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CLAUDIO MENEGHINI (*)

Geodesic completeness for some meromorphic metrics (**)

1 - Foreword

In this paper we shall be concerned with generalizing the ideas of «metric» and
geodesic for a complex manifold M: we emphasize that our curves will be complex
ones; a metric will be, informally speaking, a symmetric quadratic form on the ho-
lomorphic tangent space at each point p e M, holomorphically depending on the
point itself; of course, it couldn’t have any «signature», but, by simmetry, it indu-
ces a canonical Levi-Civita’s connexion on M, which in turn allows us to define
geodesics to be auto-parallel paths. We illustrate some motivations (see [DNF]):
consider the space JF of antisymmetric covariant tensors of rank two in Minko-
wski’s space R, 3: electromagnetic fields are such ones. Let F e = we can write
F= ‘2 F; dx® A\ dx’ where x°...x% are the natural coordinate functions on Ry ;.

1<
At eacfl point, the space J, of all tensors in F evaluated at p is a six- dimensional
real vector space; moreover, the adjoint operator * with respect to Minkowski’s
metric is such that = * = —1: all these facts imply that &, could be thought of as
a complex three dimensional vector space G, by setting (a +ib) F=aF + b= F.
Now # is SO(1, 3)-invariant, hence SO(1, 3) is a group of (complex) linear tran-
sformations of §,, preserving the quadratic form (F, F)= — =« (FA (% F) +iF
A F): this means that this «norm» is invariant by Lorentz transformations, hence
it is of relevant physical interest. If we introduce the following coordinate func-
tions on §,: 2! =Fy —iFy, 2% =Fp+iFy3 and 2° = Fgz — iF;, we have that
(F, Fy=(2")*+ (22 + (2%)?, hence there naturally arises the so called complex-
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Euclidean metric on C?: on one hand, by changing coordinates we are brought to
a generic symmetric bilinear form on C3?; on the other one there arise «poles» if
we attempt to extend the above construction e.g. to (P')?. Now the idea of genera-
lizing to the curved framework is quite natural: the reader is referred to section 3.
Our main concern will be warped products of Riemann surfaces: let U; =D or U;
= (, with coordinate function %’ and metrie b; (u!) du' @ du’ or f;(u?) du'® du'
if ¢ = 2; both b; and the f;’s are nonzero meromorphic functions. A warped product
of the {U;}’s will be a meromorphic Riemannian manifold (see definition
3.1)

N N
(H Uy, by(ul) du' Odu’ + 2 ai(ul)ﬁ(ui)duiQdui),
i1 i=2

where the a;’s (k = 2) are nonzero meromorphic functions (called warping func-
tions) defined on U,. This construction can be naturally generalized to the case
when the {U;}’s are more general Rieman surfaces. We report that many of the
known exact solutions of Einstein’s field equations can be related, by means of
«complexifications», to such manifolds.

We introduce the concept of coercivity of a warped product: informally speak-
ing, it will amount to the fact that primitives of «square roots» of some rational
functions of the coefficients involved in the metric can be analitically continued
until they take all complex values but at most a finite number of ones.

Geodesics will show various types of «singularities»: we record, among the
other ones, «logarithmic» singularities: they will be, more or less, points resem-
bling 0 in connection with z+> logz; rather more formally, a «logarithmic singula-
rity» ( will be a point in a two dimensional real topological manifold, admitting a
neighbourhooud U such that U\{¢} is a Riemann surface, but there is no complex
structure «at» {: this type of singularity arises from the fact that geodesic equa-
tions admit first integrals whose solutions have poles with nonzero residues.

We introduce the notion of completeness: a path will be essentially a holomor-
phic function F : S— M, where S is a Riemann surface over a region of P!, admit-
ting a projection mapping = : S — P!: it will be complete provided that P! \n(S) is
a finite set: we are now able to attemtp to give a hazy idea of our main result.
Theorem: a warped product of Riemann surfaces is complete (i.e. «almost every»
geodesic is complete) if and only if it is coercive.

