[), of very soft potentials (Cf. [80]).
The case when s42 (that is, Coulomb potential, and a423) has very particular
features: it doesn’t seem possible to give a reasonable sense to the associated non
cutoff Boltzmann kernel, so that in the sequel, we shall only consider the cutoff
Boltzmann kernel and the Landau kernel in this case.

The cross sections which are of interest to us are then summarized in the fol-
lowing table, where X means that the kernel cannot be defined, CB means cutoff
Boltzmann’s kernel, NCB non cutoff Boltzmann’s kernel and L Landau’s kernel.
Such a table will systematically be used in the sequel.
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CB NCB L

Hard Potentials (a�]0 , 1[)

Maxwellian Molecules (a40)

Soft Potentials (a�]22, 0[)

Very Soft Potentials (a�]23, 22])

Coulomb Potential (a423) X

The two upper left-hand-side parts of this table (that is, cutoff hard potentials
or cutoff Maxwellian molecules) are sometimes refered as «regular cross sec-
tions» while the other cases will be called «singular», since at least one of the two
parts of the cross section is not continuous in this case.

We end this section by making some comments on the case when the cross
section is not of the form (3). It is often possible to extend the proofs written for a
cross section of the form (3) in this case, provided that B(NuN , cos u) has a po-
lynomial behavior (in the variable NuN) when NuNK1Q. Note that the cross sec-
tion B(NuN , cos u)4NuN cos u corresponds to hard-spheres collisions. Most of the
results of hard potentials with cutoff also hold for this cross section.

3 - Notations and formal results

We use in the sequel the notation L p
s for the weighted L p (R3 ) space defined

by the norm:

V f VL p
s

p 4 �
v�R3

N f (v)Np (11NvN2 )ps/2 dv ,

and H 1
r for the weighted H 1 (R3 ) space defined by the norm:

V f VH 1
r

2 4 �
v�R3

(N f (v)N21N˜f (v)N2 )(11NvN2 )r dv .

Then, we define the respective mass, momentum, energy and entropy of a nonne-
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gative function f by

.
`
`
`
´

r f

r f uf

r f

NufN2

2
1

3

2
r f Tf

H( f )

ˆ
`
`
`
˜

4 �
v�R3

f (v)

.
`
`
`
´

1

v

NvN2

2

log f (v)

ˆ
`
`
`
˜

dv .

At the formal level, it is easy to see that a solution of (1) whose initial datum
f (0 , Q)4 fin is nonnegative remains so in the evolution (when tD0). In the sequel,
we shall only consider such solutions.

Then, using the identity

�
v�R3

Q( f , f )(v)

.
`
´

1

v

NvN2

2

ˆ
`
˜

dv40 ,

we see that (still at the formal level), a solution of (1) satisfies the conservation of
mass, momentum and energy:

.
`
`
`
´

r f (t , Q)

r f (t , Q) uf (t , Q)

r f (t , Q)

Nuf (t , Q) N
2

2
1

3

2
r f (t , Q) Tf (t , Q)

ˆ
`
`
`
˜

4

.
`
`
`
´

r fin

r fin
ufin

r fin

Nufin
N2

2
1

3

2
r fin

Tfin

ˆ
`
`
`
˜

.(6)

Then, the nonpositivity of the dissipation of entropy (sometimes called first part of
Boltzmann’s H-theorem)

2DQ ( f )4 �
v�R3

Q( f , f )(v) log f (v) dvG0(7)

entails the decay of the entropy (at the formal level) for the solutions of eq. (1):

(0GsG t , H( f (t , Q) )GH( f (s , Q) ) .(8)

As a consequence of (6)-(8), we get the following (formal) a priori estimates on the
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solution of eq. (1) (Cf. for example [34] in the inhomogeneous setting):

(TD0 , sup
t� [0 , T]

�
v�R3

(11NvN21N log f (t , v)N) f (t , v) dv

GCte(T , r fin
, ufin

, Tfin
, H( fin ) ) ,

(9)

�
0

1Q

DQ ( f (t , Q) ) dtGCte(r fin
, ufin

, Tfin
, H( fin ) ) .(10)

The case of equality in (7) is the second part of Boltzmann’s H-theorem:

(v�R3 , Q( f , f )(v)40 ` DQ ( f )40

` f (v)4Mf (v) ,
(11)

where Mf is the Maxwellian function of v having the same mass, momentum and
energy as f, namely

Mf (v)4
r f

(2pTf )3/2
e
2

Nv2uf N
2

2Tf .

