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On the geometry of a pair of oriented planes (**)

1 - Introduction

In the papers [5] of 1991 and [2] to appear, concerning the bisectional curvatu-
re of a manifold, the notation of related bases for a pair of oriented planes plays
an essential role.

Even though some geometrical properties of a pair of planes are known since
a long time (see for example [6]), we think that it is worth translating them into a
modern form and adding some more results, useful we hope, for further
research.

In Section 3 we recall the definition of related bases for a pair of oriented 2-di-
mensional subspaces (planes) of a real vector space V , endowed with an inner
product g . Then we prove the existence of related bases for any pair of oriented
planes of V (Proposition 1).

In Section 4 we show that, given two oriented planes of V , in general there exists
essentially only one pair of related bases (Remark 2). The special cases when we
have Q1 or Q2 pairs of related bases (isoclinic planes) are also discussed.

A geometric property of related bases is evidenced in Proposition 2 of Section 5.
S e c t i o n 6 s t u d i e s t h e s p e c i a l c a s e o f t h e i s o c l i n i c p l a n e s ( P r o p o s i t i o n 3 ,

Remarks 3 and 4).
The problem of the existence of pairs of strictly orthogonal planes, transversal

with respect to a given pair p , q of oriented planes of V is considered in Section 7.
Proposition 4 and Remark 5 give an exhaustive answer to the problem, showing
also that, when pOq4]0(, the solution is strictly connected with the related ba-
ses of p , q .

(*) Dip. di Mat., Univ. Parma, Via D’Azeglio 85, 43100 Parma, Italia.
(**) Received September 19, 2001. AMS classification 51 M 04.
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Last section studies the special case when the vector space V possesses a Her-
mitian structure. Remarks 6 and 7 show interesting examples of isoclinic planes,
depending on the structure.

2 - Preliminaries

Let V be an m-dimensional real vector space and g an inner product on V . In
the sequel, the 1-dimensional and the 2-dimensional subspace of V are called lines
and planes, respectively.

Let p , q be two oriented planes of V . Let X, Y and Z, W be oriented orthonor-
mal bases of p and of q . It is well known that we can define

cos pq4 det ug(X, Z )

g(Y, Z )

g(X, W )

g(Y, W )
v(1)

([1], p. 9; [3], p. 149). So the angle of the planes p , q results to be uniquely deter-
mined in the closed interval [0 , p].

It is worth now recalling some basic facts about orthogonality.
The planes p , q are orthogonal if there exists in p (in q) a line, orthogonal to q

(to p). In particular, p , q are strictly orthogonal, if any line of p (of q) is orthogo-
nal to q (to p). It is easy to prove that if p , q are orthogonal, then we have
cos pq40; and conversely. In particular, if p,q are strictly orthogonal, then the
rank of the matrix in (1) is zero; and conversely.

Let p , q be orthogonal and let X (Z ) be a unit vector on the line of p (of q) or-
thogonal to q (to p). There exists in p (in q) only one vector Y (W ), such that X, Y
(Z, W ) is an oriented orthonormal basis of p (of q). Since X (Z ) is orthogonal to q
(to p), i.e. to any line of q (of p), we have g(X, Z )4g(X, W )40
( g(Z, X )4g(Z, Y )40) and consequently cos pq40.

Conversely, cospq40 implies that the rows (the columns) of the matrix are li-
nearly dependent. So there exist real numbers l , m (s , t), not all of which are
zero, such that

l g(X, Z )1

s g(Z, X )1

m g(Y, Z )40

t g(W, X )40

l g(X, W )1

s g(Z, Y )1

m g(Y, W )4

t g(W, Y )4

0

0) .

In other words, the non-zero vector lX1mY of p (sZ1tW of q) results to be or-
thogonal to the vectors Z, W of q (X, Y of p), i.e. orthogonal to q (to p).

If p , q are strictly orthogonal, then the vectors X and Y (Z and W ) are ortho-



219ON THE GEOMETRY OF A PAIR OF ORIENTED PLANES[3]

gonal to q (to p), i.e. to any vector of q (of p). It follows

g(X, Z )4g(X, W )4g(Y, Z )4g(Y, W )40 .(2)

Thus the rank of the matrix in (1) is zero.
Conversely, if the rank is zero, i.e. if (2) is true, since any vector of p (of q) can

be written in the form lX1mY (sZ1tW ), we find that any vector of p (of q)
results to be orthogonal to Z and to W (to X and to Y), i.e. orthogonal to q
(to p).

