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CLAUDIO ME N E G H I N I (*)

Geodesic completeness for some meromorphic metrics (**)

1 - Foreword

In this paper we shall be concerned with generalizing the ideas of «metric» and
geodesic for a complex manifold M : we emphasize that our curves will be complex
ones; a metric will be, informally speaking, a symmetric quadratic form on the ho-
lomorphic tangent space at each point p�M , holomorphically depending on the
point itself; of course, it couldn’t have any «signature», but, by simmetry, it indu-
ces a canonical Levi-Civita’s connexion on M , which in turn allows us to define
geodesics to be auto-parallel paths. We illustrate some motivations (see [DNF]):
consider the space F of antisymmetric covariant tensors of rank two in Minko-
wski’s space R1, 3 : electromagnetic fields are such ones. Let F� F: we can write
F4 !

iE j
Fij dx iRdx j where x 0

R x 3 are the natural coordinate functions on R1, 3 .

At each point, the space Fp of all tensors in F evaluated at p is a six- dimensional
real vector space; moreover, the adjoint operator ˜ with respect to Minkowski’s
metric is such that ˜˜421: all these facts imply that Fp could be thought of as
a complex three dimensional vector space Gp by setting (a1 ib) F4aF1b˜F .
Now ˜ is SO(1 , 3 )-invariant, hence SO(1 , 3 ) is a group of (complex) linear tran-
sformations of Gp , preserving the quadratic form aF , Fb42˜(FR (˜F)1 iF
RF): this means that this «norm» is invariant by Lorentz transformations, hence
it is of relevant physical interest. If we introduce the following coordinate func-
tions on Gp : z 14F012 iF23 , z 24F021 iF13 and z 34F032 iF12 , we have that
aF , Fb4 (z 1 )21 (z 2 )21 (z 3 )2 , hence there naturally arises the so called complex-
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Euclidean metric on C3 : on one hand, by changing coordinates we are brought to
a generic symmetric bilinear form on C3 ; on the other one there arise «poles» if
we attempt to extend the above construction e.g. to (P1 )3 . Now the idea of genera-
lizing to the curved framework is quite natural: the reader is referred to section 3.
Our main concern will be warped products of Riemann surfaces: let UiCD or Ui

CC , with coordinate function u i and metric b1 (u 1 ) du 1 Udu 1 or fi (u i ) du i Udu i

if iF2; both b1 and the fi’s are nonzero meromorphic functions. A warped product
of the ]Ui(’s will be a meromorphic Riemannian manifold (see definition
3.1)

g»
i41

N

Ui , b1 (u 1 ) du i Udu i1 !
i42

N

ai (u 1 ) fi (u i ) du i Udu ih ,

where the ak’s (kF2) are nonzero meromorphic functions (called warping func-
tions) defined on U1 . This construction can be naturally generalized to the case
when the ]Ui(’s are more general Rieman surfaces. We report that many of the
known exact solutions of Einstein’s field equations can be related, by means of
«complexifications», to such manifolds.

We introduce the concept of coercivity of a warped product: informally speak-
ing, it will amount to the fact that primitives of «square roots» of some rational
functions of the coefficients involved in the metric can be analitically continued
until they take all complex values but at most a finite number of ones.

Geodesics will show various types of «singularities»: we record, among the
other ones, «logarithmic» singularities: they will be, more or less, points resem-
bling 0 in connection with zO logz; rather more formally, a «logarithmic singula-
rity» l will be a point in a two dimensional real topological manifold, admitting a
neighbourhooud U such that U0]l( is a Riemann surface, but there is no complex
structure «at» l : this type of singularity arises from the fact that geodesic equa-
tions admit first integrals whose solutions have poles with nonzero residues.

We introduce the notion of completeness: a path will be essentially a holomor-
phic function F : SKM , where S is a Riemann surface over a region of P1 , admit-
ting a projection mapping p : SKP1 : it will be complete provided that P1 0p(S) is
a finite set: we are now able to attemtp to give a hazy idea of our main result.
Theorem: a warped product of Riemann surfaces is complete (i.e. «almost every»
geodesic is complete) if and only if it is coercive.

The last statement resumes the meaning of Theorems 4.4, 4.10 and 4.11, whilst
definition of completeness is in 3.10 and of coercivity in 4.2. We end this section
with some references: the problem of geodesic singularities arises from semi-Rie-
mannian geometry: see e.g. [BEH]; a different approach to holomorphic geometry
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could be found in [MAN]. Finally, we owe [LEB] for the definition of a nondege-
nerate holomorphic metric, of a connexion (see p. 11 ff) and of a complex geodesic
(see p. 12 ff).

2 - Analytical continuation

The idea of analytical continuation of a holomorphic mapping element f : U

KM (U is a region in the complex plane, M , throughout this paper will be a com-
plex manifold) is well known and amounts to a quintuple QM4 (S , p , j , F , M),
where S is a connected Riemann surface over a region of P1 , p : SKC is a non-
constant holomorphic mapping such that U%p(S), j : UKS is a holomorphic im-
mersion such that p i j4 idNU and F : SKM is a holomorphic mapping such that
F i j4 f . Each finite branch point is kept into account by the fact of lying «under»
some critical point of p; it is a well known (see e.g. [CAS], chap. 6) result that there
exists a unique maximal analytical continuation, called the Riemann surface, of
(U, f ). In the following we shall abbreviate «holomorphic function element» by
«HFE» and «holomorphic function germ» by «HFG». For further purposes, we shall
consider also «poles» and «logarithmic singularities»: our definitions will axiomatize
the behaviour of continuations of complex-valued holomorphic elements.

Definition 2.1. A pole of QM is a decreasing sequence of open sets ]Vk(kFK

%S such that there exist a positive integer n and a point z0�P1 , such that l (P1)

for every kFK Vk is a connected component of p21gD gz0 ,
1

k
h0]z0(h , l(P2) for

every kFK pNVk
: VkK gD gz0 ,

1

k
h0]z0(h is a n-sheeted covering and l (P3)