This is the key to the long time behavior of the solutions of (1). Formally, we
expect that the entropy decreases to its minimum (among functions having the
same mass, momentum and energy as f),

lim
tK1Q

H( f (t , Q) )4 inf ]H( f ), / r f4r fin
, uf4ufin

, Tf4Tfin
( ,

and that

lim
tK1Q

f (t , v)4Mfin
.

All of the previous results (conservation of energy, decay of entropy, long time
behavior, etc..) can be proven only once existence (and uniqueness) is established
for (1) (under a given assumption on the cross section). The study of the smoo-
thness of solutions of (1) will enable to get strong solutions. Then, a rigorous
proof of (6) will require estimates on the behavior when NvNK1Q of the solution
of (1), while a rigorous proof of (8) will require some knowledge about the lower
bounds on these solutions.

All those issues (existence, uniqueness, behavior when NvNK1Q, smooth-
ness, lower bounds, behavior when tK1Q) will successively be treated in sect-
ions 4 to 9. Then, in section 10, we try to give a synthetic result in the most stan-
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dard case (cutoff hard potentials). At this point will be given the only precise theo-
rem (all the other results of this paper are detailed in the references). Finally,
various results on other issues concerning the solutions of (1) are reviewed in
section 11.

4 - Existence

When the cross section is regular (that is, for cutoff hard potentials or Max-
wellian molecules), existence can be obtained through an inductive procedure,
using for example monotonicity (Cf. [6], [59] and [60]). One has to cope with the
following difficulties:

1. The nonnegativity of the solution must be preserved in the inductive
procedure;

2. The conservation of mass (or energy) must be used to prevent blow-ups due
to the quadratic character of the kernel.

At the end, one gets «strong» solutions, in the sense that if fin�L 1
2 , then there

exists a solution f to (1) in Ct (L 1
2, v ) such that Q( f , f )�L 1

loc , t , v . In order to get
equality in (1) for all v (and not for a.e. v), one can use the study of smoothness
presented in section 7.

For (not too) singular cross sections (that is, for cutoff or non cutoff, hard or
soft (but not very soft) potentials), solutions are obtained by weak L 1 compactness
without using estimate (10) (Cf. [7], [41]). If fin�L 1

2 and fin log fin�L 1, estimate (9)
ensures that a sequence fn of solutions to (1) with a cross section Bn obtained by
smoothing the singular cross section B will be compact in L 1

t , v , thanks to Dun-
ford-Pettis theorem (Cf. [16] for example). Then, one passes to the limit (fnK f ) in
the weak form (4) of the kernel. No problems occur because of the variable v since
the kernel (in its weak form (4)) is close to a tensor product with respect to this
variable. Strong compactness (in time) of the velocity averages of fn are then easi-
ly obtained thanks (for example) to Aubin’s lemma (Cf. [69]) and ensure that f sa-
tisfies the limit equation.

Of course at the end, we only get weak solutions of the equation. Nevertheless,
in some cases, results of smoothness are known which ensure that the solution is
in fact strong (Cf. section 7).

Finally, for very singular cross sections (that is, for cutoff or non cutoff very
soft potentials, or cutoff Coulombian potential), solutions are also obtained by
(weak L 1) compactness. However, one now needs to use the entropy dissipation
estimate (10) to give a sense to the kernel. Those solutions are called entropy sol-
utions or H-solutions (Cf. [75]). An alternative way of obtaining solutions in this
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case (but only under the cutoff assumption) is to use the renormalization techni-
ques of [34] and [50]. Finally, in the non cutoff case, the singularity of the angular
cross section is sometimes strong enough to produce a regularising effect allo-
wing to recover «usual» weak solutions (Cf. section 7 and [4]).