The last statement resumes the meaning of Theorems 4.4, 4.10 and 4.11, whilst
definition of completeness is in 3.10 and of coercivity in 4.2. We end this section
with some references: the problem of geodesic singularities arises from semi-Rie-
mannian geometry: see e.g. [BEH]; a different approach to holomorphic geometry
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could be found in [MAN]. Finally, we owe [LEB] for the definition of a nondege-
nerate holomorphic metric, of a connexion (see p. 11 ff) and of a complex geodesic
(see p. 12 ff).

2 - Analytical continuation

The idea of analytical continuation of a holomorphic mapping element f : U
—M (U is a region in the complex plane, M, throughout this paper will be a com-
plex manifold) is well known and amounts to a quintuple Q= (S, «, j, F, M),
where S is a connected Riemann surface over a region of P!, 7 : S— C is a non-
constant holomorphic mapping such that Uc a(S), j : U—S is a holomorphic im-
mersion such that woj =id|; and F': S—M is a holomorphic mapping such that
Foj =f. Each finite branch point is kept into account by the fact of lying «under»
some critical point of 7; it is a well known (see e.g. [CAS], chap. 6) result that there
exists a unique maximal analytical continuation, called the Riemann surface, of
(U, f). In the following we shall abbreviate «holomorphic function element» by
«HFE» and «holomorphic function germ» by «<HFG». For further purposes, we shall
consider also «poles» and «logarithmic singularities»: our definitions will axiomatize
the behaviour of continuations of complex-valued holomorphic elements.

Definition 2.1. A pole of @) is a decreasing sequence of open sets {V;}r>x
c S such that there exist a positive integer n and a point z, € P!, such that e (P1)

1
for every k= K V), is a connected component of 7 ! (D (zo, - )\{zo}), o(P2) for
1
every k=K n|y: V,— (D (zo, 7 )\{zo}) is a n-sheeted covering and e (P3)
kDKVk = () o (P4) there exist: an open set £2 c M; complex submanifolds N c £ and

PcQ (dim(P)=1); such that Q and N X P are biholomorphic; for every k,
FVi\{p})c; prioF:V,—N has a removable singularity at p and
kDKpaﬂz o F'(V,,) = 0; a logarithmic singularity (in the following: L-singularity) q

of @y is a sequence of decreasing open sets {V;}x>x of S such that there hold
(P1), (P3) and e (LLS2) for every k = K and every (real) nonconstant closed path
y :[0, 11— D(zy, 1/k)\{2,}, with nonzero winding number around z,, every lifted
path B:[0, 11—x ~'(D(z, 1/k)\{7,}) with respect to the topological covering 7
is not a closed path, i.e. 5(0) Z3(1); q is ® (RMLS) a removable L-singularity for F
if there exists 7 € M such that fk] F(V,) = {n}; ¢ (PLS) a polar L-singularity for

F if there exist: an open set 2cM; complex submanifolds Nc 2 and PcQ
(dim (P) = 1) such that Q and N x P are biholomorphic; for every k, F(V: \{p})
cQ; prioF :V,—N has a removable singularity at p; k_flerz o (V) =0.
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It is easily seen that {L-singularities} N {poles} = 0 and that S := S U {poles
of @y} has a canonical structure of a Riemann surface and z admits a holomor-
phic extension 7 to S, hence an extended analytical continuation of (U, f) is a
quintuple @y = (S, 7,7, F, M), where S and 7 are as above and j = ids_,g oj; of
course there exists a unique maximal extended continuation of (U, f), build up as
above, starting from its unique maximal continuation.

Consider now the set B of the L-singularities of Qy: set S"=SURB as a set
and introduce a topology on S% open sets are the open sets in S and a fundamen-
tal neighbourhood system of the L-singularity ¢ = {V}. };>x < B is yielded by the
sets VI =V, U {q}.