1
kFK

Vk 4¯ l (P4) there exist: an open set V%M; complex submanifolds N%V and

P%V (dim (P)F1); such that V and N3P are biholomorphic; for every k ,
F(Vk 0]p()%V; pr1 i F : VkKN has a removable singularity at p and
1

kFK
pr2 i F(Vk )4¯; a logarithmic singularity (in the following: L-singularity) q

of QM is a sequence of decreasing open sets ]Vk(KFK of S such that there hold
(P1), (P3) and l (LS2) for every kFK and every (real) nonconstant closed path
g : [0 , 1 ]KD(z0 , 1 /k)0]z0(, with nonzero winding number around z0 , every lifted
path b : [0 , 1 ]Kp21 (D(z0 , 1 /k)0]z0() with respect to the topological covering p

is not a closed path, i.e. b(0)cb(1); q is l (RMLS) a removable L-singularity for F
if there exists h�M such that 1

k
F(Vk )4]h(; l (PLS) a polar L-singularity for

F if there exist: an open set V%M; complex submanifolds N%V and P%V

(dim (P)F1) such that V and N3P are biholomorphic; for every k , F(Vk 0]p()
%V; pr1 i F : VkKN has a removable singularity at p; 1

k4FK
pr2 i F(Vk )4¯.
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It is easily seen that ]L-singularities(O ]poles(4¯ and that SA »4SN ]poles
of QM( has a canonical structure of a Riemann surface and p admits a holomor-
phic extension pA to SA, hence an extended analytical continuation of (U , f ) is a
quintuple QAM4 (SA, pA, jA, F , M), where SA and pA are as above and jA4 idSKSA i j; of
course there exists a unique maximal extended continuation of (U, f ), build up as
above, starting from its unique maximal continuation.

Consider now the set B of the L-singularities of QM : set S l--l4SNB as a set
and introduce a topology on S l--l: open sets are the open sets in S and a fundamen-
tal neighbourhood system of the L-singularity q4]Vk(kFK�B is yielded by the
sets Vk

l--l4VkN ]q(.

L e m m a 2.2. S l--l admits no complex structure at q4]Vk(kFK .

P r o o f . Were there one, we could find charts (W, f) around q and (V, c)
around z0 such that c i p i f21 (z)4z N for some integer ND0. This fact would
imply pNW0]q( to be a n-sheeted covering of V0]z0(; it is easily seen that this fact
would contradict (LS2) in Definition 2.1. r

L e m m a 2.3. (A): p admits a unique continuous extension p l--l to S l--l; (B): for
every removable logarithmic singularity r of QM , F admits a unique continuous
extension F l--l to r .

P r o o f . (A): let b�B and ]Vk( be the sequence spotting b : define p l--l(q)
4p(q) if q�Vk and p l--l(b)4z0 , where z0 is the common centre of the discs onto
which the Vk8 s are projected. Now p l--l is continuous at all points in Vk ; moreover,
for every neighbourhood G of z0 , p l--l21 (G)&p l--l21 (z0 )Np21 (G0]z0(), hence, if we
set H4]b(Np21 (G0]z0(), we have that H is a neighbourhood of b in S l--l such
that p l--l(H)%G , proving continuity at b . Arguing by density, we conclude that this
extension is unique; the proof of (B) is analogous. r

D e f i n i t i o n 2.4. A quintuple Q l l––
M4 (S l l–– , p l l–– , j l l–– , F l l–– , M), is an analytical con-

tinuation with L-singularities of the function element (U , f ) if there exists an
analytical continuation QM of (U , f ) such that S l l–– 0S consists of L-singularities of
F , p l l–– is the unique continuous extension of p to S l l–– , j l l––4 idSKS l l–– i j and F admits a
unique continuous extension F l l–– to S l l–– 0]polar logarithmic singularities of F(. Q l l––

M

is: maximal provided that so is QM and Q l l––
M 0QM contains all L-singularities of QM;

extended provided that so is QM .

L e m m a 2.5. 1). Let f and g be two holomorphic germs each one inverse of
the other; let (R , p , j , F , C) and (S , r , l, G , C) be their respective Riemann
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surfaces: then F(R)4r(S); 2): let f , g , h be three HFG’s such that f i g4h . Let
(R , p , j , F , C) be the Riemann surface of f , (S , r , l, G , C) the one of g and
(T , s , m , H , C) the Riemann surface with L-singularities of h : then
F(R)0(P1 0(s(T) ) )%r(S).

P r o o f . We shall prove only 1); 2) is analogous. a) F(R)%r(S): let j�R and
F(j)4h; there exist: an open neighbourhood U1 of j; open subsets U2%p(U1 )
and V2%F(U1 ) and a biholomorphic function g2 : V2K U2 , with inverse function
f2 : U2K V2 such that: (U2 , f2 ) and (U, f) are connectible and so are (V2 , g2 ) and
(V, g). By construction there hence exist two holomorphic immersions jA: U2KR
and l

A
: V2KS such that p i jA4 id and r i l

A
4 id . Let V14F(U)1 and S4](x , y)

� U13V2 : F(x)4y(; moreover let J : V2KS be defined by setting J(v)
4 (jA i g2 (v), v). Then (S , pr2 , J , p i pr1 ) is an analytical continuation of (V2 , g2 );
indeed p i pr1 i J4p i jA i g24g2 . But (V2 , g2 ) is connectible with (V, g), hence
(S , pr2 , J , p i pr1 ) is an analytical continuation of (V, g). There eventually exists
a holomorphic function h : SKS such that r i h4pr2 : hence h4pr2 (j , h)
4r i h(j , h)�r(S). b) r(S)%F(R): let s�S : there is a neighbourhood V of s in S
such that V0]s( consists entirely of regular points both of r and G , not excluding
that s itself be regular for r or G or both. This fact means that for each s 8�V0]s(
there exists a HFE (r(s 8 ), V8 , gAs 8 ) connectible with (V, g) and, besides, a holo-
morphic immersion l

A
: V8KV . By a) already proved, G(s)�p(R), hence there

exist p�R such that p(p)4G(s) and a neighbourhood W of p in R such that
p21 (gA(V8 ) )OWc¯ . Set W 84p21 (gA(V8 ) )OW : we may suppose, without loss of
generality, that p is invertible on W 8 : hence there exists a (open) holomorphic im-
mersion jA : gA(V8 )KW . Therefore, for each z� jA(gA(V8 ) ), there exists h� l

A
(V8 )

such that F(z)4F(jA i gA i r(h) ). Now, by definition of analytical continuation the-
re holds F i jA i gA 4 id , hence we have F(z)4r(h). Consider now the holomorphic
function J : W3VKC defined by setting J(w , v)4F(w)2r(v): we have
JNjA(gA(V8 ) )3 l

A
(V8 )f0, but jA(gA(V8 ) )3 l

A
(V8 ) is an open set in W3V , hence Jf0 on

W3V , which in turn implies F(p)4r(s). Therefore we have proved that for each
s�S there exists p�R such that F(p)4r(s): this eventually implies that
r(S)%F(R). r

3 - Complex-Riemannian metric structures

D e f i n i t i o n 3.1. Let E be a closed hypersurface in M : an E-meromorphic
section of Rr

s N is a holomorphic section L of Rr
s (M0E) such that for every p� E

and every chart (U, (z 1
R z n ) ) around p , there exists a neighbourhood U of p and

rs pairs of C-valued holomorphic functions f i1R ir
, c l1R ls

, with c l1R ls
c0 on U0E,
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such that L gdz l1
R dz ls ,

¯

¯z i1
R

¯

¯z ir
h4 f i1R ir

c l1R ls

. A complex metric on M is a

symmetric section of R0
2 M . It will be called holomorphic or E-meromorphic provi-

ded that so is as a section; L is nondegenerate at p if rk(L(p) )4dim (M), degene-
rate otherwise; if D is a closed hypersurface in M and L is degenerate only on D,
we shall say that L is D-degenerate. We say that p is a metrically ordinary point
in M if L is holomorphic and nondegenerate at p . A holomorphic (resp. nondege-
nerate holomorphic, resp. meromorphic) Riemannian manifold is a complex ma-
nifold endowed with a holomorphic (resp. nondegenerate holomorphic, resp. me-
romorphic) metric.

