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The dual BBGKY hierarchy for the evolution of observables (**)

1 - Introduction

In this paper we develop a rigorous formalism for the description of the evolu-
tion of observables in classical systems of particles, [1].

As it is known, the description of evolution of many-particle systems as evolu-
tion of states is based on the BBGKY hierarchy for the infinite sequence of distri-
bution functions. The solution to the initial value problem for the hierarchy can be
constructed using the techniques of the theory of semigroups of operators. In
fact, in the space L 1 of infinite sequences of summable functions, there exists a
well defined C0-group of bounded operators, U(t), [2].

An equivalent picture can be proposed introducing the hierarchy formally con-
jugated to the BBGKY one. Such a «dual» hierarchy can describe the evolution of
the observables associated to the state of the system, provided that it admits solu-
tion in a space correctly chosen from the physical point of view. We recall that the
possibility of two equivalent representations for the description of the evolution of
finitely many-particle systems has been formulated more explicitly for quantum
systems through the Heisenberg and the Schrödinger evolution representations.
The dual BBGKY hierarchy, which involves the observables, if settled in a physi-
cally suitable functional space, can be seen as the classical analogous one to the
Heisenberg representation.
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It is well known that general theorems, [3], [4], ensure the existence of the
conjugate semigroup, that we denote here explicitly as U *LQ (t), in the dual space
to L 1, i.e. in the space L Q and give a new perspective for the solution of the above
stated problem. The conjugate operators form the group U *LQ (t) of bounded ope-
rators in the space L Q, but the limit of ULQ* (t) f, for tK0 and (f�L Q, tends to f
only in weak-˜ sense. If G is the infinitesimal generator of the group U(t), then
the conjugate operator GLQ* is the weak infinitesimal generator of the group
ULQ* (t).

Nevertheless, actual examples of observables do not belong to L Q and, hence,
it is really interesting to find a more general space, physically meaningful for ob-
servables, where it is possible to obtain the strongly continuous C0-semigroup ge-
nerated by the dual BBGKY hierarchy and which will be introduced in Section 3.

In the present paper, Section 2 is devoted to the presentation of the problem
and to a discussion of its physical motivations. In Section 3 we introduce the func-
tion spaces and give the rigorous formulation of the problem. Successively, in Sec-
tion 4 we explicitly define the semigroup conjugate to the one generated by the
BBGKY hierarchy and investigate its properties, giving also the proofs of the
main results. In Section 5 we prove the existence theorem for the dual BBGKY
hierarchy and construct explicitly the solution to the Cauchy problem for the hie-
rarchy. Finally, in Section 6, we introduce a different type of semigroup genera-
ted by a dual BBGKY hierarchy describing many particles systems with non-sym-
metric Hamiltonians.

Our present results can hopefully be extended to infinite particle systems, pro-
vided that it is possible to give sense to the expression of the average of observa-
bles (2.9). We believe that this is possible, at least in case of short range poten-
tials, if the initial correlation functions in the sequence F(0) are bounded. Boun-
ded correlation functions correspond to probability measures describing a diffe-
rent approach to evolution of infinite particle systems, like in the classical papers
by Lanford III [5], [6] and, among others, [7] and more recently [8].

2 - Formulation of the problem

The BBGKY hierarchy can be written as follows, [2]:

d

dt
F(t)42L F(t)1 [L, A] F(t) ,(2.1)
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where F(t) is an infinite sequence of functions

F(t)4 (1 , F1 (t , x1 ), R , Fn (t , x1 , R , xn ), R ), xif (qi , pi )�Rn3Rn ,

n41, 2 , 3 , i41, 2 , R ,

representing probability density distributions, i.e. the state of a system.
The position coordinates and the conjugate momenta of the i-th particle are,

respectively, qi and pi. In Eq. (2.1) the symbol [. , . ] denotes the commutator bet-
ween the Liouville operator L and the operator A, defined as follows

(2.2) (A f )n (x1 , R , xn )4 �
Rn3Rn

dxn11 fn11 (x1 , R , xn , xn11 ), n41, 2 , R ,

(L f )n (x1 , R , xn )4] fn , Hn(, n41, 2 , R ,(2.3)

where ]. , . ( denotes the Poisson bracket and

Hn4!
i41

n pi
2

2
1 !