Note that solutions to the Landau equation can also be obtained by a weak L 1

compactness argument (Cf. [32]), using the limiting process of (5). It is however
possible to directly use techniques coming from the theory of parabolic equations
(Cf. [10] and [32]) to prove existence in this case.

We summarize the results about existence in a table, with the following
abbreviations:

1. The sign IS means that existence is obtained by an inductive scheme.
2. The sign comp means that existence is obtained by a weak compactness

argument.
3. The sign H means that existence of entropy solutions is proven.
4. The sign renorm means that existence of renormalized solutions is pro-

ven.

CB NCB L

Hard Potentials (a�]0 , 1[) IS comp comp

Maxwellian Molecules (a40) IS comp comp

Soft Potentials (a�]22, 0[) comp comp comp

Very Soft Potentials (a�]23, 22]) H
or renorm

H
or comp in some cases

H

Coulombian Potential (a423) H
or renorm

X H

5 - Uniqueness

Uniqueness is an open question for soft (and of course very soft, or Coulom-
bian) potentials.

For the cutoff Boltzmann equation with hard potentials, it is a consequence of
a Gronwall type lemma, which takes into account the gain of moments (Cf. section
6). For a precise statement in a weighted L 1 setting, Cf. [6] (Cf. also [59] and [60]
in the case of Maxellian molecules). For Landau’s kernel with hard potentials, one
can also use a Gronwall type lemma, but this time it takes into account not only
the gain of moments but also the gain of smoothness (Cf. sections 6 and 7). This
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lemma is a consequence of the following type of functional estimates on Landau’s
kernel (Cf. [32]):

�(L( f , f )2L(g , g) )( f2g) (11NvN2 )q dv

GCte(V f VH 1
r
, VgVH 1

r
)V f2gVL 2

q
2 ,

for well chosen q , rD0. At the end, uniqueness holds in a weighted L 2 space
(where existence is also known to hold).

In the particular case of Maxwellian molecules, it is possible to use a Gronwall
lemma in a weak topology, which enables to get a result even in the non cutoff
situation (Cf. [71]). Note finally that (still in this case) uniqueness for a martingale
problem related to the equation can also be proven (Cf. [67], [68], [31]).

Finally, one must keep in mind that some assumption on the energy of sol-
utions must be made in the uniqueness theorem (for example, at least that the en-
ergy does not increase), since strange solutions with a growing energy are known
to exist, even for regular cross sections (Cf. [84]).

We end up this section with a table explaining whether uniqueness is proven
or not for each type of cross sections.

CB NCB L

Hard Potentials (a�]0 , 1[) yes yes

Maxwellian Molecules (a40) yes yes yes

Soft Potentials (a�]22, 0[)

Very Soft Potentials (a�]23, 22])

Coulombian Potential (a423) X

6 - Behavior for large velocities

Most of the results on the behavior of the solution of eq. (1) when NvNK1Q
are in fact written in terms of the moments of the solution, that is, of its L 1

s norm
for sD0. The main feature of Q with respect to these moments is that as soon as
one looks to the superquadratic case (that is, sD2), the loss term of Q is domi-
nant. For dD0 (not too large), this can be seen on the following functional esti-
mate, valid in most of the situations studied here (cutoff or noncutoff kernel, hard
or soft potentials (for very soft potentials, the constant are slightly different),
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Landau kernel, etc..):

(12) �Q( f , f )(v)NvN21d dvG2Cte(r f , uf , Tf )� f (v)NvN21d1a dv1Cte(r f , uf , Tf ) .

This estimate can be seen as an integrated version of the Povzner inequality for a
given collision (Cf. [61]).

An application of this inequality is the following: all superquadratic moments
are immediately created (and then preserved uniformly in time) for hard poten-
tials, if one of them initially exists (Cf. [27], [35], [32]).

Moreover, this last condition can be relaxed for the (cutoff or non cutoff) Boltz-
mann (but not the Landau!) equation, thanks to a reverse Povzner inequality
(Cf. [58]).