Lemma 22. SV admits no complex structure at q = {Vitesk-

Proof. Were there one, we could find charts (0, ¢) around ¢ and (7, y)
around z, such that yomo¢ "1(&) =&Y for some integer N > 0. This fact would
imply 7|+\jq} to be a n-sheeted covering of V\{z,}; it is easily seen that this fact
would contradict (LS2) in Definition 2.1. =

Lemma 23. (A): w admits a unique continuous extension 7¥ to S* (B): for
every removable logarithmic singularity v of Qy, F admits a unique continuous
extension FV to r.

Proof. (A): let beB and {V,} be the sequence spotting b: define n”(q)
=n(q) if eV} and 7%(b) = z,, where z, is the common centre of the discs onto
which the V) s are projected. Now z! is continuous at all points in V,; moreover,
for every neighbourhood G of zy, 7" 1(G) 57"~ (2)) Uz 1 (G\{z}), hence, if we
set H={b} Ux "' (G\{2}), we have that H is a neighbourhood of b in S* such
that 7% H) c G, proving continuity at b. Arguing by density, we conclude that this
extension is unique; the proof of (B) is analogous. ®

Definition 24. A quintuple @y = (S%, z° j% F® M), is an analytical con-
tinuation with L-singularities of the function element (U, f) if there exists an
analytical continuation Q, of (U, f) such that S* \S consists of L-singularities of
F, 7% is the unique continuous extension of 7 to S n’ j - idg . gb o7 and F admits a
unique continuous extension F* to S° \{polar logarithmic singularities of F'}. Qy
is: maximal provided that so is @y and @y \Qy contains all L-singularities of Qyy;
extended provided that so is Q.

Lemma 2.5. 1). Let f and g be two holomorphic germs each one inverse of
the other; let (R, m,j, F, C) and (S, o0,(, G, C) be their respective Riemann
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surfaces: then F(R) = o(S); 2): let f, g, h be three HFG’s such that fog = h. Let
(R, m,j, F,C) be the Riemann surface of f, (S, 0,0, G, C) the one of g and
(T, o0, m, H, C) the Riemann surface with L-singularities of h: then
F(R)\(P'\(a(T))) c o(8).

Proof. We shall prove only 1); 2) is analogous. a) FI(R) co(S): let £e R and
F(&) =n; there exist: an open neighbourhood U, of &; open subsets U,c w(U;)
and V,c F(U;) and a biholomorphic function g,: V,— U,, with inverse function
fo: Us— W, such that: (U, f5) and (U, f) are connectible and so are (V%, ¢») and
(9, 9). By construction there hence exist two holomorphic immersions j: U, — R
and { : V,— S such that 7o =id and o [ = id. Let ©, = F(U), and = = {(x, )
e Uy X Oyt F(x) =y}; moreover let J: U,—3 be defined by setting J(v)
= (J og»(v), v). Then (=, pry, J, wopr;) is an analytical continuation of (0, g»);
indeed wopr, od =m0 ] ofs =(gs. But (V,, g,) is connectible with (V, g), hence
(X, pre, J, mopr;) is an analytical continuation of (V, g). There eventually exists
a holomorphic function h:¥—S such that goh =pr,: hence n=pry (&, n)
=00l(&, n) €o(S). b) o(S)c F(R): let seS: there is a neighbourhood V of s in S
such that V\{s} consists entirely of regular points both of ¢ and G, not excluding
that s itself be regular for o or G or both. This fact means that for each s’ e V\{s}
there exists a HFE ~(Q(s’), V', g,) connectible with (¥, g) and, besides, a holo-
morphic immersion (: V' — V. By a) already proved, G(s) e 7(R), hence there
exist pe R such that 7(p) = G(s) and a neighbourhood W of p in R such that
a Y @O)NNW=0.Set W =a1(g(¥)) N W: we may suppose, without loss of
generality, that & is invertible on W': hence there exists a (open) holomorphiNC im-
mersion f: g(V')—W. Therefore, for each {e f(g(v')), there exists ne (V')
such that F(&) = F(j o § -0(n)). Now, by definition of analytical continuation the-
re holds F o f o g =id, hence we have F(¢) = o(5). Consider now the holomorphic
function Z: W x V—C defined ~by setting E(w, v) = F(w) — o(v): we have
EliGeon <oy =0, but 7 (G(¥)) x £(¥') is an open set in W x V, hence £=0 on
W x V, which in turn implies F(p) = o(s). Therefore we have proved that for each
seS there exists peR such that F(p) =o(s): this eventually implies that
o(S)CF(R). =

