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Presymplectic Lagrangian systems subject

to non-holonomic constraints (**)

1 - Introduction

In Classical Physics, a frame-independent description of the behaviour of a
system B, with n degrees of freedom, relies on the introduction of an (n11)-di-
mensional manifold Vn11 , called the configuration space-time, carrying a natural
fibration t : Vn11KD over the real line, identified with the absolute time function
[5], [6], [7], [8], [9], [11], [12], [13], [14], [17].

Every admissible evolution of the system is represented by a corresponding
section g : DK Vn11 . This leads to a natural identification of the velocity space of
B with the first jet space j1 (Vn11 ), associated with the stated fibration.

However, when the system in study is subject to kinetic constraints, the totali-
ty of admissible kinetic states does no longer coincide with the whole manifold
j1 (Vn11 ), but, in general, only with a subregion A % j1 (Vn11 ).

The more important and significant cases dealt with in the literature are those
in which A has the nature of an embedded submanifold of j1 (Vn11 ), fibered over

(*) Dipartimento di Matematica Università di Genova, Via Dodecaneso 35, 16146 Geno-
va, Italia. E-mail: vignoloHdima.unige.it

(**) Received September 13, 2001. AMS classification 70 F 25, 70 H 45, 70 G 45.
Research partly supported by the National Group for Mathematical Physics (GNFM-

INDAM).



186 STEFANO VIGNOLO [2]

Vn11 , as expressed by the commutative diagram

A K
i

j1 (Vn11 )

pI Ip(1.1)

Vn111 Vn11 .

Diagrams of this kind include a wide variety of non-holonomic constraints, the
only condition being that they are sufficiently smooth and two-sided (the submani-
fold A is without boundary).

In the last years, the study of non-holonomic systems has drawn a great and
renewed interest: many Authors have devoted their papers to modern treatments
of the subject, all — in spite of the variety of the different approaches proposed
— having the diagram (1.1) as common geometrical framework. Among others,
we refer to [6], [8], [11], [13], [14], [15], [16], [17], [20], [21], [22], [23], [24].

Again recently, Massa and co-workers have proposed a new mathematical
setting for a gauge-invariant formulation of Lagrangian and Hamiltonian Dy-
namics [9], [10], [12].

The theory, establishing a natural link between Dynamics and connection
theory, relies on the introduction of the bundle of affine scalars. The latter is a
principal fiber bundle over the configuration space-time Vn11 , with structural
group (D , 1). The principal bundle structure of P gives rise to two distinguished
actions of the group D on the first jet-space j1 (P , D) associated with the fibration
PK Vn11KD. The quotient of j1 (P , D) with respect these actions determines
two fiber bundles L(Vn11 ) and Lc (Vn11 ) over the velocity space j1 (Vn11 ), called
respectively the Lagrangian and the co-Lagrangian bundle. The situation is sum-
marized into the commutative diagram

j1 (P , D) K Lc (Vn11 )

I I(1.2)

L(Vn11 ) K j1 (Vn11 )

in which all arrows indicate principal fibrations, with structural groups isomorphic
to (D , 1).

In the resulting geometrical set-up, the concept of Lagrangian function L is
replaced by a Lagrangian section l : j1 (Vn11 )K L(Vn11 ), i.e. with a section of
the Lagrangian bundle. Gauge-equivalent Lagrangians are then interpreted as
different representations of one and the same section l : j1 (Vn11 )K L(Vn11 ), un-
der different choices of the trivialization, while equivalent sections are related to
each other by the action of the gauge group. The important point is that, in this
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way, every Lagrangian section l induces a connection on the co-Lagrangian bun-
dle Lc (Vn11 )K j1 (Vn11 ), whose curvature 2-form, viewed as a (gauge invariant)
field over j1 (Vn11 ), coincides — up to a sign — with the Poincaré-Cartan 2-form
associated with the given class of Lagrangians.

In connection with this, in [12], a detailed analysis of the geometrical proper-
ties of the Lagrangian bundle L(Vn11 ) has allowed the construction of a gauge-
invariant presymplectic formalism for time-dependent Lagrangian Dynamics.
Every Lagrangian section l is indeed seen to induce a connection in the principal
fiber bundle j1 (P , D)K L(Vn11 ) too. The curvature 2-form of this connection,
depending on whether l is regular or singular, endows L(Vn11 ) either with a sym-
plectic or with a presymplectic structure V

A
l. By means of the latter one can then

set up a pseudo problem of motion on L(Vn11 ) consisting in the search for vector
fields ZA�D 1 (L(Vn11 ) ) solving the equation

ZA2l VA l42 dW l(1.3)

W l denoting the trivialization of the bundle L(Vn11 )K j1 (Vn11 ) associated with l ,
and playing the role of a «Hamiltonian». Also in [12], the mathematical equivalen-
ce between the problem (1.3) and the standard one formulated in the velocity spa-
ce j1 (Vn11 ) has been proved both in the regular and in the singular case.

In this paper, the mathematical setting outlined so far is applied to the study
of time-dependent non-holonomic Lagrangian systems.

The starting point is the construction, through a straightforward pull-back
procedure, of a principal fiber bundle p : L(A)K A over the constraint manifold
A, embedded into L(Vn11 ), as expressed by the commutative diagram

L(A) K
i

L(Vn11 )

Ip Ip(1.4)

A K
i

j1 (Vn11 ) .

Next, we «lift» to the bundle L(A) the constrained problem of motion defined on
the manifold A, based on the usual Lagrange-Chetaev equations.

If the given Lagrangian section is regular, it is a straightforward matter to
prove the mathematical equivalence between the standard problem on A and the
one formulated on L(A). More in detail, borrowing from Ibort et al [19], we define
an almost product structure (P, Q) on L(Vn11 ) along L(A), in such a way that the
constrained Dynamics is (p-related to) the projection P (ZA) of the solution of the
unconstrained problem (1.3). Still following Ibort and co-workers, we construct
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Dirac brackets for the present time-dependent systems which, as pointed out in
[19], could be interesting for canonical quantization purposes.

After this, we examine singular Lagrangians. As it is well known, if the La-
grangian section is degenerate, the problem of motion may or may not admit sol-
utions and, even when a solution exists, it is in general non-unique. Moreover, in
the singular case, the equivalence of the problems on A and on L(A) is no longer
automatically ensured.

To account for this fact, following the procedure implemented in [12], we con-
struct a constraint algorithm extending to the present context the one developed
by Gotay, Nester and Hinds [1], [2]. The aim is to obtain — in the singular case —
necessary and sufficient conditions for the solvability of the constrained Dynamics
in a differential sense.

To this end, we reinforce the problem of motion on L(A) by requiring that the
solutions satisfy the further condition of annihilating the (pull-back to L(A) of the)
so-called Chetaev bundle, i.e. the bundle where the virtual work of the reaction
forces takes value [8], [15], [22], [24].

It will be seen that the request does not put any restriction on the problem of
motion on A, but it allows to discuss the second-order differential equation pro-
blem (the search for kinematically admissible solutions) under weaker hypotheses
than those employed in other papers [18], [19]. Here, in fact, the SODE problem
is dealt with under the assumption of admissibility for the Lagrangian section,
while in [18], [19] the Authors work under the assumption of almost regularity
which is slightly more restrictive. The non-holonomic constraints dealt with in this
paper are affine on the velocities. However, all results stated for regular Lagran-
gians and the constraint algorithm developed for degenerate ones apply equally
well to general (not necessarily affine) constraints. On the contrary, the affine as-
sumption is strictly necessary in the discussion of the SODE problem proposed
here.

2 - Geometrical preliminaries

2.1 - Non-holonomic systems

Let Vn11 be the configuration space-time of a (finite-dimensional) physical
system B. As it is well known, the first jet bundle j1 (Vn11 ) — identified with the
velocity space of the system — is an affine space, modelled on the vertical bundle
V(Vn11 ) associated with the fibration t : Vn11KD , and canonically embedded
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into the tangent bundle T(Vn11 ), according to the identification

j1 (Vn11 )C]X�T(Vn11 )NaX , dtb41( .(2.1)

Any local fibered coordinate system t , q 1 , R , q n on Vn11 gives rise to correspon-
ding jet-coordinates t , q 1 , R , q n , q

. 1 , R , q
. n on j1 (Vn11 ), subject to the transfor-

mation laws

t4 t1c , qi4 qi (t , q 1 , R , q n ), q
. i4

¯qi

¯t
1

¯qi

¯q k
q
. k .