For Maxwellian molecules, polynomial moments are never created, but propa-
gated (and bounded when tK1Q). They are given by an explicit formula (Cf.
[47]) . «Maxwellian moments» like � f (v) exp (lNvN2 ) dv can also be studied. This is
the interesting theory of Maxwellian tails (Cf. [12]). It also works for «exponen-
tial» moments.

Finally, for soft potentials, moments are propagated (this is still a consequen-
ce of (12)) but may blow up when tK1Q (Cf. [27] and [73]).

Thanks to this study, it is possible to prove that in most situations, the conser-
vation of energy (6) rigorously holds.

We summarize in the table below the results of this section, with the following
convention:

1. The sign P means that (polynomial superquadratic) moments are propagated.
2. The sign Q means that these moments remain bounded when tK1Q.
3. The sign C means that (polynomial superquadratic) moments are immedia-

tely created.
4. The sign? means that the result is presumably true, but not explicitly pro-

ven in an article.

CB NCB L

Hard Potentials (a�]0 , 1[) CPQ CPQ CPQ

Maxwellian Molecules (a40) PQ PQ PQ

Soft Potentials (a�]22, 0[) P P? P

Very Soft Potentials (a�]23, 22]) P? P? P

Coulombian Potential (a423) P? X P?
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7 - Smoothness

The results on smoothness for the solutions of (1) can be summarized in the
following way: smoothness (including weighted L p regularity) is propagated (but
also singularities!) when the cross section is cutoff. It is created as soon as tD0
when the cross section is non cutoff (or for Landau’s kernel).

In the cutoff case (more precisely, for hard potentials, Maxwellian molecules
and reasonably soft potentials), the following functional estimate can be obtained
thanks to Fourier integral operators (Cf. [50]), Radon transform (Cf. [82]) or
Fourier transform theory (Cf. [15] and [52]):

f�L 2 ¨ Q 1 ( f , f ), Lf�H q
loc ,

where q41 for hard potentials and q�]0 , 1[ for reasonably soft potentials. The
propagation of smoothness (and singularities) is then a consequence of Duhamel’s
formula

f (t)4 f (0) e
2�0

t L( f )(s) ds
1�

0

t

Q 1 ( f , f )(s) e
2�s

t L( f )(s) ds
ds .

In particular, one can see that the L 2 singularities of the initial datum never
disappear, but are exponentially damped. Note also that the propagation of
(weighted) L Q norms (Cf. [8], [18], [55]) or weighted L p (for p�]1 , 1Q[) norms
(Cf. [45] and [46]) has been proven.

In the non cutoff equation, it is possible to get the following functional estima-
te thanks to a Fourier analysis (Cf. [4]):

DQ ( f )42�Q( f , f )(v) log f (v) dv

FCte(R , r f , uf , Tf , H( f ) ) Vkf VH q (BR )
2 2Cte(r f , uf , Tf , H( f ) )V f VL 1

2
,

where qD0 depends on the angular cross section b and BR is the ball of center 0
and radius R in R3. Smoothness (in L 1

t (H 1
s , v ) ) for kf is then obtained thanks to

the entropy dissipation estimate (10). Higher derivatives are known to be created
and to propagate (sometimes up to infinty, Cf. [21]) in many particular cases (Cf.
[28], [29], [30], [62]). Note also the approach to this question using the Malliavin
calculus (Cf. [43], [39]).

Finally, for Landau’s equation, it is possible to apply techniques designed for
parabolic equations (Cf. [10], [32]). Then, for hard potentials, its solution lies in
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C Q (R1* ; S(R3 ) ) as soon as mass, entropy and a superquadratic moment initially
exist.

We now summarize the results about smoothness in a table, with the following
convention:

1. The sign P means that smoothness (and singularities) is propagated.
2. The sign Q means that some (weighted L 2) norm of a derivative is bounded

when tK1Q (in the case when it initially exists for cutoff cross sections).
3. The sign C means that smoothness is immediately created.
4. The sign [ ] means that the result is known to hold only for a mollified ver-

sion of the (soft potential) cross section.
5. The sign ? means that the result is presumably true, but not explicitly pro-

ven in an article.