14 iE j

n

F(qi2qj )(2.4)

is the Hamiltonian of a n-particle system subject to an interaction potential F.
It has be proven, [2], that in a L1-type space of infinite sequence of functions

(with norm VF(t)V411 !
n41

Q

s
Rnn

s
Rnn

dx1 R dxn NFn (t , x1 , R , xn )N), i.e. the space of

states, the hierarchy of equations (2.1) generates the following one-parameter
group

U(t) : tKF(t), t�R1 , U(t)4e A S(2t) e 2A ,(2.5)

where the mapping S(2t) is a one-parameter group of operators generated by the
Liouville operator L, defined by (2.3). The generator of U(t) is denoted by G.

Let us now introduce the hierarchy of equations formally conjugated to (2.1),
i.e. the so-called dual BBGKY hierarchy:

d

dt
G(t)4 L G(t)1 [L, A*] G(t) ,(2.6)

where we have used the equality L*42L and, as a consequence, [L, A]*
4 [L, A*]. Moreover in (2.6) G(t)4 (G0 , G1 (t , x1 ), R , Gn (t , x1 , R , xn ), R) is
an infinite sequence of functions symmetric with respect to xi�Rn3Rn (G0 is a
number) and A* is the formal adjoint of A, defined by (2.2). From the definition of
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adjoint operator it can readily be deduced that the n-th component of A* writes
as follows:

(2.7) (A* f )n (x1 , R , xn )4 !
i41

n

fn21 (x1 , R , xi21 , xi11 , R , xn ), n41, 2 , R ,

where (A* f )040.
It is natural to consider the problem of characterizing the structure of the

mapping generated by the dual BBGKY hierarchy (2.6). We shall prove that it co-
mes out to be a semigroup (group) of operators and state its properties.

Let us now give some elucidations about the physical motivations of
the problem. If the Hamiltonian of the system is symmetric with respect to
its arguments, the averages aGb(t) of the observables G(t), (G(t)
4 (G0 , G1 (t , x1 ), R , Gn (t , x1 , R , xn ), R) is an infinite sequence of functions
symmetric with respect to xi�Rn3Rn and G0 is a number) can be written as

aGb(t)4 (e A G(0) F(t) )0 ,(2.8)

where ( . )0 denotes the 0-th component of the sequence e A G(0) F(t), where e A

4 !
n40

Q An

n!
, and

G(0) F(t)4 (G0 , G1 (0 , x1 ) F1 (t , x1 ), R , Gn (0 , x1 , R , xn ) Fn (t , x1 , R , xn ), R) .

Hence

(e A G(0) F(t) )0

4G01 (A G(0) F(t) )01 g A2

2
G(0) F(t)h

0

1R1 g An

n!
G(0) F(t)h

0

1R .

From (2.8) it follows that there are two possible different methods to describe the
evolution of a system of particles. One description is based on the BBGKY hierar-
chy (2.1) and the mapping U(t) which determines the evolution of the probability
density distributions

F(t)4U(t) F(0) .

On the other hand, if we develop the definition of average (2.8), introducing the
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formally adjoint mapping U *(t), we obtain:

aGb(t)4 (e A G(0) F(t) )04 (e A G(0) U(t) F(0) )04 (e A U *(t) G(0) F(0) )0

4 (e A G(t)F(0) )0 ,
(2.9)

because G(0) U(t) F(0)4U *(t) G(0)F(0).
Eq. (2.9) suggests an alternative description of the evolution of a system in

terms of the mapping U *(t) : tKG(t), t�R1 , which rules the evolution of the ob-
servables, i.e.

G(t)4U *(t) G(0) .

We shall give some example in the following Section. Finally we remark that for
systems composed of a finite number of particles the group generated by the
Liouville operator (2.3) is the mapping S(2t). Thus, the group of operators conju-
gated to S(2t) comes out to be S(t), because S(t)4 (S(2t) )*.

3 - Definitions and preliminary results

We now introduce the function spaces to be used for the description of the ob-
servables of a many particles system.