In jet-coordinates, the identification (2.1) is made explicit by the relation

z4 g ¯

¯t
1q

. i (z)
¯

¯q i h
p(z)

� j1 (Vn11 )

p : j1 (Vn11 )K Vn11 denoting the natural projection.
A second relevant bundle is the second jet space j2 (Vn11 ) of the fibration

t : Vn11KD. The latter, referred to jet-coordinates t , q i , q
. i , q

..i , is an affine bun-
dle over j1 (Vn11 ), modelled on the vertical bundle V( j1 (Vn11 ) ) associated with
the fibration j1 (Vn11 )K Vn11.

Once again, we have a canonical identification between points z� j2 (Vn11 ) and
vectors on j1 (Vn11 ), expressed by the relation

z4 u ¯

¯t
1q

. i (z)
¯

¯q i
1q

..i (z)
¯

¯q
. i v

p(z)

� j2 (Vn11 )(2.2)

p denoting now the natural projection p : j2 (Vn11 )K j1 (Vn11 ).
Every section Z : j1 (Vn11 )K j2 (Vn11 ) is called a dynamical flow (or SODE)

over j1 (Vn11 ). In local coordinates, consistently with eq. (2.2), we have the
representation

Z4
¯

¯t
1q

. i ¯

¯q i
1Z i (t , q k , q

. k )
¯

¯q
. i

(2.3)

expressing every dynamical flow Z as a vector field on j1 (Vn11 ).
By eq. (2.3) it is easily seen that the integral curves of a dynamical flow Z are

jet-extensions of sections of Vn11 , and that the difference between two arbitrary
dynamical flows is a vertical vector field over j1 (Vn11 ).

In what follows, we shall denote by C( j1 (Vn11 ) ) the annihilator of the (n11)-
dimensional distribution over j1 (Vn11 ) generated by j2 (Vn11 ). It is a straightfor-
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ward matter to verify that the bundle C( j1 (Vn11 ) ) — usually referred to as the
contact bundle — is spanned locally by the 1-forms v i4dq i2q

. i dt. Every section
s : j1 (Vn11 )KC( j1 (Vn11 ) ) will be called contact 1-form over j1 (Vn11 ).

At each z� j1 (Vn11 ), the affine character of the fibration j1 (Vn11 )K Vn11

provides a canonical isomorphism between the vertical spaces Vp(z) (Vn11 ) and
Vz ( j1 (Vn11 ) ). The algorithm relies on the fact that every vertical vector
V�Vp(z) (Vn11) identifies a corresponding vertical vector V×�Vz ( j1(Vn11)), namely
the tangent vector to the straight line jKz1jV through z. In local coordinates,
the correspondence VKV× — known as the vertical lift of vectors — is expressed as

V4V ig ¯

¯q i h
p(z)

KV×4V iu ¯

¯q
. i
v

z

.

We may then set up a non singular pairing a V b between vertical vectors and con-
tact 1-forms on j1 (Vn11 ), based on the request [7]

» ¯

¯q
. i V

v j«
z

»4 o ¯

¯q i
, dq j2q

. j (z) dtp
p(z)

4d j
i(2.4)

whence aVVsb4V i s i for every V4V i ¯

¯q
. i

, s4s i v i.

It is easily seen that this makes the vertical space Vz ( j1 (Vn11 ) )
%Tz ( j1 (Vn11 ) ) isomorphic to the dual of Cz ( j1 (Vn11 ) ).

More in general, the pairing a V b applies equally well to vertical vectors and se-
mibasic 1-forms on j1 (Vn11 ), according to the relation

aV V hb4V i h i(2.5)

with h4h i dq i1h 0 dt.
Now, let us suppose that the given system B is subject to a set of affine non-

holonomic constraints. These are expressed geometrically by an (n2r)-dimensio-
nal co-distribution D on Vn11 , spanned locally by a set of linearly independent
1-forms having expression

g s4g s
i (t , q) dq i1g s

0 (t , q) dt s41, R , n2r .(2.6)

In this case, the totality of admissible kinetic states of the system does no longer
coincide with the whole manifold j1 (Vn11 ), but only with the region A »4D 0

O j1 (Vn11 ), D 0 denoting the annihilator of D in T(Vn11 ).
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Under the usual assumption rank Vg s
i V4n2r , A has the nature of an embed-

ded submanifold of j1 (Vn11 ), fibered over Vn11 , according to the diagram (1.1).
A local cartesian representation for the submanifold A is provided by the vani-

shing of the evaluation functions on j1 (Vn11 ) associated with the 1-forms g s ,
namely

f s (t , q i , q
. i ) »4g s

i (t , q) q
. i1g s

0 (t , q)40 s41, R , n2r .(2.7a)

Referring A to local fibered coordinates t , q 1 , R , q n , z 1 , R , z r , we may descri-
be equivalently the embedding i : A K j1 (Vn11 ) as

q
. i4c i (t , q , z) »4c i

A (t , q) z A1c i
0 (t , q) i41, R , n(2.7b)

with rank Vc i
A V4r.

The representations (2.7a, b) are related by the obvious identities

g s
i c i

A40 s41, R , n2r , A41, R , r .(2.8)

Identifying A with its image i(A)% j1 (Vn11 ), we shall call admissible every sec-
tion g : DK Vn11 whose first jet extension j1 (g) is contained in A. Any such sec-
tion represents an evolution of the system allowed by the constraints.

The concepts of contact bundle, vertical vector and dynamical flow are easily
adapted to the submanifold A.

To start with, the contact bundle C(A) over A is defined as the pull-back C(A) »
4 i *(C( j1 (Vn11 ) ) ), spanned locally by the 1-forms

vAk »4 i *(v k )4dq k2c k (t , q , z) dt k41, R , n .

Every section s : A KC(A), expressed in coordinates as s4s k (t , q , z) vAk , will
be called contact 1-form over A.

Also, the fibration p : A K Vn11 induces a corresponding vertical bundle
V(A), identified with the sub-bundle

V(A)4]V�T(A)NaV , dtb40, aV , vAk b40 k41, R , n(

yielding the characterization

V�V(A) ` V4V A ¯

¯z A
.
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Taking eq. (2.7b) into account, it is easily seen that the push-forward of the em-
bedding i is an injection of V(A) into V( j1 (Vn11 ) ) summarized into the identi-
ties

i*g ¯

¯z A h4c i
A

¯

¯q
. i

.

This allows to look at every fibre of V(A) as a vector sub-space of the correspon-
ding fibre of V( j1 (Vn11 ) ).

Moreover, let t(A) »4T(A)O j2 (Vn11 ) be the intersection of the tangent bun-
dle T(A) over A with (the restriction to A of) the second jet bundle j2 (Vn11 )
viewed as an affine subspace of T( j1 (Vn11 ) ). Recalling eq. (2.2), we have the
identification

t(A)4]X�T(A)NaX , dtb41, aX , vAi b40 i41, R , n( .(2.9)

From the latter, it is easily seen that t(A) has the nature of affine bundle, model-
led on the vertical bundle V(A). Any section Z : A Kt(A) will be called non-holo-
nomic dynamical flow and it will be expressed, in local coordinates, as

Z4
¯

¯t
1c i (t , q , z)

¯

¯q i
1Z A (t , q , z)

¯

¯z A
.(2.10)

From eq. (2.10) it is a straightforward matter to verify that every integral curve
of a dynamical flow on A is automatically the jet extension of an admissible sec-
tion g : DK Vn11 .