CB NCB L

Hard Potentials (a�]0 , 1[) P CP CP

Maxwellian Molecules (a40) PQ CPQ PQ?

Soft Potentials (a�]22, 0[) [P] C [C] ? [P]

Very Soft Potentials (a�]23, 22]) C

Coulombian Potential (a423) X

8 - Lower bounds

In this section, we use the following idea: the support of Q 1 ( f , f ) is bigger
than that of f: because of the collisions, large velocities appear even if they were
not present at the beginning. A quantitative version of that remark leads to Max-
wellian lower bounds for the cutoff hard potentials (Cf. [18], [57], [64], [65]).

For the Landau equation, the same kind of estimates is a consequence of max-
imum principle techniques (Cf. [32]). Finally, in the non cutoff case, no Maxwellian
lower bound is known to hold. In the case of Maxwellian molecules, strict
positivity when tD0 of f is obtained thanks to Malliavin calculus techniques
(Cf. [37], [38]).

Note that the study of lower bounds (and smoothness) enables to rigorously
prove the decay of entropy (8).

The following table summarizes what is known on the existence of lower boun-
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ds for the solution of (1): The sign [ ] means that the result is known to hold only
for a mollified version of the (soft potential) cross section, the sign () means that
only the strict positivity of the solution is known.

CB NCB L

Hard Potentials (a�]0 , 1[) yes yes

Maxwellian Molecules (a40) yes (yes) yes

Soft Potentials (a�]22, 0[) [yes]

Very Soft Potentials (a�]23, 22])

Coulombian Potential (a423) X

9 - Large time behavior

The decay of f (t , Q) towards Mfin
, has been known for a long time in many si-

tuations (Cf. [56] for example).
In order to get estimates on the speed of this decay, one can use spectral the-

ory on the linearized equation (since after some time, f (t , Q) will be close to Mfin
)

(Cf. [9] and [81]). In this way it is possible to prove that the convergence is expo-
nential in weighted L 1 and L p (for p�]1 , 1Q[) spaces for cutoff hard potentials.
Note however that the constants involved in these estimates are not explicit.

In order to get explicit constants, one can try another approach, which con-
sists in comparing the entropy dissipation DQ ( f ) and the relative entropy

H( fNMf )f� f (v) log ( f (v) /Mf (v) ) dv .

It means that one tries to prove weak versions of Cercignani’s conjecture
(Cf. [23]):

DQ ( f )FCte( f ) F(H( fNMf ) ) ,

for some function F which increases not too slowly at point 0, and some Cte( f )
depending on various norms of f. The conjecture itself (i.-e. with F(x)4x, and
C( f ) depending only on mass, energy and entropy of f ) is true in the case of the
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Landau equation (with Maxwellian cross section), but not in the case of Boltz-
mann’s equation (Cf. [13] and [33]).

Then, one uses the H-theorem in the form

d

dt
H( fNMf )42DQ ( f ) ,

and some variant of Gronwall’s lemma.
Such weak versions of the Cercignani conjecture have been introduced first in

[19] and [20], and then in [33] for the Landau equation, in [72] for hard potentials
and Maxwellian molecules, and in [73] for cutoff soft potentials. They rely on the
logarithmic Sobolev inequality of Gross (Cf. [44]), or on ideas used in (some of
the) proofs of this inequality.

At the end, one gets a polynomial convergence in the case of cutoff hard or
soft potentials, and an exponential convergence for the Landau equation (and for
the Boltzmann equation with Maxwellian molecules, Cf. [40] and [21]), all constan-
ts being explicit.

Note also that the convergence to equilibrium is sometimes true in the case
when the entropy of the initial datum is infinite (Cf. [1]).

We summarize below the results of this section with the following conven-
tions:

1. The sign pol means that the convergence has at least an algebraic
rate.

2. The sign exp means that the convergence has an exponential rate.
3. The sign E means that all constants can be explicitly bounded.
4. The sign [ ] means that the result is known to hold only for a mollified ver-

sion of the (soft potential) cross section.