We now turn to introducing the holomorphic Levi-Civita connexion induced by
a meromorphic, possibly degenerating metric. First we need to introduce the ho-
lomorphic Levi Civita connexion induced by a holomorphic nondegenerate metric:
this is done in a quite natural way. Things are different if we allow metrics to be
meromorphic behaviour or to lower in their ranks. These metric «singularities»
will be generally supposed to lie in closed hypersurfaces; Levi Civita connexions
may still be defined, but, as one could expect, they will turn out to be themselves
«meromorphic». Let now (N , L) be a meromorphic Riemannian manifold admit-
ting closed hypersurfaces D and E such that LNN0E is holomorphic and LN(N0E)0D

is nondegenerate. Since N0E is connected, we have that (N0E)0D, LN(N0E)0D is a
nondegenerate holomorphic Riemannian manifold admitting, as such, a canonical
holomorphic Levi-Civita connexion D . Now, if p� DNE and V , W are holomor-
phic vector fields in a neighbourhood V of p we can define the vector field DV W
on V0(DNE), and this will be a DNE-meromorphic vector field. The Christoffel
symbols of a coordinate system Z4 (z 1

Rz m ) on an open set U %N are those
complex valued functions, defined on U0(DNE) by setting G ij

k

4dz kgD ¯

¯z i
g ¯

¯z j hh . Now the representative matrix ( gij ) of L with respect to the

coordinate system Z is holomorphic in U, with nonvanishing determinant function
on U0(DNE); as such it admits a inverse matrix g ij , whose coefficients hence re-
sult in being DNE-meromorphic functions. It is easy to prove that

D ¯

¯z i
g!

j41

m

W j ¯

¯z j h4 !
k41

m g ¯W k

¯z i
1 !

j41

m

G ij
k W jh ¯

¯z k
as meromorphic vector fields

and 2G ij
k 4 !

m41

N

g km (2gij , m1gim , j1gjm , i )42G ij
k as meromorphic functions; then:

P r o p o s i t i o n 3.2. For every pair V , W of holomorphic vector fields on the
open set U (belonging to a maximal atlas) in the meromorphic Riemannian ma-
nifold (N , L), DV W is a well defined vector field, holomorphic on UO]n�N : L
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is holomorphic and nondegenerate at n( and may be extended to a meromorphic
vector field on U.

P r o o f . There exist holomorphic functions ]V i(, ]W j( and a coordinate

system Z4 (z 1
R z N ) on U such that V4 !

i41

N

V i ¯

¯z i
and W4 !

j41

N

W i ¯

¯z j
. The

fact that DV W4 !
i41

N

V i D ¯

¯z i
g!

j41

N

W j ¯

¯z i h4 !
k41

N g !
i , j41

N

V ig ¯W k

¯z i
1G k

ij W jhh ¯

¯z k

ends the proof. r

D e f i n i t i o n 3.3. Given a D-degenerate and E-meromorphic Riemannian ma-
nifold (N , L), with D and E closed hypersurfaces in N , the Levi-Civita metric
connexion (or meromorphic metric connexion) of N is the collection consisting of
all metric connexions ]D[Ui 0(DNE) ](i�I as ]U(i runs over any maximal atlas
B 4 (]U(i )i�I on N .

3.1 - Meromorphic parallel translation and geodesics

We now slightly reformulate the notion of path to cope with the complex envi-
ronment: a path in M is a quintuple QM4 (S , p , j , F , M), where S is a connected
Riemann surface, p� H(S , P1 ), F� H(S , M) and j is a holomorphic immersion
j : UKS0S such that p i j4 idNU , where U is a region in the complex plane; a pa-
th is z0-starting at m provided that z0�U and F i j(z0 )4m .

In the continuation, we shall call TM (resp. T * M) M’s holomorphic tangent
(resp. cotangent) bundle and, more generally, Rr

s M its holomorphic r-covariant
and s-contravariant tensor bundle; as usual, P : Rr

s MKM will denote their natu-
ral projections. We now define the velocity field of a path QM as a suitable mero-
morphic section over F of the holomorphic tangent bundle TM : to achieve this
purpose, we need to lift the vector field d/dz on C with respect to p; of course, in
general, contravariant tensor fields couldn’t be lifted, but we may get through this
obstruction by keeping into account that C and S are one-dimensional and allo-
wing the lifted vector field to be meromorphic. We call P the set of branch points
of p .

L e m m a 3.4. There exists a unique P-meromorphic vector field d/dzA on S
such that, for every r�S0P , p * Nr (d/dzANr )4 (d/dz)Np(r) .

P r o o f . Consider v4p* dz and L4p*(dzUdz) on S : the latter establishes
an isomorphism between the holomorphic cotangent and tangent bundles of S0P .
Call V the holomorphic vector field corresponding to v in the above isomorphism:
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we claim that V4 d/dzA on S0P . To show this fact, we explicitely compute the com-
ponents of V with respect to a maximal atlas B 4](Un , z n )( for S0P : let v (n)1

4v(¯/¯z (n) ), g(n)114L(¯/¯z (n) , ¯/¯z (n) ); then, set V(n)
1 4v (n)1 /g(n)11 , the collection

](Un , V(n)
1 )( of open sets and holomorphic functions is such that, on overlapping

local charts (Ua , z a ) and (Ub , z b ), we have

V(a)
1 4

v (a)1

g(a)11

4
v (b)1 (dz (b) /dz (a) )

g(b)11 (dz (b) /dz (a) )2
4V(b)

1
dz (a)

dz (b)

,

that is to say that collection defines a holomorphic vector field. Now for every
r�S0P ,

dzNp(r) (p * Nr d/dzANr )4p* dzNr (d/dzANr )4
p* dzNr (¯/¯zNr )

dzNp(r) (p * ¯/¯zNr )
41 ,

hence p * Nr (d/dzANr )4 (d/dz)Np(r) , proving the asserted.
Let’s prove that d/dzA may be extended to a meromorphic vector field on S : if p