Now, let us consider the bilinear pairing (2.4) between vertical vectors and
contact 1-forms, introduced above. This one operates on A, through the obvious
identification

ovA j
V

¯

¯z A p
z

»4 ov j
V
i*g ¯

¯z A hp
i(z)

4 (c j
A )z(2.11)

gwhence anVVb4n j V A c j
A for every n4n j v

A j , V4V A ¯

¯z A h.
Of course, the map n , VK an VVb has now a singular character, it being clear

that any 1-form n4n i v
Ai satisfying the conditions n i c i

A40, A41, R , r annihi-
lates all vertical vectors. The totality of such 1-forms generate a vector sub-bun-
dle of the contact bundle, henceforth denoted by x(A), and called the Chetaev
bundle. Every section n : A Kx(A) is called a Chetaev 1-form on A.
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A local basis for the Chetaev bundle x(A) is provided by any set of linearly in-
dependent contact 1-forms m s4m s

i vAi , s41, R , n2r satisfying

m s
i c i

A40, s41, R , n2r , A41, R , r .

For example, if we adopt the cartesian representation (2.7a) for the submanifold
A, eq. (2.8) indicates that a possible choice is given by the ansatz

m s4g s
i vAi .(2.12)

From this, denoting by D v the vertical lift or, what is the same, the pull-back on
j1 (Vn11 ) of the «constraint» co-distribution D over Vn11 , it is easily seen that
x(A)4D v

NA (1).
Now, let L� F( j1 (Vn11 ) ) be a lagrangian function expressing a given dy-

namics acting on the system B.

Then, denoting by V»4d uL dt1
¯L

¯q
. i

v iv the associated Poincaré-Cartan

2-form, the corresponding problem of motion for the constrained system B may
be formulated through the requirements

.
/
´

Z2l V NA�x(A)

aZ , dtb41

Z(f s )NA40 (s41, R , n2r

(2.13)

where Z�D 1 (A) is the unknown.
In fact, under the standard regularity assumptions det

V

¯ 2 L

¯q
. i ¯q

. j V
c0 and

rank Vg s
i V4n2r , eqs. (2.13) admit as unique solution the dynamical flow Z tan-

gent to A whose integral curves satisfy the usual Lagrange-Chetaev equations
[6], [8], [13], [17]

d

dt
u ¯L

¯q
. i
v2 ¯L

¯q i
4l s g s

i , q
. i4

dq i

dt
, g s

i q
. i1g s

0 40(2.14)

for the unknowns q i (t), q
. i (t), and l s (t).

(1) This is a direct consequence of the affine nature of the given constraints. However,
the construction of the Chetaev bundle proposed above is more general and concerns arbit-
rary (not necessarily affine) non-holonomic constraints.
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2.2 - The Lagrangian bundle

For convenience of the reader, referring to [9], [12] for comments, notations
and terminology, we recall here some geometrical properties of the Lagrangian
bundle L(Vn11 ).

By construction, the latter is a principal fiber bundle p : L(Vn11 )K j1 (Vn11 )
over the velocity space, with structural group isomorphic to (D , 1). It is possible
to refer L(Vn11 ) to local fibered coordinates of the form t , q i , q

. i , u
.
, subject to the

transformation law

t4 t1c , qi4 qi (t , q), q
. i4

¯qi

¯q k
q
. k1

¯qi

¯t
, q

.
4u

.
1

df

dt
(2.15)

with
df

dt
»4

¯f

¯q k
q
. k1

¯f

¯t
, f4 f (t , q)� F(Vn11 ).

Of course, L(Vn11 ) is also fibered, in a natural way, over the configuration
space-time Vn11 . The vertical bundle associated with this fibration is indicated

by V(L(Vn11 ) ) and is spanned locally by the vector fields
¯

¯u
. ,

¯

¯q
. i

i41, R , n.
Any section l : j1 (Vn11 )K L(Vn11 ) is called a Lagrangian section. In coordi-

nates, every such l is described locally in the form

u
.
4L(t , q i , q

. i )(2.16)

involving a function L� F( j1 (Vn11 ) ), henceforth called «the Lagrangian».
In [12], we have shown that the assignment of a Lagrangian section l induces

on the manifold L(Vn11 ) the following geometrical objects:

l a trivialization W l »4u
.
2L(t , q i , q

. i ) of the principal fiber bundle L(Vn11 )
K j1 (Vn11 );

l a smooth connection of L(Vn11 )K j1 (Vn11 ), whose connection 1-form is
given by the differential dW l4du

.
2dL. The related horizontal lift associates with

every vector field X4X 0 ¯

¯t
1X i ¯

¯q i
1X

.
i ¯

¯q
. i

�D 1 ( j1 (Vn11 ) ) a corresponding

vector field Xl on L(Vn11 ), invariant under the action of the structural group gi.e.,

under the 1-parameter group of diffeomorphisms generated by
¯

¯u
. h and expres-

sed locally as

Xl4X 0 ¯

¯t
1X i ¯

¯q i
1X

.
i ¯

¯q
. i

1X(L)
¯

¯u
.(2.17)
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l a (1 , 1 ) tensor field JA on L(Vn11 ), having local expression

JA4v i7 u ¯L

¯q
. i

¯

¯u
. 1

¯

¯q
. i
v(2.18)

where we have preserved the notation v i4dq i2q
. i dt i41, R , n for the pull-

back to L(Vn11 ) of the contact 1-forms on j1 (Vn11 ). It is immediate to see that JA

is p-related to the fundamental tensor J4v i7
¯

¯q
. i

of j1 (Vn11 );

l an exact 2-form V
A

l on L(Vn11 ), expressed, in local fibered coordinates, as

V
A

l »4du
.
Rdt1d u ¯L

¯q
. i
vRv i2

¯L

¯q
. i

dq
. iRdt .(2.19)

Under the regularity assumption rank
V

¯ 2 L

¯q
. i ¯q

. j V
4n , it is a straightforward mat-

ter to verify that the 2-form (2.19) has maximal rank, thus endowing the bundle
L(Vn11 ) with a symplectic structure. When this is the case, following the stan-
dard terminology, the section l is said to be a regular Lagrangian section. On the
contrary, when the regularity hypothesis is violated, but V

A
l has constant rank

everywhere, the 2-form (2.19) is presymplectic. In such a circumstance, we shall
call l a degenerate (or singular) Lagrangian section. Furthermore, denoting by

V l »4duL dt1
¯L

¯q
. i

v iv the Poincaré-Cartan 2-form on j1 (Vn11 ) associated with

the Lagrangian function L(t , q i , q
. i ), one has V l4 l *(VAl ).

By means of the 2-form V
A

l and the trivialization W l mentioned above, we may
construct equations of motion directly on the Lagrangian bundle L(Vn11 ). The al-
gorithm is based on the search for vector fields ZA�D 1 (L(Vn11 ) ) satisfying the
requirement

ZA2l V
A

l42dW l .(2.20)

In [12] we have indeed proved that — both in the regular and in the singular case
— the problem (2.20) is mathematically equivalent to the standard one formulated
on j1 (Vn11 ) through the cosymplectic (precosymplectic) structure (V l , dt), name-
ly through the equations

Z2l V l40 , aZ , dtb41(2.21)

with unknown Z�D 1 ( j1 (Vn11 ) ). More precisely, we have shown that eq. (2.20)
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admits a solution if and only if eqs. (2.21) do, and that the solutions of both pro-
blems of motion (2.20), (2.21) are related, to each other, in a natural way.

3 - Presymplectic non-holonomic Lagrangian systems

3.1 - Regular Lagrangian systems

Let us denote by L(A) the pull-back on A of the Lagrangian bundle L(Vn11 ),
according to the commutative diagram

L(A) K
i

L(Vn11 )

Ip Ip(3.1)

A K
i

j1 (Vn11 ) .

In what follows, we shall systematically identify L(A) with its image i(L(A) )
%L(Vn11 ), and adopt for the latter a cartesian representation of the form (2.7a).

Also, we shall denote by x×(A) the pull-back on L(A) of the Chetaev bundle
x(A) over A (2).

Now, given a regular lagrangian section l : j1 (Vn11 )K L(Vn11 ), expressed
locally as u

.
4L(t , q i , q

. i ), let V
A

l be the symplectic 2-form on L(Vn11 ) induced
by l.