CB NCB L

Hard Potentials (a�]0 , 1[) exp, E pol E pol

Maxwellian Molecules (a40) E exp E exp E exp

Soft Potentials (a�]22, 0[) [E pol] [E pol]

Very Soft Potentials (a�]23, 22]) [E pol]

Coulombian Potential (a423) X
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10 - Synthetic result for cutoff hard potentials

In this section, we detail the hypothesis of a theorem on the solutions of (1)
in the most standard case, namely, that of cutoff hard potentials. The proof of
the various statements included in this theorem can be found in the references
described in the sections above.

T h e o r e m . Let fin be an initial datum with finite mass, energy and entropy
(that is, �

R3

fin (11NvN21N log fin N) dvE1Q), and B be defined by B(NuN , cos u)

4NuNa b
a

s (u), for a�]0 , 1[ (and b
a

s�L Q (]0 , p[) ). Then there exists a solution to
the Boltzmann equation with cross section B in C 1 ( [0 , 1Q[; L 1

loc (R3 ) ) for which
mass, momentum and energy are conserved (that is, (6) holds).

Any other solution (in the same space) such that the energy is conserved (or
at least decreases) is equal to this solution.

For any time tD0, this solution is bigger than a given Maxwellian and has
all its (polynomial) moments bounded. Moreover those estimates are uniform on
[T , 1Q[ for all TD0.

Then, f (t , Q) lies in H q
loc (R3 ) ( for a given q�N and a given tD0) if and only

if fin also lies in H q
loc (R3 ).

Finally, f satisfies the estimate of decay of entropy (8) rigorously and conver-
ges exponentially fast in L 1 (R3 ) (and algebraically fast with computable con-
stants) towards Mfin

.

11 - Other issues

In this section, we try to review some of the issues about the solutions of (1)
which have not been discussed previously.

1. Explicit solutions: For the Boltzmann equation, only one family of (non
steady) solutions is explicitly known: the so-called BKW mode, in the case of
Maxwellian molecules (Cf. [11], [48]). Note that still for Maxwellian molecules, all
the polynomial moments of any solution can be computed explicitly (Cf. [47]), and
«semi-explicit» expressions can be given (Wild sums, etc..) (Cf. [85]).

2. Special ways of writing the kernel: Different formulas for the kernel are
useful, among which one can quote: the Fourier transform formulation (in parti-
cular in the case of Maxwellian molecules) (Cf. [12], [63]), the Carleman represen-
tation (with the generalized Radon transform) (Cf. [18] and [83]), the divergence
form of the kernel (Cf. [78]), the martingale problem related to the equation
(Cf. [66], [67], [68], [31]), and the pseudodifferential approach (Cf. [3]).
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3. Eternal solutions: For the Landau equation with Maxwellian molecules, no
non-trivial eternal solutions exist (Cf. [80]). The question is open for the Boltz-
mann operator, but solved for some related equations (Cf. [17]).

4. Behavior of functionals with higher derivatives: The Fisher information is
decreasing along solutions of the Boltzmann and Landau equation with Maxwel-
lian molecules (Cf. [77] and [76]). Note that those results were previously proven
in 1D (Kac’s model) and 2D for the Boltzmann equation with Maxwellian molecu-
les (Cf. [53] and [70]). Finally, a study of the functionals which decrease along
the solutions of the Boltzmann equation with Maxwellian molecules can be found
in [14].

5. Stability with respect to initial data or cross sections: Results linked to the
uniqueness are proven for the Landau equation with hard potentials (Cf. [32]).

6. Complex kernels: When the cross section is not a tensor product, many of
the previous results remain true. The situation becomes more intricate for polya-
tomic gases (Cf. [54]), or inelastic collisions, or kernels with quantum mechanics
or relativistic effects. To get an example of the difficulties inherent to such com-
plex kernels, Cf. [5], [36].

Finally, the numerical discretization of Boltzmann’s kernel is an important
subject that we do not try to tackle here.
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A b s t r a c t

In this work, we recall many results by various authors about Boltzmann’s kernel of
monoatomic gases. Applications of those results in the context of the spatially homoge-
neous Boltzmann equation are then presented.

* * *