We complete the section with a remark. Let A be a vector and q an oriented
plane of V . Denote by Aq the vector obtained by orthogonal projection of A on q .
Then, if Z, W is an oriented orthonormal basis of q , we have

Aq4g(A , Z ) Z1g(A , W ) W .(3)

To prove this fact, just check that the vector A2Aq results to be orthogonal
to Z and to W, i.e. to q . Note also that Aq does not depend on the orientation
of q .

3 - Related bases

We come now to the definition of related bases for a pair p , q of oriented pla-
nes. Two oriented orthonormal bases X , Y and Z , W of p and of q respectively
are said to be related bases, if we have

g(X , W)4g(Y , Z)40 .(4)

P r o p o s i t i o n 1. For any pair p , q of oriented planes of V there exist always
related bases.

Let X, Y and Z, W be oriented orthonormal bases of p and of q , respectively.
Then any other pair X , Y and Z , W of oriented orthonormal bases of p , q is given by

X4 X cos f1Y sin f

Y42X sin f1Y cos f

Z4

W4

Z cos c1

2Z sin c1

W sin c

W cos c .
(5)



220 GIOVANNI BATTISTA RIZZA [4]

Remark now that condition (4) can be written in equivalent form as

2g(X, Z ) cos f sin c

2g(Y, Z ) sin f sin c

2g(X, Z ) sin f cos c

1g(Y, Z ) cos f cos c

1g(X, W ) cos f cos c

1g(Y, W ) sin f cos c40

2g(X, W ) sin f sin c

1g(Y, W ) cos f sin c40 .

By sum and difference we get the equivalent conditions

2( g(X, Z )2g(Y, W ) ) sin (f1c)1 ( g(X, W )1g(Y, Z ) ) cos (f1c)40

( g(X, Z )1g(Y, W ) ) sin (f2c)1 ( g(X, W )2g(Y, Z ) ) cos (f2c)40

that can be written in the equivalent form

(6) tg(f1c)4
g(X, W )1g(Y, Z )

g(X, Z )2g(Y, W)
tg(f2c)42

g(X, W )2g(Y, Z )

g(X, Z )1g(Y, W )
.

Since there exist always f and c satisfying (6), Proposition 1 is proved.

The special cases when tg(f1c) or tg(f2c) takes the interminate form
0

0will be examined in the next section.

4 - Some remarks

The aim of the present section is to give some information about the pairs of
related bases, concerning two given oriented planes p , q .

R e m a r k 1. If X , Y and Z , W are related bases of p , q , then

X ,

2X ,

X ,

2X ,

Y

2Y

Y

2Y

and

and

and

and

Z ,

Z ,

2Z ,

2Z ,

W

W

2W

2W

Y ,

2Y ,

Y ,

2Y ,

2X

X

2X

X

and

and

and

and

W ,

W ,

2W ,

2W ,

2Z

2Z

Z

Z

are related bases for p , q . These eight pairs will be considered as equivalent in
the sequel.

The proof follows immediately from (4).
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Assume now that in (6) tg(f1c) and tg(f2c) do not take the form
0

0
. We

have

f1c4l1rp f2c4m1sp

where l , m are real numbers and r , s vary in Z . It follows

f4
1

2
(l1m)1

1

2
(r1s), c4

1

2
(l2m)1

1

2
(r2s) .

Since the angles f and c must be regarded mod 2p , we can consider for r1s
and r2s only the values 0, 1, 2, 3. On the other hand r1s and r2s are both
even or both odd. Consequently, the possible cases for the pair (r1s , r2s)
are

(0 , 0 ), (1 , 1 ), (2 , 2 ), (3 , 3 ), (0 , 2 ), (2 , 0 ), (1 , 3 ), (3 , 1 ) .

Note that these pairs lead to equivalent related bases in the sense defined in Re-
mark 1.