3 - Complex-Riemannian metric structures

Definition 3.1. Let § be a closed hypersurface in M: an &-meromorphic
section of GiN is a holomorphic section A of G(M\8) such that for every pe §
and every chart (U, (z'...2")) around p, there exists a neighbourhood U of p and
rs pairs of C-valued holomorphic functions ¢, ;, v, ., withy, , #0on U\g,
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) 3\ P
Sz S .,
symmetric section of G3M. It will be called holomorphic or &-meromorphic provi-
ded that so is as a section; A is nondegenerate at p if vk(A(p)) = dim (M), degene-
rate otherwise; if (D is a closed hypersurface in M and A is degenerate only on (),
we shall say that A is (D-degenerate. We say that p is a metrically ordinary point
in M if A is holomorphic and nondegenerate at p. A holomorphic (resp. nondege-
nerate holomorphic, resp. meromorphic) Riemannian manifold is a complex ma-
nifold endowed with a holomorphie (resp. nondegenerate holomorphic, resp. me-
romorphic) metric.

We now turn to introducing the holomorphic Levi-Civita connexion induced by

such that A (dz"...dzk,

. A complex metric on M is a

a meromorphic, possibly degenerating metric. First we need to introduce the ho-
lomorphic Levi Civita connexion induced by a holomorphic nondegenerate metric:
this is done in a quite natural way. Things are different if we allow metrics to be
meromorphic behaviour or to lower in their ranks. These metric «singularities»
will be generally supposed to lie in closed hypersurfaces; Levi Civita connexions
may still be defined, but, as one could expect, they will turn out to be themselves
«meromorphic». Let now (N, A) be a meromorphic Riemannian manifold admit-
ting closed hypersurfaces (@ and & such that A |y, is holomorphic and A | s\n
is nondegenerate. Since IV\§ is connected, we have that (IN\8)\ D, 4| s\ is 2
nondegenerate holomorphic Riemannian manifold admitting, as such, a canonical
holomorphic Levi-Civita connexion D. Now, if pe WU & and V, W are holomor-
phic vector fields in a neighbourhood © of p we can define the vector field Dy W
on V\(M U &), and this will be a M U §-meromorphic vector field. The Christoffel
symbols of a coordinate system Z = (z'...z™) on an open set UcN are those
complex valued functions, defined on U\NDUSE) by setting I ’fj
=dz* (D % ( % )) Now the representative matrix (g;;) of /1 with respect to the
"
coordinate system Z is holomorphic in U, with nonvanishing determinant function
on U\(D U 8); as such it admits a inverse matrix g¥, whose coefficients hence re-
sult in being (DU S-meromorphic functions. It is easy to prove that

m 9 m aWk m . ) o) ) ]
D | 2XW —|=2X + 2T WY 5 as meromorphic vector fields
Jj=1 4

3t \j=1 oz’ k=1 20

N
and 2% = 2, ¢" (= gy m~+Gim i+ Gim. i) =2T% as meromorphic functions; then:
i lg 94, Gim, ;T Gjm, ij

m=

Proposition 3.2. For every pair V, W of holomorphic vector fields on the
open set U (belonging to a maximal atlas) in the meromorphic Riemannian ma-
nifold (N, A), DyW is a well defined vector field, holomorphic on UN{neN: A
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is holomorphic and nondegenerate at n} and may be extended to a meromorphic
vector field on U.