Let us consider the set of continuous functions, symmetric with respect to
exchanges of their arguments xi ,

gn (x1 , R , xn ), xif (qi , pi )�Rn3Rn , n41, 2 , 3 ,

defined on the phase space Rnn3Rnn of the n-particle system, such that the

functions g11 !
i41

n

(NpiN21NqiN2 )h21

gn (x1 , R , xn ), are bounded with respect to

(x1 , R , xn )�Rnn3Rnn . This means that functions from this space increase at in-

finity not faster than the polynomial g11 !
i41

n

(NpiN21NqiN2 )h . Then this set, equip-
ped with the norm:

Vgn Vn4 max
(x1 , R , xn )�Rnn3Rnn

g11 !
i41

n

(NpiN21NqiN2 )h21

Ngn (x1 , R , xn )N

is a Banach space, which we denote by C2 . We now denote by C2 the Banach space
of infinite sequences

g4 ( g0 , g1 (x1 ), R , gn (x1 , R , xn ), R)
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of functions gn�C2 ( g0 is a number), with the norm:

VgV4max
nF0

1

n!
Vgn Vn .(3.1)

We denote by C2, 0 the subset of the Banach space C2 consisting of the finite se-
quences of continuously differentiable functions with compact support. Clearly,
the set C2,0% C2 is everywhere dense in C2 .

We remark that the sequences of functions identified with the observables of a
many particles system should belong to the space C2 , and, hence, our choice about
the function space is quite natural. As a matter of fact, the observables of additive
type for Hamiltonian systems, [2], are represented by sequences like

a4 (a0 , a1 (x1 ), R , an (x1 , R , xn ), R) ,

where an (x1 , R , xn )4 !
i41

n

a1 (xi ). It is the case, for example, of momentum, i.e.

a1 (xi)4pi , kinetic energy, i.e. a1 (xi)4
1

2
pi

2 , and number of particles, i.e. a1 (xi)41
(then an4n).

Keeping in mind (2.8), or in the componentwise form:

gn (x1 , R , xn )4 !
l40

n

(21)n2 l !
14 i1ERE il

n

al (xi1
, R , xil

) ,

we can define the sequence g from the sequence a, through the equality

g4e 2A* a .

Hence, to observables of additive kind it corresponds the sequence

g4 (0 , a1 (x1 ), 0 , R) .

Another meaningful example of observables is furnished by observables of binary
type, represented by sequences

b4 (b0 , b1 (x1 ), R , bn (x1 , R , xn ), R) ,

where the 0-th and 1-st components, b0 and b1 , are equal to zero and

bn (x1 , R , xn )4 !
14 iE j

n

b2 (xi , xj ), for nF2. In this case we have

g4 (0 , 0 , b2 (x1 , x2 ), 0 , R)
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and, consequently, the energy, or Hamiltonian (2.4), is represented by the
sequence

g4 g0,
p1

2

2
, F(q12q2 ), 0 , Rh

which belongs to the space C2 under suitable assumptions on the function F.
In what follows we shall study a system of particles interacting through the

potential F, satisfying the assumptions:

F�C 2 ,(3.2a)

N grad
(q1 , R , qn )

!
iE j41

n

F(qi2qj ) NGc g11 !
i41

n

qi
2h1/2

,(3.2b)

where cEQ is a suitable constant and C 2 denotes the space of twice continuously
differentiable functions on Rn.

It is known, [9], that, if the conditions (3.2) are fulfilled, there exist the global
in time solutions of the Hamilton equations; i.e. for an arbitrary t�R1 and initial
data x4(x1 , R , xn)�Rnn3Rnn the phase trajectory X(t , x)f]Xi(t , x1 , R , xn)(i41

n

is a unique well defined function.
The mapping in the phase space Rnn3Rnn :

Tt x4X(t , x), (t�R1

induces the following mapping in the space C2 :

(S(t) g)n (x1 , R , xn )4gn (Tt (x1 , R , xn ) )

4gn (X1 (t , x1 , R , xn ), R , Xn (t , x1 , R , xn ) ), n41, 2 , R .
(3.3)

As we can see from definition (3.3), the one-parameter family of operators S(t) is
defined in the space C2 and forms a strongly continuous group. Moreover, this
group is quasi-bounded in C2 , as we prove in the following

L e m m a 3.1. The group S(t), defined in (3.3), is a strongly continuous, qua-
si-bounded group in C2 , satisfying the following estimate:

VS(t)VGe (c11) t ,(3.4)

where c is the constant introduced in the assumption (3.2b).