If tg(f1c) takes the form
0

0
, but tg(f2c) is not indeterminate, we have

f4c1m1sp where c can vary in [0 , 2p). So we have Q1 pairs of related bases
for p , q . Starting from any pair, we can obtain all other non-equivalent pairs by
simultaneous rotations of a same angle and in the same sense of the bases of p

and of q . Similarly in the case when tg(f2c) takes the form
0

0
, the rotations

now having opposite sense. Note that the senses of rotations on p and on q can be
actually compared, since p and q are oriented planes of V .

Last, if tg(f1c) and tg(f2c) take the form
0

0
, then (6) implies (2). So X, Y

and Z, W satisfy condition (4). Consequently, any oriented orthonormal basis of p
and any oriented orthonormal basis of q form a pair of related bases for p , q . In
conclusion, there exist Q2 non-equivalent related bases for p , q.

Finally, taking into account the equivalence relation of Remark 1, we are now
able to summarize the previous results as follows

R e m a r k 2. For a pair of oriented planes p , q , in general, there exists, es-
sentially, only one pair of related bases. There are however special cases when
the pairs of related bases are Q1 or Q2 . In the first case, starting from one of
these pairs, you obtain, essentially, all the Q1 pairs of related bases of p , q by
equal or opposite rotations of the bases of p and of q . Similarly, in the second ca-
se, independent rotations of the bases of p and of q lead, essentially, to all Q2

pairs.
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In Section 6 we will see that, when the mentioned special cases occur, then the
pair p , q of oriented planes of V enjoys specific geometric properties (Proposition
3).

5 - A geometric property

Given two oriented planes p , q we denote by a g0GaG
p

2
h the angle that a

line of p forms with the plane q and by a M , a m the maximum, minimum value of
a , as the line varies in p .

Now, let X , Y and Z , W be a pair of related bases of p , q . If

A4X cos j1Y sin j(7)

is a unit vector on the line, then, taking account of (3), (4), we have

Aq4g(X , Z) Z cos j1g(Y , W) sin j .

Since we have g(A , Aq )4g(Aq , Aq ), we find

cos2 a4g(Aq , Aq )4 ( g(X , Z) )2 cos2 j1 ( g(Y , W) )2 sin2 j

and

d cos2 a

dj
42[ ( g(X , Z) )22 ( g(Y , W) )2 ] sin 2j .(8)

Assume first

( g(X , Z) )2
c ( g(Y , W) )2 .(9)

Then the extreme values a m , a M of a are attained when j40,
p

2
, that is when

we consider the lines of p defined by X and by Y .
More explicity, if we have

Ng(X , Z)NDNg(Y , W)N(10)

then

cos a m4Ng(X , Z)N cos a M4Ng(Y , W)N .(11)

If we replace (10) with the opposite inequality, then a m and a M interchange in
(11).

Consider now a line of q and denote by b g0GbG
p

2
h the angle that this line
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forms with the plane p . Then the extreme values b m , b M of b correspond to the
lines of q defined by the vectors Z , W . Moreover we have b m4a m and
b M4a M .

We can conclude with

P r o p o s i t i o n 2. Let X , Y and Z , W be related bases of p , q , satisfying the

inequality (9). Denote by a , b g0Ga , bG
p

2
h the angle that a line of p , q forms

with the plane q , p , respectively. Then the extreme values a m , a M of a , b m , b M

of b are attained in correspondence with the lines of p , of q , defined by the vec-
tors X , Y of p , Z , W of q , respectively. Moreover we have a m4b m and
a M4b M .

In a different form, the present result can be found in [6] (p. 72).

6 - Isoclinic planes

Let X, Y and Z, W be a pair of oriented orthonormal bases of p , q , satisfying
the condition

g(X, W )42g(Y, Z) g(X, Z )4g(Y, W).(128)

By using (5), we can immediately check that any other pair of oriented ortho-
normal bases of p , q satisfies condition (128).

In order to evidence the geometric meaning of condition (128), we consider a
pair X , Y and Z , W of related base of p , q . Then condition (128) reduces to

g(X , Z)4g(Y , W)(138)

and (8) implies that the angle a , defined in Sec. 5, is a constant, i.e. a4a *. Simi-
larly, the angle b , defined in the same section, results to be constant, i.e. b4b *.
Moreover we have a *4b *.

Further, it is easy to check that, when condition

g(X, W )4g(Y, Z) g(X, Z )42g(Y, W) .(129)

replaces (128) and consequently

g(X , Z)42g(Y , W)(139)

replaces (138), we arrive to the same conclusion.
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In particular, if (128) and (129) hold true, then we have (2). So p , q are strictly

orthogonal (Sec. 2) and we have a *4b *4
p

2
.