We set up a non-holonomic problem of motion on L(A), based on the
requirements

(Z×2l V
A

l1dW l )NL(A)� x×(A) , Z×�D 1 (L(A) )(3.2)

where, of course, Z× is the unknown, and W l4u
.
2L denotes the trivialization of

the principal fiber bundle L(Vn11 )K j1 (Vn11 ) induced by l.
Taking the cartesian representation (2.7a), as well as the fact that the 1-forms

g s
i v i

NL(A) provide a local basis for x×(A) into account, it easily seen that the condi-

(2) Once again, indicating by D×v the pull-back on L(Vn11 ) of the co-distribution D v over

j1 (Vn11 ), we have x×(A)4D×v
NL(A).
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tions (3.2) are mathematically equivalent to the system of equations

.
/
´

(Z×2l V
A

l1dW l )NL(A)4l s g s
i v i

NL(A)

Z×(f s )NL(A)40 (s41, R , n2r
(3.3)

l s indicating (n2r) unknown Lagrange multipliers.
Under the regularity assumption for the lagrangian section l and the maxima-

lity condition on the rank of the matrix Vg s
i V , it is a straightforward matter — left

to the reader — to prove that the system (3.3) admits the unique solution

Z×4Z1Z(L)
¯

¯u
.(3.4)

Z denoting the dynamical flow on A (3) uniquely determined by eqs. (2.13).
Recalling the representation (2.17), the vector field Z× is recognized as the hori-

zontal lift of the dynamical flow Z with respect to the smooth connection dW l of
L(Vn11 )K j1 (Vn11 ) induced by l.

As in the unconstrained case [12], we thus come to the conclusion that the pro-
blem formulated through eqs. (3.3) and the standard one based on eqs. (2.13) are
equivalent.

More specifically, if Z× satisfies eqs. (3.3) then it is p-projectable on A, and its
image Z4p *(Z×) is a solution of eqs. (2.13). Conversely, if Z is a solution of (2.13),
its horizontal lift (3.4) satisfies eqs. (3.3).

Our aim is now to examine the geometrical meaning of eqs. (3.3), in connection
with the symplectic structure V

A
l . To this end, we borrow from [19] adapting the

argument to the present geometrical context.
To start with, let us indicate by ll--l : T *(L(Vn11 ) )KT(L(Vn11 ) ) the process of

rising the indices induced by V
A

l , i.e. the linear map h�T *(L(Vn11 ) )K ll--l (h)
�T(L(Vn11 ) ) defined by ll--l (h)2l V

A
l4h.

Let us then consider the symplectic complement T(L(A) )»%TL(A) (L(Vn11 ) ) of
the tangent bundle T(L(A) ).

Given a cartesian representation (2.7a) for the submanifold L(A), it is well
known that a local basis for the bundle T(L(A) )» is provided by (the restriction
on L(A) of) the (n2r) vector fields Xdfs »4 ll--l (df s ). A straightforward evaluation

(3) More precisely, the flow Z is defined in a neighbourhood of the submanifold A

% j1 (Vn11 ) and is tangent to A.



198 STEFANO VIGNOLO [14]

in local coordinates yields the expressions

Xdfs42G ij g s
j

¯

¯q i
1V s(3.5)

G ij denoting the matrix inverse of G ij »4
¯ 2 L

¯q
. i ¯q

. j
and V s�V(L(Vn11 ) ) indicating

vertical vector fields whose explicit expression is not needed in the following
discussion.

Also, we consider the symplectic complement of the annihilator x×(A)0

%TL(A) (L(Vn11 ) ) of x×(A), and denote it by (x×(A)0 )».
Setting, for simplicity, n s »42g s

i v i
NL(A) , as above we have that (x×(A)0 )» is ge-

nerated locally by the vectors Xns »4 ll--l (n s ). In local coordinates, it is an easy mat-
ter to prove the identities

Xns42G ij g s
j u ¯

¯q
. i

1
¯L

¯q
. i

¯

¯u
. v .(3.6)

Due to the linear independence of the 1-forms df s and n s , the vectors Xdfs and
Xns are linearly independent too, so that one has (x×(A)0 )»OT(L(A) )»4]0(.

In view of this, we state the following

P r o p o s i t i o n 3.1. The space (x×(A)0 )»5T(L(A) )» is a symplectic subspace
of TL(A) (L(Vn11 ) ).

P r o o f . To start with, we observe that

((x×(A)0 )»5T(L(A) )»)»4 x×(A)0OT(L(A) ) .

Also, any X� (x×(A)0 )»5T(L(A) )» may be represented in the form X4l s Xdfs

1h s Xns . Therefore, if, in addition, X� x×(A)0OT(L(A) ), from the representations
(3.5), (3.6) we derive the relations

04 aX , n s b4 al g Xdfg , n s b4l g C gs

with C gs »4G ij g g
i g s

j . Now, in view of the regularity assumptions on det
V

¯ 2 L

¯q
. i ¯q

. j V

and rank Vg s
i V , the matrix C gs is non-singular, so that l s40, (s41, R , n2r.

In a similar way, we have

04 aX , df s b4 ah g Xng , df s b42h g C gs
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yielding h s40, (s41, R , n2r. We conclude that X40, so proving the
Proposition. r

From Proposition 3.1, the direct sum decomposition

TL(A) (L(Vn11 ) )4 [ (x×(A)0 )»5T(L(A) )» ]5 [x×(A)0OT(L(A) ) ](3.7)

follows. Associated with the latter, there are two projection operators

P : TL(A) (L(Vn11 ) )K x×(A)0OT(L(A) )

and

Q : TL(A) (L(Vn11 ) )K (x×(A)0 )»5T(L(A) )» .

These (4) allow to clarify the geometrical meaning of eqs. (3.3). Indeed, we
have

T h e o r e m 3.1. Let ZA be the solution of the unconstrained problem (2.20).
Then the vector field Z× »4 P (ZA) is the solution of eqs. (3.3).

P r o o f . First of all we recall that, in the regular case, the (unique) solution of
(2.20) is nothing but the horizontal lift ZA »4Zl (see eq. (2.17)) of the unique dyna-
mical flow Z over j1 (Vn11 ) solving eqs. (2.21) [12]. Furthermore, by definition,
P (ZA) is tangent to L(A) and, according to eq. (3.7), may be expressed as

P (ZA)4ZA2Q (ZA)4ZA2h s Xdfs2l s Xns(3.8)

for some functions l s , h s . Moreover, we have necessarily aP (ZA), n g b40, (g

41, R , n2r. Therefore, from eqs. (3.5), (3.6), (3.8) we derive the relations

042h s aXdfs , n g b42h s C sg

implying that h s40, (s41, R , n2r. We then get the expression

P (ZA)4ZA2l s Xns

(4) More in particular, we may define the projectors P and Q on TU (L(Vn11 ) ), U be-
ing a neighbourhood of L(A) in L(Vn11 ).
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mathematically equivalent to the equation

gP (ZA)2l V
A

l1dW l
h
NL(A)4l s g s

i v i
NL(A) r

We notice that the multipliers l s may be determined explicitly by imposing the
tangency conditions Z×(f g )NL(A)40. This yields l s42Csg ZA(f g )NL(A) , Csg denoting
the inverse matrix of C sg. Indicating by ] , (l the Poisson brackets on L(Vn11 ) in-
duced by V

A
l , we may write l s42Csg]f g , W l(lNL(A).

Following Ibort and co-workers [19], making use of the projection P, we may
set up corresponding Dirac brackets ], (L(A) on L(A), defined by

] f , g(L(A) »4V
A

l (P (Xdg ), P (Xdf ) )

where Xdf »4 ll--l (df ), Xdg »4 ll--l (dg), f and g denoting arbitrary functions defined in a
neighbourhood of L(A) in L(Vn11 ).

In this connection, we state

P r o p o s i t i o n 3.2. The Dirac brackets ] , (L(A) satisfy the following proper-
ties:

i) the constraint functions f s are Casimir functions, i.e.