P r o o f . Before proving the estimate (3.4) on VS(t)V we shall state an auxiliary
inequality.

Let us introduce the function

E(t)411 !
i41

n

(Pi
2 (t)1Qi

2 (t) ) ,
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where Xi (t)4 (Qi (t), Pi (t) ), i41, R , n , are solutions of the Hamilton equations
and, for convenience, we use Xi (t)fXi (t , x1 , R , xn ). Then, using the Schwarz
inequality, together with the condition (3.2b), we have:

d

dt
E(t)42 !

i41

n goPi (t),
d

dt
Pi (t)p1 oQi (t),

d

dt
Qi (t)ph

G2 gg!
i41

n

Pi
2 (t)h1/2g!

j41

n g d

dt
Pj (t)h2h1/2

1 g!
i41

n

Qi
2 (t)h1/2g!

j41

n g d

dt
Qj (t)h2h1/2h

G2 g!
i41

n

Pi
2 (t)h1/2gc g!

i41

n

Qi
2 (t)11h1/2

1 g!
i41

n

Qi
2 (t)h1/2h

G2(c11) g!
i41

n

Pi
2 (t)h1/2g!

i41

n

Qi
2 (t)11h1/2

G (c11) g11!
i41

n

(Pi
2 (t)1Qi

2 (t) )hf (c11) E(t) .

Hence, for arbitrary t one holds:

E(t)

E(0)
Ge (c11) t ,(3.48)

where E(0)411 !
i41

n

(pi
21qi

2 ). According to definition (3.3) and the estimate

(3.48), we have

VS(t) gV4max
nF0

1

n!
max

x1 , R , xn
g11!

i41

n

(pi
21qi

2 )h21

QNgn (X1 (t , x1 , R , xn ), R , Xn (t , x1 , R , xn ) )N

Gmax
nF0

1

n!
max

x1 , R , xn

E(t)

E(0)
max

X1 (t), R , Xn (t)
E 21 (t)Ngn (X1 (t), R , Xn (t) )NGe (c11) t

VgV .

As a result, the Lemma is proven. r

From (3.4) it follows that the infinitesimal generator L of the group S(t)
exists, it is closed and L S(t)4S(t) L. On the subset C2, 0% C2 the generator L is
defined as follows:

(L g)n (x1 , R , xn )4] gn , Hn(

f!
i41

n gopi ,
¯

¯qi
p2 o ¯

¯qi

!
ic j41

n

F(qi2qj )
¯

¯pi
ph gn (x1 , R , xn ) , n41, 2 , R ,

(3.5)
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where the symbol a. , . b denotes the inner product. We remark that the operator
A*, as defined by (2.7) exists and is bounded in the space C2 . Moreover:

VAV*G1 .

As a consequence, the operators e 6A* are defined in the space C2 and

Ve 6A*
VGe .

In particular, e A* e 2A*4I, where I is the unit operator.

4 - Main results

Let us consider the following mapping in the space C2

U*(t)4
def

e 2A* S(t) e A* ,(4.1)

where the operators A* and S(t) are defined, respectively, by (2.7) and (3.3) (see
also (2.5)).

In what follows we shall use also an alternative representation for the semi-
group U*(t), which is identical to (4.1):

U*(t)4 !
n40

Q 1

n!
[R [S(t), A*], R ], A*

���
n-times

] ,(4.2)

where the bracket [. , . ] again denotes the commutator. We remark that the series
(4.2) is actually a polynomial, as follows from definition (2.7) of the operator A*.

The mapping U*(t) (as defined in (4.1) or in (4.2)) has the following compo-
nentwise form:

(U*(t) g)n (x1 , R , xn )4 !
m40

n

!
k40

m (21)k

k!(m2k) !

Q !
i1 , R , ik41
i1cRc ik

n

!
j1 , R , jm2k41;

j1cRc jn2k ; ] j1 , R , jm2k(c ]i1 , R , ik(

n

S n2kgt , x1 , R , S
i1

, R , S
ik

, R , xnh

Q gn2mgx1 , R , S
i1

, R , S
ik

, R , S
j1

, R , S
jm2k

, R , xnh ,

(4.38)

where we have used the notation

gx1 , R , S
i

, R , xnh4def
(x1 , R , xi21 , xi11 , R , xn ) ,
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or in the nonsymmetrized form:

(U*(t) g)n (x1 , R , xn )

4 !
m40

n n!