We are now able to state

P r o p o s i t i o n 3. Let X , Y and Z , W be related bases of p , q , satisfying the
condition

( g(X , Z) )24 ( g(Y , W) )2 .(13)

Then any line of p (of q) forms the same angle a * (b *) with the plane q (p) and

we have a *4b *. In particular, when a *4b *4
p

2
, the planes p , q are strictly

orthogonal.

When the pair p , q enjoys the geometrical property of Proposition 3, we say
that p and q are isoclinic planes.

R e m a r k 3. If p , q are isoclinic planes, then there exist Q1 pairs of related
bases for p , q and conversely. In particular, if p , q are strictly orthogonal, then
there exist Q2 pairs of related bases for p , q and conversely.

Note first that, if condition (128) holds true, then in (6) tg(f1c) takes the

form
0

0
; and conversely. Similarly for condition (129) and tg(f2c). The remarks

of Sec. 4 lead now to the conclusion. When the dimension m of V is greater or
equal to four, we can prove also

R e m a r k 4. For any real number g satisfying 0GgG
p

2
, there exist iso-

clinic planes p , q such that a *4b *4g .
Let E1 , R , Em be an orthonormal basis of V . Put

X4E1 Z4E1 cos g1
k2

2
E3 sin g1

k2

2
E4 sin g

X4E2 W4E2 cos g2
k2

2
E3 sin g1

k2

2
E4 sin g .

Let p , q be the oriented planes, defined by X , Y and by Z , W , respectively. It is
immediate to check that X , Y and Z , W are related bases of p , q satisfying (13),
i.e. that p , q are isoclinic planes. Consequently (11) becomes

cos a *4cos b *4Ng(X , Z)N4Ng(Y , W)N
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and, since we have g(X , Z)4g(Y , W)4cos g , we arrive to the conclusion. The
section ends with some additional remarks.

Two planes p , q having one and only one line in common cannot be isoclinic. In
effect, the line pOq of p forms a zero angle with the plane q . On the contrary, if n

denotes the normal plane of p , q , then the line pOn of p forms an angle different
from zero with the plane q .

Let p 8 be the plane p with opposite orientation. If we have q4p or q4p 8 ,
then the planes p , q are isoclinic and a *4b *40; and conversely. This fact can
be proved as follows. Let X , Y be an orthonormal basis of p . If we have q4p ,
q4p 8 , we choose Z4X , W46Y , respectively, as basis of q and remark that
X , Y and Z , W are related bases for p , q satisfying (13). So by Propositionn 3,
p and q are isoclinic planes. Further, from (11) we derive a *4b *40. The con-
verse is obvious.

7 - Transversal planes

We have seen in Sec. 4 that the related bases of p , q can be divided into equi-
valence classes. In order to give a geometrical characterization of related bases
we need another definition. A plane t is said to be transversal to the pair of oriented
planes p , q , if t has a line in common with p and a line in common with q.

We are now able to prove

P r o p o s i t i o n 4. Let p , q be oriented planes of V without lines in common.
Then, there exists a one-to-one correspondence between the equivalence classes of
the related bases of p , q and the non-ordered pairs r , s of non-oriented planes,
such that r and s are transversal to p , q and strictly orthogonal.

In particular, when p , q are not isoclinic planes, there exists only one pair of
planes, transversal to p , q and strictly orthogonal.

Let e be an equivalence class and let X , Y and Z , W be a pair of related bases
of p , q belonging to e . Consider the planes r and s defined by the vectors X , Z
and by the vectors Y , W , respectively. Then the planes r and s , that are transver-
sal to p , q , result to be strictly orthogonal by virtue of (4).

To complete the direct part of the proof, we note that any pair of equivalent
related bases of p , q listed in Remark 1 of Sec. 4 leads to the non-oriented planes
r , s . The last part of the statement follows immediately from Remarks 2 and 3.

Conversely, let X (Z) be a unit vector of the line pOr (of the line qOr). We
choose a unit vector Y (W) of the line pOs (of the line qOs) in such a way that
X , Y (Z , W) be an oriented basis of p (of q). Then, since r and s are strictly ortho-
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gonal, the vectors X and Y (Z and W) are orthogonal and condition (4) is satisfied.
So X , Y and Z , W are related bases of p , q .