]f s , f (L(A)40 (f� F(L(Vn11 ) ) ;

ii) if f is an observable (i.e. f is (the pull-back of ) a function on j1 (Vn11 )),
its evolution law is expressed as

df

dt
4] f , W l(L(A)

P r o o f . i) By definition, ]f s , f (L(A)4V
A

l (P (Xdf ), P(Xdfs ) )40 since P (Xdfs )
40. ii) Analogously, one has ] f , W l(L(A)4]2W l , f (L(A)4V

A
l (P (Xdf ), P (ZA) )

4V
A

l (Xdf2l s Xdfs2h s Xns , Z×), for some functions l s , h s. Then, since Z×� x×(A)0

OT(L(A) )4 ((x×(A)0 )»5T(L(A) )» )» , we deduce ] f , W l(L(A)4V
A

l (Xdf , Z×)

4 aZ×, dfb4
df

dt
. r

P r o p o s i t i o n 3.3. The Dirac brackets ] , (L(A) satisfy the Jacobi identity if
and only if the constraints are integrable

P r o o f . By a general result on Poisson manifolds [25] (see also [19]), the
Dirac brackets ] , (L(A) satisfy the Jacobi identity if and only if x×(A)0OT(L(A) ) is
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an involutive distribution. Moreover, given arbitrary vector fields X , Y� x×(A)0

OT(L(A) ) and any Chetaev 1-form n� x×(A), one has a[X , Y], nb4dn(Y , X). The
mathematical equivalence between the involutiveness of x×(A)0OT(L(A) ) and the
integrability of the constraints follows then by the fact that a set of kinetic con-
straints is integrable if and only if the ideal generated by the corresponding mo-
dule of Chetaev 1-forms is a differential ideal [8]. r

As a concluding remark, we notice that the whole machinery developed so far
applies equally well to the case of general (not necessarily affine) non-holonomic
constraints.

3.2 - Singular Lagrangian systems

Let us now suppose that the given lagrangian section l is degenerate and that
the 2-form V

A
l is presymplectic.

In this case, in general, eqs. (2.13) (respectively (3.2)) may admit no solution at
all, or, when a solution exists, it may be non-unique. Moreover, the equivalence
between the problems of motion formulated respectively on L(Vn11 ) and j1 (Vn11 )
is no longer so immediate as in the regular case.

To account for this situation, we shall restrict our attention on the solutions Z
(Z×) of (2.13) ((3.2)) satisfying the additional requirement

aZ , nb40 (aZ×, n×b40) (n�x(A) (n×� x×(A) ) .(3.9)

It is easily seen that the request (3.9) is not restrictive in order to find dynamical
flows Z�D 1 (A) solving eqs. (2.13) (i.e, in order to find kinematically admissible
solutions). Indeed, since x(A)%C(A) — taking the characterization (2.9) into ac-
count — it is clear that if the problem (2.13), (3.9) has no solution, then the (singu-
lar) constrained problem of motion for B is unsolvable too.

Therefore, in the subsequent discussion, the condition (3.9) will be systemati-
cally embodied into the scheme.

We shall now prove that the two problems (2.13) and (3.2), both completed
with the additional requirement (3.9), are mathematically equivalent, at least in an
algebraic sense.

To this end, following [12], let us suppose that there exists a maximal submani-
fold M% L(A) on which eqs. (3.3), (3.9) admit a solution X×, namely (z�M )X×

�Tz (L(A) ) such that (X×2l V
A

l1dW l )NL(A)� x×(A) and aX×, n×b40 (n×� x×(A).
Then, making use of the straightforward fact that the forms V

A
l and dW l , as

well as the bundle x×(A), are invariant under the action of the structural group, i.e.
under translations along the fibres of L(A)K A, we have the following
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P r o p o s i t i o n 3.4. Let p : L(A)K A denote the canonical projection. Then,
for each z�M , the whole fiber p21 (p(z) ) over p(z) is contained in M.

P r o o f . Let X×�Tz (L(A) ) be a solution of the problem (3.2), (3.9) at z�M.
For each z�p21 (p(z) ), denote by c j : L(Vn11 )K L(Vn11 ) the translation sati-
sfying c j (z)4z , and consider the vector Y×�Tz (L(A) ) such that X×4 (c j )*Y×. It
is then a straightforward matter — left to the reader — to verify that Y× satisfies
the requirements (3.2), (3.9) at the point z. r

D e f i n i t i o n 3.1. A pair (M , X×), where M% L(A) is a submanifold and X× : M
KTM (L(A) ) is a vector field satisfying the requirements (3.2) and (3.9), will be
called an algebraic solution of the problem (3.2), (3.9). In a similar way, an alge-
braic solution of eqs. (2.13), (3.9) will be understood as a vector field X , defined
on a submanifold N of A and satisfying eqs. (2.13), (3.9) everywhere on N.

P r o p o s i t i o n 3.5. Problem (3.2), (3.9) admits an algebraic solution if and
only if eqs. (2.13), (3.9) do.

P r o o f . Still following [12], let

M0 »4]z� L(A)Nu
.
(z)4L(p(z) )((3.10)

denote the image of A under the lagrangian section l. Given any algebraic solu-
tion (M , X×) of (3.2), (3.9), we have necessarily

aX×, dW l b40(3.11)

everywhere on M , and, therefore, also on S»4MOM0 . It follows that X×NS is tan-
gent to M0 . Accordingly, there exists a unique vector field X : p(S)KT(A) p-re-
lated to X×, i.e. satisfying X4p *(X×), or, what is the same, l*(X)4X×NS . A straight-
forward argument, left to the reader, shows that X is then a solution of eqs. (2.13),
(3.9) on p(S) (4p(M) ).

Conversely, if (N , X) is an algebraic solution of eqs. (2.13), (3.9), then it is ea-
sily seen that the horizontal lift Xl (2.17) satisfies eqs. (3.2), (3.9) on the submani-
fold p21 (N)% L(A). Indeed, the push forward l*(X) satisfies (3.2), (3.9) on the
image space l(N)% L(A). The conclusion then follows from the fact that eqs. (3.2),
(3.9) are invariant under the action of the structural group, while the lift Xl is
obtained by pushing l*(X) along the fibres via the action of the group
itself. r
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3.3 - The constraint algorithm

The aim of this subsection is to set up a constructive method for finding diffe-
rential solutions for eqs. (3.3), (3.9) — or, equivalently, for eqs. (2.13), (3.9) — in
the singular case.

To this end, using the tools of presymplectic geometry, we shall adapt the con-
straint algorithm proposed in [12] for «free» degenerate Lagrangians (5) to the
present constrained case.

To start with, we shall look for solutions of (3.2), (3.9) only at points of M0 , i.e.
on the image of A under the lagrangian section l. There is no loss in generality in
doing this. Indeed, solving the problem on a submanifold M’M0 and «pushing
forward» the result along the fibres (as we did in Proposition 3.4), we obtain a
solution on the totality of fibres p21 (p(z) )% L(A), z�M. Moreover, as seen in
Proposition 3.5, the knowledge of a solution on M’M0 is sufficient to identify a
corresponding vector field on p(M)’ A solving eqs. (2.13), (3.9).

With this in mind, let us begin by assuming that there exists a submanifold M1

’M0 on which the problem (3.2), (3.9) admits at least an algebraic solution X.
Denoting by Y : T(L(Vn11 ) )KT *(L(Vn11 ) ) the linear map Y(X)4X Y »4X

2l V
A

l , the submanifold M1 may be easily characterized as the subset

M14]z�M0 NdW l (z)� (TM0Ox×(A)0 )Y1x×(A)( .(3.12)

Of course, in order for an algebraic solution X to be dynamically significant, it is
necessary that it be tangent to the submanifold M1 itself.

In general, this requirement will be satisfy only on a subregion M2 of M1 ,
identified with the totality of points of M1 at which the problem (3.2), (3.9) admits
at least a solution X belonging to TM1 .