(n2m) !
!

k40

m (21)k

k!(m2k) !
S n2k (t , x1 , R , xn2k ) gn2m (x1 , R , xn2m ) ,

(4.39)

As an example we deduce the expression (4.39) in the simplest cases:

(U*(t) g)1 (x1 )4S 1 (t , x1 ) g1 (x1 ) ,(4.3a)

(U*(t) g)2 (x1 , x2 )4S 2 (t , x1 , x2 ) g2 (x1 , x2 )

1(S 2 (t , x1 , x2 )2S 1 (t , x1 ) ) g1 (x1 )1 (S 2 (t , x1 , x2 )2S 1 (t , x2 ) ) g1 (x2 ) ,
(4.3b)

with S 1 and S 2 defined through (4.3a) and (4.3b).
The properties of the mapping U*(t) are stated in the following theorems 4.1

and 4.2.

T h e o r e m 4.1. If the interaction potential F satisfies the conditions (3.2),
then the one-parameter family of operators U*(t) is defined and bounded in the
space C2 (t�R1 :

VU*(t)VGe 2 e (c11) t .

Moreover it is strongly continuous and so is a quasi-bounded C0-group of type
c11.

P r o o f . The mapping U*(t), as defined by (4.1), is the product of quasi-bound-
ed and bounded operators defined in the space C2 ; moreover:

Ve 6A*
VGe

and

VS(t)VGe (c11) t ,

thus

VU*(t)VGe 2 e (c11) t .

Furthermore, the one-parameter family of operators U*(t), t�R1, has the group
property. In fact:

U*(t1 ) U*(t2 )4e 2A* S(t1 ) e A* e 2A* S(t2 ) e A*

4e 2A* S(t1 ) S(t2 ) e A*4e 2A* S(t11 t2 ) e A*4 U*(t11 t2 )

for arbitrary t1 , t2�R1.
The strong continuity of the group U*(t), as defined by Eqs. (4.1) or (4.2)
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follows from the strong continuity property of the group S(t) and from the bound-
ness of the operators e 6A. r

In order to establish further properties of the group U*(t) (Theorem 4.2), we
need the following preliminary lemmas:

L e m m a 4.1. For arbitrary g� C2, 0% C2 the following equality holds

( [L, A*] g)n (x1 , R , xn )42 !
ic j41

n

» ¯

¯qj

F(qj2qi )
¯

¯pj
« gn21gx1 , R , S

i
, R , xnh .

P r o o f . The statement follows directly from definitions (2.7) and
(3.5). r

L e m m a 4.2. If g� C2, 0% C2 , the following identity holds

[ [L, A*], A*] g40 .

P r o o f . The identity follows from Lemma 4.1, from the symmetry of func-
tions gn� C2,0 (Rnn3Rnn ) with respect to their arguments and from direct calcula-
tions of the commutators. r

Let us now give the following lemma

L e m m a 4.3. On the subspace C2, 0% C2 the infinitesimal generator G* of
U*(t) coincides with the operator L1[L, A*].

P r o o f . Recalling the group properties of U*(t) and using the representation
(4.2), we obtain, (g� C2, 0 , the following limit in the sense of the strong conver-
gence in the space C2 :

lim
DtK0

1

Dt
(U*(t1Dt) g2U*(t) g)4 lim

DtK0
U*(t)

1

Dt
(U*(Dt)2I) g

4 U*(t) lim
DtK0

1

Dt
g(S(Dt)2I) g1 [ (S(Dt)2I), A*] g

1 !
n42

Q 1

n!
[R [ (S(Dt)2I), A*], R], A*

���
n-times

] gh
4 U*(t)(L g1 [L, A*] g1R g) ,

where R gf !
n42

Q 1

n!
[R [L, A*], R], A*

���
n-times

] g .

According to Lemma 4.2, the remainder R is identically equal to zero. r
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R e m a r k . If particles are not interacting through a pair potential like (2.4),
but through the general s-multiple-type interaction potential, such that the Hamil-
tonian of n-particle system has the form

Hn4!
i41

n p 2
i

2
1 !