We end the section with

R e m a r k s 5. If p , q have one and only one line in common, then any plane
transvesal to the pair p , q belongs to the 3-dimensional subspace of V , spanned
by pNq . Consequently two planes transversal to p , q cannot be strictly orthogo-
nal. However in this case there exists essentially one pair of related bases of p , q
with X4Z or Y4W . So one of the planes r , s , occurring in the proof of the di-
rect part of Proposition 4, degenerates into the line pOq , the other plane being
now the normal plane n ; obviously pOq is orthogonal to n . Finally it is easy to
check that, if we have q4p or q4p 8 , then there exist Q2m27 solutions of our
problem.

8 - The Hermitian case

From now on we assume that the dimension of the vector space V is even
(m42n), that there exists in V an isomorphism J with the property J 2421
and that for any pair X , Y of vectors of V relation

g(X , Y)4g(JX , JY)(14)

is satisfied. In other words, in the previous section V could be considered as a
Riemannian manifold; in the present section V can be regarded as a Hermitian
manifold.

We recall first that an oriented plane h is called holomorphic iff Jh4h . In
particular, we say that h is canonically oriented iff X , JX is an oriented orthonor-
mal basis of h . A plane a is called anti-holomorphic iff a is orthogonal to Ja . If
d p denotes the holomorphic deviation of the oriented plane p (See for example [4],
p. 179), we have d p40, p when p is holomorphic, and conversely. In particular, we

have d p40, when p is canonically oriented, and conversely. We have d p4
p

2when p is an anti-holomorphic plane, and conversely.
We are now able to state some results.

R e m a r k 6. Let p be an oriented plane of V . Then p and Jp are isoclinic

planes. We have a *4b *4d p when 0Gd pG
p

2
and a *4b *4p2d p when

p

2
Gd pGp . Consequently p is holomorphic, anti-holomorphic if a *4b *40,

a *4b *4
p

2
, respectively.
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R e m a r k 7. Let h1 , h2 be two canonically oriented holomorphic planes.
Then, h1 , h2 are isoclinic planes and the planes r , s of Proposition 4 are anti-holo-

morphic. We have a *4b *40, a *4b *4
p

2
when h1 and h2 coincide, are ortho-

gonal, respectively.

To prove Remark 6, we consider an oriented orthonormal basis X , Y of p .
Then JX , JY and JY , 2JX are oriented orthonormal bases of Jp . Moreover, sin-
ce by (14) we have g(X , 2JX)4g(Y , JY)40, we find that X , Y and JY , 2JX
are related bases of p , Jp . Note that (138) is satisfied. Therefore p and Jp are iso-
clinic planes and we have

a m4a M4a *4b *4b M4b m .

Taking into account (11), (14), we can write

cos a *4cos b *4Ng(X , JY)N4Ng(JX , Y)N4Ncos d pN .

The remaining part of the proof is immediate.
Finally, we prove Remark 7. Since h1 and h2 are canonically oriented, the

oriented orthonormal bases of h1 and of h2 have the form X, JX and Z, JZ, where
X and Z are unit vectors of h1 and h2 , respectively. On the other hand, by Proposi-
tion 1 we know that there exist always related bases for the pair of planes h1 , h2 .
Thus, let X , JX and Z , JZ be related bases of h1 , h2 . then (4) becomes

g(X , JZ)4g(JX , Z)40

and shows that the planes r , s of Proposition 4, now defined by X , Z and by
JX , JZ , are anti-holomorphic. Moreover, taking account of (14), we see immedia-
tely that condition (138) is satisfied. So h1 and h2 are isoclinic planes and from (11)
we derive

cos a *4cos b *4Ng(X , Z)N .

Finally, if we have h14h2 , we can take Z4X and we find a *4b *40. The last
part of the statement follows immediately by remarking that (1), (14) imply
cos h1 h24 ( g(X , Z) )2 .
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A b s t r a c t

The notion of related bases permits to evidence some geometrical properties, concer-
ning the pairs of planes of a real vector space V , endowed with an inner product. Further
results are obtained in the special case when V possesses a Hermitian structure.

* * *