Once again, by assuming that M2 has a submanifold structure, we may express
it as

M24]z�M1 NdW l (z)� (TM1Ox×(A)0 )Y1x×(A)( .(3.13)

As above, we must now require that at least one solution X on M2 be tangent to

(5) This algorithm, in its turn, extended to the time-dependent Lagrangians the procedu-
re developed by Gotay and co-workers in [2], [3].
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M2 . So, by iterating the process, we obtain a sequence of «constraint manifol-
ds» (6)

L(A)JM0JM1JM2JR

where, for (kF0 we have

Mk114]z�Mk NdW l (z)� (TMkOx×(A)0 )Y1x×(A)( .(3.14)

The algorithm is said to stabilize if there exists an integer kD0 such that Mk11

4Mk and dim MKD0. In this circumstance (and only in this) the problem (3.2),
(3.9) admits at least one differential solution, namely a submanifold M»4Mk car-
rying a solution X tangent to M itself. Following the usual terminology [1], [2],
[3], [4], [5], [12], [18], we shall call M the final constraint manifold. Also, it is ea-
sily seen that M (when existing) is maximal, i.e. if N is any other submanifold of
M0 along which eqs. (3.3), (3.9) possess a differential solution, then N is contained
in M.

As a concluding remark, we notice that a useful characterization of the con-
straint submanifolds Mk may be obtained by observing that (TMkOx×(A)0 )Y

1x×(A)4 [ (TMkOx×(A)0 )»Ox×(A)0 ]0. This allows to express each constraint sub-
manifold as (7)

Mk114]z�Mk Na(TMkOx×(A)0 )»Ox×(A)0 , dW l b(z)40(, kF0 .(3.15)

It follows that, whenever the algorithm (3.15) terminates with a final constraint
manifold M , the relation

a(TMOx×(A)0 )»Ox×(A)0 , dW l b(z)40(3.16)

holds identically (z�M.

3.4 - The second-order differential equation problem

As it is well known, finding a «final constraint manifold» M along which
eqs. (3.3), (3.9) admit solutions is not yet enough. Indeed, in principle, such sol-

(6) Here it is systematically assumed that every subset Mk%M0 arising in the course of
the constraint procedure is a submanifold.

(7) At each kF0, we may suppose that the subspaces (TMkOx×(A)0 )»Ox×(A)0

are not trivial. Indeed, if (TM0Ox×(A)0 )»Ox×(A)04]0( then (TM0Ox×(A)0 )Y1x×(A)
4T *(L(Vn11 ) )NM0 , so that the constraint algorithm does not need to start. Moreover, we
have obviously (TM0Ox×(A)0 )»Ox×(A)0% (TMkOx×(A)0 )»Ox×(A)0 (kF1.
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utions may have no dynamical meaning at all, i.e. may fail to be dynamical flows
(or SODEs).

Accordingly, we shall now deal with the problem of finding out kinematically
admissible solutions of eqs. (3.3), (3.9). The topic is known in the literature as the
second-order differential equation problem.

To start with, let V l be the Poincaré-Cartan 2-form on j1 (Vn11 ) induced by
the (degenerate) lagrangian section l , and let D v be the vertical lift to j1 (Vn11 ) of
the «constraint» co-distribution D over Vn11 .

At each z� j1 (Vn11 ), we consider the intersection Dlz »4ker V lzOVz (D v )
with Vz (D v )%Vz ( j1 (Vn11 ) ) denoting the annihilator of D v

z with respect to the pai-
ring (2.5).

By supposing that the subspaces Dlz are not trivial and have constant rank at
each z� j1 (Vn11 ) (8), it is a straightforward matter — left to the reader — to veri-
fy that Dl »4Nz� j1 (Vn11 ) Dlz is an involutive distribution.

In local coordinates, expressing V l as

V l4
¯L

¯q i
dq iRdt1

¯2 L

¯t¯q
. i

dtRv i1
¯2 L

¯q j ¯q
. i

dq jRv i1
¯2 L

¯q
. j ¯q

. i
dq

. jRv i

and adopting a local basis ]g s4g s
i (t , q) dq i1g s

0 (t , q) dt , s41, R , n2r( for
D v , it is easily seen that every vector V belonging to Dl is necessarily of the
form

V4V i ¯

¯q
. i

(3.17a)

with the components V i subject to the restrictions

V i ¯ 2 L

¯q
. i ¯q

. j
40, V i g s

i 40 j41, R , n , s41, R , n2r .(3.17b)

We have now enough geometrical tools to introduce the following

D e f i n i t i o n 3.2. A lagrangian section l : j1 (Vn11 )K L(Vn11 ) is called ad-
missible with respect to the constraints if and only if the leaf space 4»

(8) In what follows, we restrict our analysis to the only systems obeying such
requirements.
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4 j1 (Vn11 ) / Dl of the foliation generated by Dl admits a manifold structure such
that the canonical projection r : j1 (Vn11 )K4 is a submersion.

It is worth noticing that, by construction, the distribution Dl is automatically
tangent to the constraint submanifold A, thus foliating it. It is then an easy mat-
ter to verify that, whenever the lagrangian section l is admissible, the quotient
space �»4 A / DlNA — identified with the image of A under the map r A »4r i i —
inherits an embedded submanifold structure from 4 , such that r A »4r i i is a
submersion.

Moreover, since Dl is vertical, both manifolds 4 and � are fibered over Vn11 ,
thus giving rise to the commutative diagram

� K
i

4

Ip Ip(3.18)

Vn11 1 Vn11 .

i denoting the stated embedding.
Next, we focus attention on the fact that the assignment of the lagrangian sec-

tion l allows to foliate L(Vn11 ) in terms of the 1-parameter family of leaves

S j »4]z� L(Vn11 )Nu
.
(z)4L(p(z) )1j(, j�D .(3.19)

Every such leaf is clearly the image of j1 (Vn11 ) under the section lj : j1 (Vn11 )
K L(Vn11 ) described locally by u

.
4L(t , q i , q

. i )1j. In a similar way, the
images

Mj »4]z� L(A)Nu
.
(z)4L(p(z) )1j(, j�D(3.20)

of A under the sections lj give rise to a foliation of the submanifold L(A).
Now, making use of the horizontal lift (2.17) induced by the section l (or, what

is the same, by any other section lj), we lift the distribution Dl over j1 (Vn11 )
to an involutive distribution D

A
l over L(Vn11 ). Equivalently, we may define

D
A

lz »4 lj*(DlNp(z) ) at each z�S j and then put D
A

l »4Nz� L(Vn11 ) D
A

lz .
Directly from eqs. (2.17), (3.17), we derive that every vector VA� D

A
l is expres-

sed locally as

VA4VAiu ¯L

¯q
. i

¯

¯u
. 1

¯

¯q
. i
v(3.21)

with the components VAi obeying the requirements (3.17b).
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Moreover, by construction, the distribution D
A

l is tangent to every surface
(3.19) and (3.20), so that the leaves of the foliation generated by D

A
l lie on the sur-

faces S j and Mj itselves.
We then come to the conclusion that, whenever the lagrangian section l is ad-

missible, both quotient spaces 7»4 L(Vn11 ) / D
A

l and 7(�) »4 L(A) / D
A

lNL(A) have a
manifold structure and that the canonical projections j : L(Vn11 )K7 and
j 7(�) : L(A)K7(�) are submersions.

Also, we have that 7(�) is naturally embedded into 7 and that both manifolds
7 and 7(�) are principal fiber bundles respectively over 4 and �, with structural
group isomorphic to (D , 1).

The situation is summarized into the commutative diagram

where, for simplicity, we have denoted by i the various embeddings, and by p the
principal fibrations arising from the previous discussion.