�P then we can find local charts (U , c) around p , (V , f) around p(p), and an in-
teger ND0 such that f i p i c21 (u)4u N . Now we have

gc21*p*f*(dw)
d

du
h (u)4dw ggf*p*c*

21 d

du
hNu
h4dw g(fpc21)8

d

dw
h4Nu N21 ;

but f and c are charts, hence p* dz itself is vanishing of order N21 at p; as al-
ready proved, p * Nr (d/dzANr )4 (d/dz)Np(r) on U0]p( and, consequently,
(p* dz)(d/dzA)4dz(p *)A 4dz(d/dz)41 on U0]p(, hence on U . Now, in local coor-
dinates, (p* dz)4adf and d/dzA4y¯/¯f , where a is a holomorphic function on U ,
vanishing of order N21 at p and y is a holomorphic function on U0]p(. By the
argument above, ya41, hence y has a pole of order N21 at p : a similar argu-
ment holds for each isolated point in P , proving the meromorphic behaviour of
d/dzA. r

L e m m a 3.5. The mapping rOgF , F* Nrg d

dz

A

Nr
hh may be extended to a P-

meromorphic section of TM over F .

P r o o f . Let p�P and U be a neighbourhood of p such that there exist a local

chart z : UKCw and holomorphic functions f , g on z(U) such that
d

dz

A

Nz 21 (U)
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4z21
* g f

g
(w)

d

dw Nw
h; for every local chart C4 (u 1 Rm , du 1 Rm ) on TM ,

C i V i z21 (w)4C i gF i z21 (w), F* Nz21 (w) z21
* g f

g
(w)

d

dw Nw
hh

4C i gF i z21 (w),
f

g
(w)

d

dw
(F i z21 )(w)h

4 gu 1 Rm
i Fz21 (w),

f

g
(w)

d

dw
(u 1 Rm

i F i z21 )(w)h . r

D e f i n i t i o n 3.6. The velocity field of a path QM4 (S , p , j , F , M) is the me-

romorphic mapping V(QM ) : S0PKTM defined by rOgF , F*Nr
g d

dz

A

Nr
hh.

We turn now to study vector fields on paths: an obvious example is the velo-
city field, defined in Definition 3.6: just as in semi-Riemannian geometry, there is
a natural way of defining the rate of change X 8 of a meromorphic vector field X
on a path. We study at first paths with values in a nondegenerate holomorphic
Riemannian manifold M : let QM4 (S , p , j , g , M) be a path in M; P be the set of
branch points of p; r�S0P be such that d/dzA is holomorphic at r , V %S0P be a
neighbourhood of r such that g(V) is contained in a local chart in M; H(V) be the
ring of holomorphic functions on V and Xg (V) the Lie algebra of holomorphic vec-
tor fields over g on V: it is well known that there exists a unique mapping
˜g 8 : Xg (V)K Xg (V), called induced covariant derivative on QM such that ˜g 8 (aZ1

1bZ2 )4a˜g 8 Z11b˜g 8 Z2 , ˜g 8 (hZ)4 g d

dz

A
hh Z1h˜g 8 Z , h� H(V) and

˜g 8 (V i g)(r)4D
g * Nrg d

dz

A

Nr h , where V is a holomorphic vector field in a neighbou-

rhood of g(r). Moreover,
d

dz

A
aX , Yb4a˜g 8 X , Yb1aX , ˜g 8 Yb; X , Y� Xg (V). Now

let R 4]Vk(k�K be a maximal atlas for S0P; we may assume that, for every k ,
maybe shrinking Vk , g(Vk ) is contained in some local chart Ui in the already in-
troduced atlas A for M .

Now, if V1 and V2 are overlapping open sets in R, V11V2� R too, and
˜g 8 [V1 ]NV11V2

4˜g 8 [V2 ]NV11V2
. Now let’s complete R to an atlas S for S : keeping

into account that the local coordinate expression of the induced covariant derivati-

ve is ˜g 8 Z4 !
k41

m g d

dz

A
Z k1 !

i , j41

m

G ij
k d

dz

A
(u i

i g) Z jh ¯

¯u k
, hence pairs of holomor-

phic vector fields on g are transormed into P-meromorphic vector fields on g .

D e f i n i t i o n 3.7. The P-meromorphic induced covariant derivative, or the
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P-meromorphic parallel translation on a path QM4 (S , p , j , g , M) with set of
branch points P and taking values in a nondegenerate Riemannian manifold M is
the collection consisting of the induced covariant derivatives ˜g 8 [Vk 0P] as Vk

runs over a maximal atlas S 4 (]Vk()k�K on S .
Let’s turn now to dealing with meromorphic parallel translations induced on a

path QN4 (T , r , j , d , N), in a meromorphic Riemannian manifold (N , L) admitt-
ing closed hypersurfaces D and E such that LNN0E is holomorphic and LN(N0E)0D is
nondegenerate. We set F 4 DNE and restrict our attention to paths z0-starting
at metrically ordinary points, supposing, without loss in generality, that z040.

Lemma 3.8. Set M4N0F, S4d21 (M): then T0S is discrete, hence S is a
connected Riemann surface.

P r o o f . Suppose that there exists a subset V %T0S admitting an accumula-
tion point t� V and consider a countable atlas for B 4]Un(n�N for N such that,
for every n , there exists C n� O(]Un() such that UnOF 4]X�Un : C n40(. Set
d21 (Un )4Tn%T and suppose, without loss of generality, that d(t)�U0 . Now
C 0 i dNVOT0

40 and t� VOT0 is an accumulation point of VOT0 , hence C 0 i dNT0

40 and d(T0 )% F. Suppose now that TNc¯ for some N : we claim that this im-
plies d(TN )% F: to prove the asserted, pick two points t 0�T0 and t n�Tn and two
neighbourhoods T 80 , T 8N of t 0 and t n in T0 and Tn respectively, such that rNT 80 and
rNT 8N are biholomorphic functions. Now the function elements (r(T 80 ), d i (rNT 80 )21 )
and (r(T 8N ), d i (rNT 8N )21 ) are connectible, hence there exists a finite chain
]Wn(n40 RL such that W04r(T 80 ), WL4r(T 8N ), WnOWn11c0 for every n . Wi-
thout loss of generality, we may suppose that each Wn admits a holomorphic, hence
open, immersion jnKT , hence, setting S04T0 , Sl4 jl (Wl ) for l41 RL , SL11