14 i1ERE is

n

F(xi1
, R , xis

) ,

then the generator G* of the group U*(t) coincides with the operator

L1 !
i41

s21

[R [L, A*], R], A*
���

i-times

] .

We are now in position to state the following main theorem:

T h e o r e m 4.2. Under the assumptions of Theorem 4.1, there exists the infi-
nitesimal generator G* of the group U*(t). It is closed, G* U*(t)4 U*(t) G*
and, on the subspace C2, 0% C2 ,

G*4 L1[L, A*] ,(4.4)

or, in componentwise form:

(G* g)n (x1 , R , xn )

4 (L g)n (x1 , R , xn )2 !
ic j41

n

» ¯

¯qj

F(qj2qi ),
¯

¯pj
« gn21gx1 , R , S

i
, R , xnh ,

where g� C2,0 and L is defined by (3.5).

P r o o f . The proof is a straightforward consequence of Lemmas 4.1, 4.2 and
4.3. r

We remark that Theorem 4.2 allows to claim the existence of an infinitesimal
generator, G*, of the group U*(t), as follows from the general properties of
groups of quasi-bounded operators, [3], [4]. Moreover the generator G* is closed
and on its domain of definition C2,0% D(G*)% C2 one has that G* U*(t)
4 U*(t) G*.

5 - Existence and uniqueness to the Cauchy problem of the dual BBGKY

hierarchy

As a consequence of Theorems 4.1 and 4.2 we can prove an existence and
uniqueness theorem for the Cauchy problem of the dual BBGKY hierarcy in the
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space C2 :

d

dt
G(t)4 L G(t)1 [L, A*] G(t)

G(0)4G 0 .

(5.1)

T h e o r e m 5.1. If the potential F satisfies the conditions (3.2), then the
Cauchy problem for the dual BBGKY hierarchy (5.1) has a unique, global in ti-
me, solution in the space C2 :

G(t)4e 2A* S(t)e A* G(0) .(5.2)

For initial data G(0)4G 0� C2,0% D(G*)% C2 the solution is a strong one and
for arbitrary G 0� C2 the solution is a weak one.

P r o o f . The statement of the theorem follows immediately from general re-
sults of semigroup theory, [3], [4] (see also (4.1)). r

R e m a r k . According to the explicit form of the dual BBGKY hierarchy (5.1)
we can construct the expression of solution (5.2) by iteration. Hierarchy (5.1) is
actually a recursion relation:

¯

¯t
G1 (t , x1 )4 op1 ,

¯

¯q1
p G1 (t , x1 ) ,

¯

¯t
G2 (t , x1 , x2 )4!

i41

2 gopi ,
¯

¯qi
p2 o ¯

¯qi

F(q12q2 ),
¯

¯pi
ph G2 (t , x1 , x2 )

2 !
i41

2 o ¯

¯qi

F(q12q2 ),
¯

¯pi
p G1 (t , xi ) ,

(5.3)

and so on.
Note that each equation is coupled only with the preceding ones.
The first equation of (5.3), which represent the first component of hierarchy

(5.1), is the Liouville equation for the free particle. The other equations are non-
homogeneous Liouville equations, which can be integrated with respect to time
(the result is exprimed by (4.3)). In such a way, constructing the solution of the
hierarchy (5.1) by iteration and performing the integration with respect to the ti-
me variable, we again succeed in obtaining the expression (5.2) for the solution to
the initial value problem (5.1).

6 - An example of the dual hierarchy semigroup

We remark that the symmetry with respect to the permutations of their argu-
ments of the Hamiltonian defined by (2.4) and of the functions belonging to the
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space C2 has played a fundamental role in the construction of the group
U*(t).

If we deal with non-symmetric Hamilton functions, the group generated by the
dual BBGKY hierarchy has another structure. We shall consider the simplest
example of such a type of dynamical system, namely the one-dimensional system
of particles interacting with their next neighbours, [2]. The related Hamiltonian
has the form

Hn4!
i41

n pi
2

2
1 !

i41

n21

F(qi2qi11 ) .(6.1)

We assume that the potential F satisfies the conditions (3.2), such that existence
of the group S(t) (3.3) and its usual properties are guaranteed. In this case
the suitable function space is the space of sequences g4 (g0 ,
g1 (x1 ), R , gn (x1 , R , xn ), R) of continuous functions gn (x1 , R , xn ), n41,
2 , R , (g0 is a number) defined on the phase space of the system, Rn3Rn, with
the norm

VgV4max
nF1

a n max
(x1 , R , xn )�Rn3Rn

g11 !
i41

n

(qi
21pi

2 )h21

Ngn (x1 , R , xn )N

where a is a number: 0EaE1. We denote such a Banach space by C 2
a .