Another important fact is that D
A

l%ker V
A

l , V
A

l denoting the presymplectic 2-
form induced by the lagrangian section l through the algorithm explained in § 2.2.
This point is easily seen by a direct check, taking the representation

V
A

l4du
.
Rdt1

¯ 2 L

¯t¯q
. i

dtRv i1
¯ 2 L

¯q j ¯q
. i

dq jRv i1
¯ 2 L

¯q
. j ¯q

. i
dq

. jRv i2
¯L

¯q
. i

dq
. iRdt

as well as the characterization (3.21) explicitly into account. We have then
D
A

l2l V
A

l40. Again by eq. (3.21), it is also immediately verified that aD
A

l , dW l b40,
W l4u

.
2L indicating the trivialization of L(Vn11 ) associated with l. Accordingly,

we may conclude that there exist a presymplectic 2-form Vl over 7 and a triviali-
zation Wl of the principal fiber bundle p : 7K4 , such that V

A
l4j*(Vl ) and

W l4j*(Wl ).
In addition to this, since the manifold 7 is fibered over Vn11 — with projec-

tion t : 7K Vn11 — we may pull-back on 7 the co-distribution D over Vn11. We
denote by Dv »4t*(D) the resulting co-distribution over 7.
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At this point, collecting all stated results, we may set up a reduced non-holono-
mic problem of motion on the quotient space 7 , consisting in the search for vector
fields Z satisfying the requirements

.
/
´

(Z2l Vl1dWl )N7(�)�Dv
N7(�)

aZ, Dv
N7(�) b40

Z�D 1 (7(�) ) .

(3.23)

The solvability of the problem (3.23) may be analysed through a presymplectic
constraint algorithm identical to the one outlined in § 3.3.

In this connection, it is possible to show that the constraint procedures or, mo-
re generally, the constrained dynamics respectively on L(Vn11 ) and 7 are intima-
tely related to each other.

To see this point, let us return to the surface M0% L(A), and consider the final
constraint submanifold M%M0 generated by the constraint algorithm. We have
then

P r o p o s i t i o n 3.6. For every constraint submanifold Mk , the restriction
D
A

lNMk
is an involutive distribution in TMk , foliating Mk . The corresponding leaf

spaces 8k »4Mk / D
A

lNMk
are submanifolds embedded in 7(�) and the induced

projections j Mk
: MkK8k are submersions.

P r o o f . The proof is given by induction on the constraint submanifolds Mk

and is essentially identical to that of Proposition 3.5 stated in [12] in the case of
free (unconstrained) Lagrangians (see also Proposition 1 in [3] for free time-inde-
pendent systems). Referring the reader to [12] for a detailed account, here we no-
tice that the only differences with respect to the unconstrained case are:

l the different characterization of the constraint submanifold Mk11 expres-
sed, in view of eq. (3.15), by the vanishing of functions of the form f4 aZ , dW l b,
with Z� (TMkOx×(A)0 )»Ox×(A)0 ;

l the straightforward fact that, given two arbitrary vector fields Y� D
A

l and
W� x×(A)0 , one has [Y , W]� x×(A)0. r

As a direct consequence of the previous Proposition, we may state the follo-
wing Equivalence Theorem

T h e o r e m 3.2.

i) The presymplectic algorithm terminates with a final constraint submani-
fold M in L(A) if and only if the corresponding «reduced» algorithm terminates
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with a final constraint submanifold M in 7(�). Moreover, the submanifold M is
diffeomorphic to the leaf space 8»4M/ D

A
lNM .

ii) The problem of motion (3.2), (3.9) is equivalent to the reduced one (3.23),
in the sense that:

1) for every solution X of eqs. (3.3) and (3.9), if j *(X) exists, then it sati-
sfies the reduced problem (3.23);

2) if X satisfies the relations (3.23), then every X j-related to X solves
eqs. (3.3), (3.9).

P r o o f . Taking Proposition 3.6 into account and using that V
A

l4j*(Vl ), W l

4j*(Wl ) and j is a submersion, one may easily prove (9) that the every restriction
j Mk

of the submersion j to the constraint submanifold Mk is a submersion from
Mk onto Mk (Mk denoting the corresponding constraint submanifold for the redu-
ced problem (3.23)) and that the fibers of j by the points of Mk are entirely contai-
ned in Mk . Every quotient space 8k is then diffeomorphic to the corresponding
submanifold Mk . From this all assertions follow (10). r

It is worth observing that Theorem 3.2 ensures the existence of solutions of
(3.2), (3.9) projecting to 7(�). Indeed, given a solution X of (3.23), any vector field
X j-related to X solves the problem (3.2), (3.9) and projects to 7(�).

By analogy with the terminology adopted in [3], [12], every such solution will
be called prolongable, while a solution prolongable modulo V(L(A) ) will be called
semi-prolongable.

As a further step in the discussion of the SODE problem, we have

P r o p o s i t i o n 3.7. Let X�D 1 (M) be a vector field solution of the problem
(3.2), (3.9). Then JA(X)� D

A
lNM

P r o o f . On one hand, by a direct calculation, it is easily seen that every solu-

tion Z of (3.2), (3.9) automatically satisfies the conditions aX , v i b
¯ 2 L

¯q
. i ¯q

. j
40

and g s
i aX , v i b40 (j41, R , n , s41, R , n2r. On the other hand, recalling

(9) The reader may adapt the arguments stated in [5] to the present geometrical
context.

(10) In 1) of ii), one has to verify that the Chetaev 1-form in the right-hand-side of the
first equation (3.3) is necessarily the pull-back of a corresponding 1-form on 7(�). How-
ever, also this point is nothing but a straightforward check.
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eq. (2.18), one has JA(X)4 aX , v i bu ¯L

¯q
. i

¯

¯u
. 1

¯

¯q
. i
v. The result then follows from

eqs. (3.17b), (3.21). r

P r o p o s i t i o n 3.8. Let l be an admissible lagrangian section and X
�D 1 (M) a semi-prolongable solution of eqs. (3.3), (3.9). Then there exists a uni-
que point in each leaf of the foliation of M generated by D

A
lNM at which X is (p-re-

lated to) a SODE.

P r o o f . Once again, the proof is essentially identical to the one concerning
the unconstrained case [3], [12]. The basic idea is to consider the integral curves

of the vertical vector field 2JA(X)42aX , v i bu ¯L

¯q
. i

¯

¯u
. 1

¯

¯q
. i
v. Due to Proposi-

tion 3.7, these are vertical trajectories g(s) : (t , q i , q
. i (s), u

.
(s) ) contained in the

leaves of the foliation of M generated by the distribution D
A

lNM . Given then a point
m�M , let 7(�)m%M denote the leaf through m and g m (s) the integral curve of
2JA(X) starting at m for s40. Since 7(�)m is closed and g m (s)�7(�)m (s , as s

K2Q the limit point nX of g m (s) lies on 7(�)m . Finally, it is a straightforward
matter to see that nX is independent of the choice of m�7(�)m and that it is the
unique point in the leaf 7(�)m at which X is (p-related to) a SODE, namely at
which the relation JA(X)(nX )40 holds. For further comments and details the rea-
der is referred to [12]. r

On the basis of the Proposition 3.8, we may define an injection a X : 8KM as-
sociating with every leaf Y�8 the corresponding point nX (Y)�M. The image of
8 under a X is clearly the union SX of all the points nX (Y), one for each leaf. The
injection a X is a global section of the fibration j M : MK8 , so that SX is an em-
bedded submanifold of M , diffeomorphic to 8. We have thus found a submanifold
SX%M on which the vector field X is a SODE. Note that, by construction, if X and
Y are two semi-prolongable solutions such that JA(X)4 JA(Y), then SX4SY . In this
case, X and Y will be said to be JA-equivalent.

A final difficulty now arises from the fact that, in general, XNSX
may fail to be

tangent to SX . To account for this problem, we observe that, by construction, one
has the direct sum decomposition TSX

M4TSX5D
A

lNSX
. Accordingly, we may

express uniquely XNSX
in the form XNSX

4Z1V with Z�TSX and V� D
A

lNSX
. Since

V� D
A

l , it is then clear that Z too is a SODE (tangent to SX), satisfying both condi-
tions (3.2), (3.9).

Collecting all previous results, we conclude by stating the following

T h e o r e m 3.3. Let l : j1 (Vn11 )K L(Vn11 ) be an admissible (degenerate)
lagrangian section with final constraint submanifold M embedded in M0% L(A).
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Then there exists at least one submanifold S of M along which the problem (3.2),
(3.9) admits at least one kinematically admissible solution Z.