4TN yields a finite chain of open subsets ]Sl(l40 RM of T connecting T0 and TN .
Let’s prove, by induction, that, for every l , d(Sl )% F. l At first recall that d(S0 )
%U0OF as already proved; suppose now that d(Sk21 )% F. We have Sk21OSk

c¯ , hence d(Sk21 )Od(Sk )c¯ . For every m set S km4d(Sk21 )Od(Sk )OUm : if
S kmc¯ , then C m i dNd21 (S km )OSk21OSk

f0; but d21 (S km )OSk21OSk is open in
d21 (d(Sk )OUm )OSk , thus C m i dNd21 (d(Sk )OUm )OSk

f0, that is to say d(Sk )OUm

% F. l On the other hand, if S km4¯ , but d(Sk )NUmc¯ we claim that d(Sk )
OUm% F as well: proving this requires a further induction: pick a UM such that
S kMc¯ and a finite chain of open sets B84]U 8m (m40RJ% B (with Um8Od(Sk )c¯

for each m) connecting UM and Um . Since S kMc¯ , d(Sk )OU084d(Sk )OUM% F;
suppose by induction that d(Sk )OUl218 % F: then C l i dNd21 (d(Sk )OUl218 OUl8 )OSk

f0,
hence C l i dNd21 (d(Sk )OUl8 )OSk

f0, i.e. d(Sk )OUl8% F: this fact ends the induction
and eventually implies d(Sk )OUm4d(Sk )OUJ8% F. Summing up, d(Sk )
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40
m

(d(Sk )OUm )% F, for each k; hence d(TN )4d(SM )% F and eventually d(T)

4d ( 0
N�N

TN)% F, hence d couldn’t startat a point in N0F. r

In the following considerations, there will still hold all notations introduced in
preceding lemma: given a path QN4 (T , r , j , d , N), set p4rNS , g4dNS and note
that, since QN is starting from a metrically ordinary point m , j may be supposed
to take values in fact in S; since the preceding lemma shows that S is a connected
Riemann surface, QM4 (S , p , j , dNS M) is in fact a path in M , which we call the
depolarization of QN . But M is a nondegenerate holomorphic Riemannian mani-
fold, hence if P is the set of branch points of p , there is a P-meromorphic induced
parallel translation on QM , built up as in definition 3.7. Finally, we introduce a ma-
ximal atlas R for T and yield the following:

D e f i n i t i o n 3.9. Let (N , L) be a E-meromorphic and D-degenerate Rieman-
nian manifold, M4N0(DNE), QN4 (T , r , j , d , N) a path: the (PNd21 (DNE) )-
meromorphic induced covariant derivative on QN is the collection consisting of
all induced covariant derivatives ˜g 8 [VkOS] as Vk runs over a maximal atlas R
4 (]Vk()k�K for T and QM4 (S , p , j , dNS M) is the depolarization of QN . A mero-
morphic (in particular, holomorphic) vector field Z on a path is parallel provided
that ˜Z40 (as a meromorphic vector field). A geodesic in a meromorphic (in par-
ticular, holomorphic) Riemannian manifold is a path whose (meormorphic) velo-
city field is parallel.

The local equations b
..

k1 !
i , j41

N

G ij
k (b) b

.
i b
.

j40, k41 RN of elements of geode-

sics (U , b) are a system of N second-order o.d.e.’s in the complex domain, with
meromorphic coefficients, in turn equivalent to an autonomous system of 2N first-
order equations; as a consequence of general theory (see e.g. [HIL], th. 2.2.2) for
every metrically ordinary point p�M , every holomorphic tangent vector Vp

�Tp M and every z0�C , there exists a unique germ bz0
of geodesic such that

bz0
(z0 )4p and bz0˜ (d/dz)Nz0

4Vp ; moreover any continuation of bz0
is a geodesic.

D e f i n i t i o n 3.10. A meromorphic Riemannian manifold is complete provided
that the Riemann surface, with L-singularities, of each geodesic starting at a me-
trically ordinary point is complete.

4 - Completeness theorems

In this section we shall be concerned with warped products of Riemann surfa-
ces, each one endowed with some meromorphic metric: in this framework we shall
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prove a geodesic completeness criterion. Consider at first, like in foreword, a war-
ped product of unit discs or complex planes

g»
i41

N

Ui , b1 (u 1 ) du i Udu i1 !
i42

N

ai (u 1 ) fi (u i ) du i Udu ih :

in the following we shall denote it by

U 4 U13a2 (u 1 ) U23a3 (u 1 ) U33RR3aN (u 1 ) UN ,

and call it a direct manifold. We recall that b , the ak’s and the fk’s are nonzero
meromorphic functions, with b and the ak’s defined on U1 . Each element of geode-
sic of (U, L) satisfies the following system of N o.d.e.’s in the complex do-
main:

.
`
/
`
´

u
..1 (z)1

b18 (u 1 (z) )

2b1 (u 1 (z) )
(u

. 1 (z) )22!
l42

N al8 (u 1 (z) ) fl (u l (z) )

2b1 (u 1 (z) )
(u

. l (z) )240

u
..k (z)1

fk8 (u k (z) )

2 fk (u k (z) )
(u

. k (z) )21
ak8 (u 1 (z) )

ak (u 1 (z) )
(u

. k (z) )(u
. 1 (z) )40, k42 RN ,

(1)

provided that it starts at a metrically ordinary point.

L e m m a 4.1. The equations (1) admit the following first integrals:

.
`
/
`
´

(A) if u 1
cconst

(B) if u 14const

.
/
´

(u
. 1 (z) )2 (b1 (u 1 (z) ) )4A12 !

l42

N Al

al (u 1 (z) )
g

(u
. k (z) )2 fk (u k (z) )[ak (u 1 (z) ) ]24Ak k42 RN e .

.
/
´

u 1 (z)4A1 «

u
. k (z) )2 fk (u k (z) )4Ak k42 RN ) ,

(2)

where the Ak’s are suitable complex constants.

P r o o f . We prove only (A); (B) is analogous. Divide the k-th equation in (4.1)
by u k and integrate once: then

(u
. k (z) )2 fk (u k (z) )[ak (u 1 (z) ) ]24 (u

. k (z0 ) )2 fk (u k (z0 ) )[ak (u 1 (z0 ) ) ]2 »4Ak .