In the space C2
a the operator A* (compare with the «symmetric» case, as defi-

ned in (2.7)),

(A* g)n (x1 , R , xn )4gn21 (x1 , R , xn21 ), n41, 2 , R ,(6.2)

is defined and bounded. Moreover

VAV*GaE1 .

The semigroup generated by the dual BBGKY hierarchy for a system of particles
with the Hamiltonian (6.1) has the form (compare with the «symmetric» case, as
defined in (4.1))

U*(t)4 (I2A*) S(t)(I2A*)21(6.3a)

or, alternatively

U*(t)4S(t)1 !
n41

Q

[S(t), A*](A*)n21 ,(6.3b)
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where the bracket [. , . ] again denotes the commutator. The componentwise form
of the mapping (6.3) is given by

(U*(t) g)s (x1 , R , xs )

4 !
n40

s

!
k40

min (1 , n)

(21)k S s2k (t , x1 , R , xs2k ) gs2n (x1 , R , xs2n ) .

The one-parameter family of operators U*(t) (6.3) is defined and bounded in the
space C2

a , for arbitrary t�R1. In fact, since VAV*Ga and, consequently

VI2AV*G11a ,

V(I2A*)21
VG

1

12a
,

the following estimate is obtained:

VU*(t)VG
11a

12a
e (c11) t .

It is clear that the family of operators (6.3) owns the group property and that
such a group is strongly continuous in C2

a . Thus, the mapping U*(t) (6.3) forms in
the space C2

a a quasi-bounded C0-group.
From general properties of quasi-bounded groups of operators, [3], [4], it fol-

lows the existence of the infinitesimal generator G* of the group U*(t) defined by
(6.3). As above, the operator G* is closed on the subspace C2, 0

a % C2
a of finite se-

quences of continuously differentiable functions with compact support and, mo-
reover, G* U*(t)4 U*(t) G*. On the subspace C2,0

a the generator G* coincides
with the operator L1[L, A*], i.e.

G*4 L1[L, A*] .

The proof of the last propositon is based on the fact that in C2,0
a % C2

a the following
identity is satisfied:

[L, A*](A*)n40 , for any nF1 .

R e m a r k . The procedure for calculating the averages of observables G, in
the case of the above considered systems with non-symmetric Hamiltonian, is dif-
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ferent from the one introduced by (2.8) and it is given by:

aGb(t)4 ( (I2A)21 GF(t) )0 ,

where I is the identity operator and the operator A is defined by (2.2). Hence, the
explicit expression of the observables G is

G4 (I2A*) a ,

where a is a sequence of functions defined in the usual way on the phase
space.

Moreover we note that the group conjugated to (6.3) is

U(t)4 (I2A)21 S(2t)(I2A) ,

which is generated by the BBGKY hierarchy of many particles systems with Ha-
miltonian (6.1).

F i n a l R e m a r k . As we have emphasised at the end of the Introduction, we
believe that our approach in terms of evolution of observables can handle dy-
namics of infinitely many-particle systems. In order to properly describe the evo-
lution of infinite particle systems it is necessary, along with the solution of Cauchy
problem (5.1), to solve the additional problem of giving sense to the expression for
the average (e A G(t) F(0) )0 (see (2.9)), if F(0) is a sequence of bounded functions
and G(t)� C2 . The componentwise formulations (4.3) of U*(t) allows to establish
such a fact at least for the case of short range potentials.
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A b s t r a c t

In the present paper the hierarchy of equations formally conjugated to the BBGKY
hierarchy for the evolution of classical many-particle system is investigated. From such a
«dual» hierarchy, characterizing the evolution of observables, it is explicitly defined a
quasi-bounded C02semigroup (group), in both cases of symmetric and non-symmetric
Hamiltonians.
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