As a concluding remark, it is worth underlining an important difference bet-
ween free and constrained Lagrangian systems. Indeed, in the previous discus-
sion, nothing ensures the uniqueness of the solution on the submanifold S , which,
on the contrary, is automatically guaranteed in the unconstrained case [3], [12].
This is due to the fact that the vectors belonging to the distribution D

A
l do not re-

present all the gauge freedom of the theory. The latter is in fact related to the to-
tality of vectors V�V(L(A) ) satisfying V2l V

A
l� x×(A), V(L(A) ) denoting the verti-

cal bundle associated with the fibration L(A)K Vn11 .

3.5 - Example

Consider a 5-dimensional configuration space-time V411 , referred to (global)
coordinates t , x , y , z , w. These, together with any trivialization u : PKD of the
associated bundle of affine scalars PK V411 (see [9], [12]), induce respectively on
j1 (V411 ) and L(V411 ) fibered coordinates of the form t , x , y , z , w , x

.
, y

.
, z

.
, w

.
and

t , x , y , z , w , x
.
, y

.
, z

.
, w

.
, u

.
.

In this context, let l : j1 (V411 )K L(V411 ) denote the degenerate Lagrangian
section expressed locally as

u
.
4L(t , x , y , z , w , x

.
, y

.
, z

.
, w

.
) »4

1

2
(x
. 21y

. 2 )1w(x
.
1t)1z .

Recalling eq. (2.19), the presymplectic 2-form on L(V411 ) associated with l has
then local expression

V
A

l4du
.
Rdt1dx

.
R(dx2x

.
dt)1dwR (dx2x

.
dt)1dy

.
R(dy2y

.
dt)

2(x
.
1w)dx

.
Rdt2y

.
dy

.
Rdt

while the differential of the trivialization W l4u
.
2L of L(V411 ) induced by l is de-

scribed by

dW l4du
.
2x

.
dx

.
2y

.
dy

.
2(x

.
1t)dw2wdx

.
2wdt2dz .

Let now subject the system to the (ideal) kinetic constraint

z
.
2w40 .(3.24)
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The latter gives rise to two corresponding submanifolds A and L(A) , embedded
respectively into j1 (V411 ) and L(V411 ), and represented in cartesian form by the
same eq. (3.24). Furthermore, it is easily seen that (the pull-back to L(A) of) the
associated (1-dimensional) Chetaev bundle x×(A) is spanned locally by the 1-form
(dz2z

.
dt)NL(A).

For such a system, taking explicitly the requirement (3.9) into account, the
problem of motion formulated on the Lagrangian bundle L(V411 ) relies on the
system

.
/
´

(Z×2l V
A

l1dW l )NL(A)41l(dz2z
.
dt)NL(A)

aZ×, (dz2z
.
dt)bNL(A)40

Z×(z
.
2w)NL(A)40

(3.25)

with unknown

Z×4Z 0 ¯

¯t
1Z x ¯

¯x
1Z y ¯

¯y
1Z z ¯

¯z
1Z w ¯

¯w
1Z

.
x ¯

¯x
. 1Z

.
y ¯

¯y
. 1Z

.
z ¯

¯z
.

1Z
.

w ¯

¯w
. 1Z

.
u ¯

¯u
. .

As pointed out in § 3.3, in order to solve the system (3.25), it is sufficient to focus
attention on the submanifold

M0 »4]z� L(A)Nu
.
(z)4L(p(z) )(

image of A under the section l. Accordingly, it is a straightforward matter to see
that the problem (3.25) admits solutions only on the submanifold M1%M0 expres-
sed in coordinates as

M1 »4]z�M0 Nx
.
(z)1 t(z)40( .

More precisely, eqs. (3.25) possess on M1 a family of (algebraic) solutions consi-
sting of the totality of vector fields of the form

Z×4ZNM1
1Z(L)

¯

¯u
.
NM1

(3.26a)
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with

Z4
¯

¯t
1x

. ¯

¯x
1y

. ¯

¯y
1z

. ¯

¯z
1Z w ¯

¯w
2Z w ¯

¯x
. 1Z w ¯

¯z
. 1Z

.
w ¯

¯w
.(3.26b)

Z w and Z
.

w being arbitrary differentiable functions.
The question is now to check whether among the vector fields (3.26) there is at

least one tangent to M1 . To this end, by imposing the tangency condition Z×(x
.

1t)NM1
40, it is easily seen that indeed the family (3.26) includes infinitely many

differential solutions along M1 , all having expression (3.26a) with

Z4
¯

¯t
1x

. ¯

¯x
1y

. ¯

¯y
1z

. ¯

¯z
1

¯

¯w
2

¯

¯x
. 1

¯

¯z
. 1Z

.
w ¯

¯w
. .(3.27)

This proves that the constraint algorithm stabilizes at the first step, with final
constraint manifold M»4M1 .

However, it is self-evident that none of the solutions (3.26a), (3.27) is kinemati-
cally admissible on the whole submanifold M1 .

Accordingly, following step by step the procedure explained in § 3.4, we shall
now discuss the second-order differential equation problem associated with the
system in study.

To start with, we let the reader verify that the given Lagrangian section l is
effectively admissible, and that the related involutive distribution D

A
l is locally

spanned by the single vector field
¯

¯w
. , namely D

A
l4Span u ¯

¯w
. v.

By Proposition 3.6, one has then that the restriction D
A

lNM foliates the submani-
fold M itself. We may refer the corresponding leaf space 8»4M/ D

A
lNM to natural

local coordinates t , x , y , z , w , y
.
. It follows that every solution Z× of the kind (3.27)

is semi-prolongable.
In addition to this, recalling eq. (2.18), the tensor field JA on L(V411 ) induced

by l is expressed locally as

JA4 u(x. 1w)
¯

¯u
. 1

¯

¯x
. v7 (dx2x

.
dt)1 uy. ¯

¯u
. 1

¯

¯y
. v7 (dy2y

.
dt)

1
¯

¯z
. 7 (dz2z

.
dt)1

¯

¯w
. 7 (dw2w

.
dt) .
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For every Z× of the form (3.26a), (3.27) we have then the relation

JA(Z×)4 (12w
.
)

¯

¯w
.

showing that all these vector fields are JA-equivalent.
Given any such Z× — by proceeding as in Proposition 3.8 and subsequent di-

scussion — we may therefore define an injection a : 8KM described in local
coordinates by Y4 (t , x , y , z , w , y

.
)�8Ka(Y) »4nZ× (Y)4 (t , x , y , z , w ,

x
.
42t , y

.
, z

.
4w , w

.
41, u

.
4L(t , x , y , z , w , 2t , y

.
, w , 1 ) )�M (for more details,

see [12]). The image S»4a(8)%M of the injection a is then the (unique) sub-
manifold of M on wich all solutions (3.26a), (3.27) are (p-related to) dynamical
flows.

To sum up, due to the direct sum decomposition TS M4TS5D
A

lNS , every such
solution Z× admits unique representation of the form Z×NS4ZNS1VNS with

ZNS4u ¯

¯t
1x

. ¯

¯x
1y

. ¯

¯y
1z

. ¯

¯z
1

¯

¯w
2

¯

¯x
. 1

¯

¯z
. 1(z

.
1t)

¯

¯u
. v

NS

�TS(3.28)

and

VNS4 uZ. w ¯

¯w
. v

NS

� D
A

lNS .

The vector field (3.28) is thus the unique (11) kinematically admissible solution of
the problem (3.25) along the submanifold S.

(11) Note that the uniqueness is here due to the peculiarity of the system in study. In
general, as already pointed out, the results stated in § 3.4 do not ensure the uniqueness of
the solution.
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A b s t r a c t

A presymplectic (symplectic) setting for degenerate (regular) time-dependent Lagran-
gians subject to non-holonomic constraints is proposed. In the resulting geometrical fra-
mework a constraint algorithm for the singular case is developed and the associated se-
cond-order differential equation problem is solved for a wide class of systems. An explicit
example is given.

* * *