As to g , by the first equation of (1) there holds 2b1 (u 1 (z) ) u
. 1 (z) u

..1 (z)

1b18 (u 1 (z) )(u
. 1 (z) )32 !

l42

N

al8 (u 1 (z) ) fl (u l (z) )(u
. l (z) )2 u

. 1 (z)40; by e , already pro-
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ved, (u
. l (z) )2 fl (u l (z) )[al (u 1 (z) ) ]24Al , hence

b1 (u 1 (z) ) u
. 1 (z) u

..1 (z)1b18 (u 1 (z) )(u
. 1 (z) )32 !

l42

N

Al
al8 (u 1 (z) )

[al (u 1 (z) ) ]2
u
. 1 (z)40 ;

integrating once, dividing by b1 (u 1 (z) ) and setting A14K/b1 (u 1 (z0 ) ) ends the
proof. r

D e f i n i t i o n 4.2. A direct manifold U with metric L(u 1
Ru N )

4b1 (u 1 )du 1 Udu 11 !
i42

N

ai (u 1 ) fi (u i ) du i Udu i , where b1 , the ak’s and the fk’s

are nonzero meromorphic functions is coercive provided that, for every metrically
ordinary point X04 (x0

1
R x0

N ) and

l for every n-tuple (A1 RAN )�CN such that b1 (x0
1 )c0, A12 !

l42

N Al

al (x0
1 )

c0

and, for each one of the two HFG’s ]1 and ]2 , such that (]i )2

4 k 1

b1
gA12 !

l42

N Al

al
hl

0

i41, 2 , the Riemann surface (S1 , p 1 , j1 , F 1 , U) of both

the HFG’s ys
x0

u 1
dh

]i (h)
z

x0
1

i41, 2 ; is such that P1 0F 1 (S1 ) is a finite set;

l for each k , 2GkGN and for each one of the two HFG’s f k1 and f k2 such
that (f ki )24 [ fk ]x0

1 , i41, 2 , the Riemann surface (Sk , p k , jk , F k , U) of both the

HFG’s y s
x0

1

u 1

f ki (h) dhz
x0

1
i41, 2 is such that P1 0F k (Sk ) is a finite set.

Definition 4.2 may be checked for just one metrically ordinary point X0 : this
is proved in Lemma 4.3; moreover, we may assume,without loss of generality
X040: were not, we could carry it into 0 by applying an automorphism of U,
that is to say a direct product of automorphisms of the unit ball or of the com-
plex plane, according to the nature of each Ui . Then a simple pullback procedure
would yield back the initial situation: in the following we shall understand this
choice.

In the following lemma we shall use the «square root» symbol in the meaning
of Definition 4.2: in other words, given a HFG, which is not vanishing at some
point, it should denote any one of the two HFG’s yielding it back when
squared.

L e m m a 4.3. For every metrically ordinary point (j 1
R j N ) of U and every

n-tuple (A1 RAN )�CN such that b1 (x0
1 )c0, A12 !

l42

N Al

al (x0
1 )

c0, b1 (j 1 )c0, A1
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2 !
l42

N Al

al (j 1 )
c0, set C(h)4A12 !

l42

N Al

al (h)
, the Riemann surfaces of the HFG’s

ys
j 1

u 1

kb1 (h) /C(h)dhz
j 1

and ys
0

u 1

kb1 (h) /C(h)dhz
0

are isomorphic: moreover so

are, for each k , those of ys
x0

u 1

kfk (h) dhz
j k

and ys
0

u 1

kfk (h) dhz
0

. r

T h e o r e m 4.4. A direct manifold U with metric L(u 1
Ru N )

4b1 (u 1 ) du 1 Udu 11 !
i42

N

ai (u 1 ) fi (u i ) du i Udu i is geodesically complete if and
only if it is coercive.

P r o o f . a) Suppose that U is coercive and that U is an element of geodesic,
starting at a metrically ordinary point; moreover, let (u

. 1 (0 ) R u
. N (0) ) be the in-

itial velocity of U . Suppose at first that zOu 1 (z) is a constant function (hence
u
. 1 (0 )40): then, by Lemma 4.1, the equations of U are

.
/
´

u 1 (z)4A1

(u
. k (z) )2 fk (u k (z) )4Ak k42 RN .

(3)

The Riemann surface of zOu 1 (z) is trivially isomorphic to P1 ; if Ak40 so is the
one of zOu k (z) is isomorphic to (P1 , id , id , A) for some complex constant A; if
Akc0 we could rewrite the k-th equation of (3) in the form:

1

Bk

�
u k (0)

u k (z)

f(h) dh4z ,(4)

where f k
2 4 fk and Bk

24Ak , the choice of f k and Bk being made in such a way that
u
. k (0)f k (0)4Bk . By hypothesis, the Riemann surface (Sk , p k , jk , F k ) of the

HFG ys
0

u k

f k dhz
0

is such that P1 0F 1 (S1 ) is a finite set; by Lemma 4.3 1) the Rie-

mann surface of the HFG y s
u k (0)

u k

f k dhz
u k (0)

is isomorphic to (Sk , p k , jk , F k ); but,

by (4), the germs uk
z40 and y s

u k (0)

u k

f k dhz
u k (0)

are each one inverse of the other;

hence, by Lemma 2.5 the Riemann surface of uk
z40 is complete; this eventually im-

plies that the Riemann surface of the element zO (u 1 (z) Ru N (z) ) is complete
too: this fact ends the proof of a) in the case that u 1 is a constant function. Other-
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wise, by Lemma 4.1, the equations of U are

.
/
´

(u
. 1 (z) )2 (b1 (u 1 (z) ) )4A12 !

l42

N Al

al (u 1 (z) )
g

(u
. k (z) )2 fk (u k (z) )[ak (u 1 (z) ) ]24Ak k42 RN e

(5)

for suitable complex constants A1 RAN . Consider now the germ zOu 1 (z) in
z40: rewrite the first equation of (5) in the form:

�
u 1 (0)

u 1 (z)

dh

](h)u 1 (0)

4z ,(6)

where (](h)u 1 (0) )24 gA12 !
l42

N

Al /al (h)hOb1 (h) in a neighbourhood of z40, the

choice of the square root ]k being made in such a way that ]u 1 (0) (u 1 (0) )

41/u
. 1 (0 ). Denote now by ]u40 the HFG such that (]0 )24 k 1

b1
gA12 !

l42

N Al

al
hl

0

,

the choice of the «square root» ]0 being arbitrary. By hypothesis, the Riemann

surface (S1 , p 1 , j1 , F 1 ) of the HFG ys
0

u 1

1 /]0z
0

is such that P1 0F 1 (S1 ) is a finite

set. By Lemma 4.3 the Riemann surfaces of ys
0

u 1

1 /]0z
0

and of y s
u0

1

u 1

1 /]0z
u 1

0

are both

isomorphic to (S1 , p 1 , j1 , F 1 ); but, by (4), the germs u1
z40 and ys

0

u 1

1 /]0z
u 1 (0)

are

each one inverse of the other; hence, by Lemma 2.5 the Riemann surface of u1
z40

is complete. Let now 2GkGN : if Ak40 the Riemann surface of zOu k (z) is
isomorphic to (P1 , id , id , A) for some complex constant A; if Akc0 we could re-
write the k-th equation of (5) in the form:

�
u k (0)

u k (z)

f(h) dh4�
0

z
Bk dz

ak (u 1 (z) )
,(7)

where f k
2 4 fk and Bk

24Ak , the choice of f k and Bk being made in such a way that
u
. k (0) f(u k (0) ) ak (u 1 (z) )4Bk . Denote now by [W k ]u k40 the HFG defined by set-
ting [W k ]u k40

2 4 [ fk ]u k40 , the choice of the «square root» [W k ]u k40 being arbit-

rary. By hypothesis, the Riemann surface (Sk , p k , jk , F k ) of the HFG ys
0

u k

W kz
0

is

such that P1 0F 1 (S1 ) is a finite set; moreover, by Lemma 4.3 the Riemann surfaces
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of the HFG y s
u k (0)

u k

f k dhz
u k (0)

is isomorphic to (Sk , p k , jk , F k ); but, by (7) the ger-

ms [zKuk ]z40 , y s
u k (0)

u k

f k dhz
u k (0)

and yzKs
0

z Bk

ak (u 1 (z) )
dzz

z40

satisfy, in the abo-

ve order, the hypotheses of Lemma 2.5 2); moreover, the Riemann surface with L-

singularities of y s
u k (0)

u k

f k dhz
u k (0)

is complete, since the one of [f k ]u k (0) is complete

without L-singularities. Therefore the Riemann surface with L-singularities of
uk

z40 is complete, hence so is the one of zO (u 1 (z) Ru N (z) ), : this fact ends the
proof of a). Vice versa, suppose that U is not coercive: then either there exists a

complex n-tuple (A1 RAN )�CN such that b1 (x0
1 )c0, A12 !

l42

N Al

al (x0
1 )

c0 and for

each one of the two HFG’s ]1 and ]2 such that (]i )24 k 1

b1
gA12 !

l42

N Al

al
hl

0

i41, 2, the Riemann surface (S1 , p 1 , j1 , F 1 ) of both the HFG’s ys
x0

u 1
dh

]i (h)
z

x0
1

i41, 2 ; is such that P1 0F 1 (S1 ) is an infinite set; or there exists k , 2GkGN
such that, for each one of the two HFG’s [f k1 ]0 and [f k2 ]0 such that [f ki ]0

4 [ fk ]0 , i4 (1 , 2 ), the Riemann surface (Sk , p k , jk , F k ) of both the HFG’s

ys
0

u k

f k i(h) dhz
0

i41, 2 is such that P1 0F 1 (S1 ) is an infinite set. In the first

case the geodesic element zOU(z)4 (u 1 (z) Ru N (z) ) starting from 0 with

velocity (L1 RLN ), such that L1
24

1

b1 (0)
gA12 !

l42

N Al

al (0)
h , Lk

24
Ak

fk (0) ak (0)
,

k42 RN , satisfies the equation s
0

u 1 (z) dh

]i (h)
4z , where i41 or i42; by Lemma

2.5, this fact implies that the Riemann surface of [zOu 1 (z) ]0 is incomplete, hence
the same holds about zOU(z). Consider now the second case: first construct a
geodesic element zOU(z)4 (0 Ru k (z) R 0) with all constant components
except u k , kF2. Now recall Lemma 4.1 to conclude that zOu k (z) satisfies, in a

neighbourhood of z40 the equation
1

Ck

s
0

u k (z)

f ki (h) dh4z , for a suitable complex

constant Ck; therefore its Riemann surface is incomplete by Lemma 2; this fact
ends the proof. r

D e f i n i t i o n 4.5. Let U and V be direct manifolds they are directly biholo-
morphic provided that they are biholomorphic under a direct product of biholo-
morphic functions between each Ui and each Vi .
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R e m a r k 4.6. Definition 4.2 is invariant by direct biholomorphism (see Defi-
nition 4.5): in other words, if U and V are directly biholomorphic, then U is coer-
cive if and only V is too: this is a simple consequence of «changing variable» in in-
tegrals in Definition 4.2.

Therefore, we could yield the following

D e f i n i t i o n 4.7. An equivalence class [U] of direct manifolds, consisting of
mutually directly (see Definition 4.5) biholomorphic elements is coercive provided
that any one of its representatives is coercive.

Our goal is now to extend Definitions 4.2 and 4.7 to warped products containg
some P1’s among their factors. Keeping into account Remark 4.6, consider a war-

ped product g»
i41

N

Ui , Lh of Riemann spheres, complex planes or one-dimensional

unit balls, which we shall call direct manifold too; let L% ]1RN( be the set of in-
dices such that UlCP1 for each l�L .

D e f i n i t i o n 4.8. Let Y4 (y 1
R y N )� U: then (Y , L) is a principal multipo-

le of U provided that b1 (y 1 )4Q and fl (y l )4Q for each l�L0]1(; A direct ma-

nifold g»
i41

N

Ui , Lh of Riemann spheres, complex planes or one-dimensional unit

balls with metric is partially projective if some one of its factors is biholomorphic
to the Riemann sphere P1 ; a partially direct manifold U is coercive in opposition

to the principal multipole (Y , L) if, set Wi4
.
/
´

Ui

Ui 0]y i(

if i�L

if i�L ,
then »

i41

N

Wi is

coercive in the sense of Definition 4.7, that is to say, belongs to a coercive equiva-
lence class with respect to direct biholomorphicity.

4.1 - Warped product of Riemann surfaces

Consider now the warped product of Riemann surfaces

S 4 S13a2
S23a3

S33RR3aN
SN ,

where each Si is endowed with meromorphic metric l i : S’ metric L is defined by

setting L4l 11 !
k42

N

ak l k , and each ak is a not everywhere vanishing meromor-

phic function on Si : as a simple consequence of Riemann’s uniformization theorem,
S admits universal covering C : U K S, where U is a direct manifold, endowed
with the pull-back meromorphic metric C* L : this universal covering is unique up
to direct biholomorphisms.
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D e f i n i t i o n 4.9. S is totally unelliptic provided that none of the Si is elliptic;
L-elliptic provided that there exists a nonempty set of indices L such that Sl is el-
liptic if and only if l�L .

If S is a L-elliptic warped product with universal covering C : U K S, then
(Z , L) is a principal multipole for S provided that Z� S and each Y�C21 (Z) is a
principal multipole for U.

A totally unelliptic warped product of Riemann surfaces is coercive provided
that its universal covering is coercive in the sense of Definition 4.7; a L-elliptic
warped product of Riemann surfaces is coercive in opposition to the principal
multipole (Z , L) provided that its universal covering U is coercive in opposition
to each principal multipole (Y , L) as Y runs over C21 (Z).

T h e o r e m 4.10. A totally unelliptic warped product of Riemann surfaces S

is geodesically complete if and only if it is coercive.

P r o o f . Let C : U K S be the universal covering of S: by Definition 4.9 U is
coercive, hence geodesically complete by Theorem 4.4. Let now g be a germ of
geodesic in S, starting at a metrically ordinary point: since C is a local isometry,
there exists a germ b of geodesic in U, starting at a metrically ordinary point,
such that g4C i b . By definition of completeness, the Riemann surface with L-
singularities (S , p , j , B , U) of b is such that P1 0p(S) is a finite set; moreover,
(S , p , j , C i B , S) is an analytical continuation, with L-singularities, of g . This
proves that, if (SA, pA, jA, G , S) is the Riemann surface with L-singularities of g ,
then P1 0pA(SA) is a finite set too, hence S is geodesically complete. On the other si-
de, if S admits an incomplete germ of geodesic g , starting at a metrically ordinary
point, then there exists an incomplete germ of geodesic b in U, starting at a me-
trically ordinary point, such that g4C i b; this means by Theorem 4.4, that U is
not coercive; eventually, by Definition 4.9, S is not coercive: this fact ends the
proof. r

T h e o r e m 4.11. A L-elliptic warped product of Riemann surfaces S is geo-
desically complete if and only if it is coercive in opposition to some principal
multipole.

P r o o f . Suppose that S is coercive in opposition to some principal multipole
(Z , L): then, by Theorem 4.10, S is coercive in opposition to (Z , L) if and only if
S0Z is geodesically complete; since Z is not metrically ordinary, S is geodesically
complete. On the other hand, suppose that S admits an incomplete geodesic
(S , p , j , g , S): let (Z , L) be a principal multipole of S wich is known to exist; set
R4g21 (S0Z)%S . Now (R , pNR , j , gNR , S0Z) is an incomplete geodesic of S0Z :
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this fact implies that S0Z is not geodesically complete, hence it is not coercive,
that is to say, S is not coercive in opposition to (Z , L). The arbitrariness of Z allo-
ws us to conclude the proof. r

4.2 - Examples

We show a wide class of coercive direct manifolds. To do this, we need some
technicalities from integral calculus, hence we state:

P r o p o s i t i o n 4.12. Set D4b 224ac , the germ y 1

kah 21bh1c
z

0

admits

one of the following primitives, depending on a , b , c :

y 1

ka
log uh1 b

2a
1oh 21

b

a
h1

c

a
v1costz

0

the same branch of kn, any

branch of the logarithm, if ac0 and Dc0; k 2

b
kbh1c1costl

0

the same branch

of kn, if a40 and bc0; [h/kc1cost]0 the same branch of kn, if a4b40.

Let now Si , i41 RN be Riemann surfaces, which we suppose for simplicity
parabolic or hyperbolic, pi : UiKSi their universal covering, where each UiCC
or D; finally, let f i be meromorphic functions such that f 1 i p1 and (f i i pi )8 ,
i41 RN take all complex values but at most a finite number (the hypothesis on
phii i pi could be weakened; even dropped, if Si is parabolic: see [HAY], introduc-

tion). Moreover, let (ai , bi , ci )�C3 00 i41 RN , set S4 »
i41

N

Si , U 4 »
i41

N

4 Ui ,

p4 (p1 R pN ) and consider the meromorphic metric

L4df 1 Udf 11!
i41

N df i Udf i

ai f 1
2 1bi f 11ci

.

T h e o r e m 4.13. (U, L) is coercive (hence geodesically complete).

P r o o f . By pulling back L with respect to the universal covering p we
get

p * L(z 1
R z N )4 [ (f 1 i p1 )8 ]2 dz 1 Udz 11!

i41

N [ (f i i pi )8 ]2 dz i Udz i

ai (f 1 i p1 )21bi f 1 i p11ci

.

We claim that (U, p * L) is coercive: indeed, for every n-tuple (A1 RAN )�CN
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such that (f 1 i p1 )8 (0)c0 and A12 !
l42

N

Al ai (f 1 i p1 )21bi f 1 i p11cic0, set
f i p14c , there holds

�
0

u 1

gA12 !
l42

N

Al (ai (c)21bi c1ci )(h)h21/2

(c)8 (h) dh4F(c) ,

where F is one (depending on the constants A1 RAN ) of the holomorphic function
germs on the right hand member of Proposition 4.12.

This fact shows that the maximal analytical continuation of
u 1KF(f 1 i p1 (u 1 ) ) takes all P1’s values but a finite number, because so does the
meromorphic function f 1 and hence f 1 i p1 ; moreover, for each i , 2G iGN , each
one of the two HFG’s 6[ (f i i pi )8 ] could be continuated to 6[ (f i i pi )8 ] which,
by assumption, takes all values but at most two ones. r

References

[BEH] J. K. BEEM and P. E. EHRLICH, Global Lorentzian geometry, Marcel Dekker,
New York 1981.

[CAS] A. CASSA, Teoria delle curve algebriche piane e delle superfici di Riemann com-
patte, Pitagora, Milano 1983.

[DNF] B. A. DUBROVIN, S. P. NOVIKOV and A. T. FOMENKO, Modern geometry-methods
and applications. I. The geometry of surfaces, transformation groups, and fiel-
ds, Translated from the Russian by R. G. Burns. Grad. Text Math. 93 Springer-
Verlag, New York 1984.

[GRO] R. C. GUNNING and H. ROSSI, Analytic functions of several complex variables,
Prentice Hall, Henglewood Cliffs, N. J. 1965

[HAY] W. K. HAYMAN, Meromorphic functions, Clarendon press, Oxford 1964.
[HIL] E. HILLE, Ordinary differential equations in the complex domain, John Wiley &

Sons, New York-London-Sydney 1976.
[LEB] C. LEBRUN, Spaces of complex null geodesics in complex-Riemannian geometry,

Trans. Amer. Math. Soc. 278 (1983), 209-231.
[MAN] Y. MANIN, Gauge fields theory and complex geometry, Springer Verlag, Berlin

1984.
[WEL] R. O. WELLS, Differential analysis on complex manifolds, Prentice-Hall, Engle-

wood Cliffs, N. J. 1973.



183GEODESIC COMPLETENESS FOR SOME MEROMORPHIC METRICS[21]

A b s t r a c t

In this paper we investigate possible extensions of the idea of geodesic completeness
in complex manifolds, following two directions: metrics are somewhere allowed not to be
of maximum rank, or to have «poles» somewhere else. Geodesics are eventually defined on
Riemann surfaces over regions in the Riemann sphere. Completeness theorems are given
in the framework of warped products of Riemann surfaces.

* * *