Proof. There exist holomorphic functions {V'}, {W/} and a coordinate
N N

e, )
system Z = (z'... ") on U such that V= 2 V! — and W= > Wi — . The
i=1 oz" j=1 oz’

oz"

N ) N . a N N ) awk ) 3
fact that DyW= 2 VD3 [ ZW —|=2>| X V! — +TEW || —

i=1 i=1 82" k=1\i,j=1 92" "
ends the proof. m

Definition 3.3. Given a (D-degenerate and &-meromorphic Riemannian ma-
nifold (IV, A), with D and § closed hypersurfaces in NV, the Levi-Civita metric
connexion (or meromorphic metric connexion) of N is the collection consisting of
all metric connexions {D[U;\(D U &)1};c; as {U}; runs over any maximal atlas
B={U}i)icr on N.

3.1 - Meromorphic parallel translation and geodesics

We now slightly reformulate the notion of path to cope with the complex envi-
ronment: a path in M is a quintuple Qy = (S, =, j, F', M), where S is a connected
Riemann surface, 7w e (S, P!), Fe (S, M) and j is a holomorphic immersion
J: U—8\X such that woj = 1id|;, where U is a region in the complex plane; a pa-
th is zy-starting at m provided that zoe U and Foj(zy) =m.

In the continuation, we shall call TM (resp. 7'* M) M’s holomorphic tangent
(resp. cotangent) bundle and, more generally, G, M its holomorphic r-covariant
and s-contravariant tensor bundle; as usual, 171 : G;M — M will denote their natu-
ral projections. We now define the wvelocity field of a path @ as a suitable mero-
morphic section over F' of the holomorphic tangent bundle 7M: to achieve this
purpose, we need to lift the vector field d/dz on C with respect to 7; of course, in
general, contravariant tensor fields couldn’t be lifted, but we may get through this
obstruction by keeping into account that C and S are one-dimensional and allo-
wing the lifted vector field to be meromorphic. We call P the set of branch points
of 7.

Lemma 34. There exists a unique P-meromorphic vector field d/dz on S
such that, for every reS\P, m., |,~(d’/2l’z |) = (d/dz) |z

Proof. Consider w =xn*dz and A =x*(dz®dz) on S: the latter establishes
an isomorphism between the holomorphic cotangent and tangent bundles of S\P.
Call V the holomorphic vector field corresponding to w in the above isomorphism:
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we claim that V = d/dz on S\P. To show this fact, we explicitely compute the com-
ponents of V with respect to a maximal atlas B = {(U,, ¢,)} for S\P: let w
= w(9/0C 1)y Yo = A/OE (y, 919 (1); then, set Vi) = @ (,)1/gu1, the collection
{(U,, V,))} of open sets and holomorphic functions is such that, on overlapping
local charts (U,, ¢,) and (U, C;), we have

W@t ©en(dEe)/dl )
Jon Yo (dEp/dE o)

d@ (a)
sy’

1

1 _ _
Viy = =V

that is to say that collection defines a holomorphic vector field. Now for every
reS\P,

w*dz|,(8/3),)
dz | rr(r)(JT* a/a€|1)

A2 | ) (7T 4 |1Wz |-) = Jr*dz|,.(d’/7fz [,) =

)

hence |T((Jl7(fz |-) = (d/dz) | xr), proving the asserted.

Let’s prove that d/dz may be extended to a meromorphic vector field on S: if p
€ P then we can find local charts (U, ) around p, (V, ¢) around z(p), and an in-
teger N >0 such that ¢ ooy *(u) =u". Now we have

1,11‘1"‘71”‘¢)”‘(0lw)i ) (u)=dw((¢*n*w;li) )=dw((¢m/)_1)’i)=NuN_l;
du du | |» dw

but ¢ and y are charts, hence 7 * dz itself is vanishing of order N — 1 at p; as al-
ready proved, . |.(d/dz|.) = (d/dz)| on U\{p} and, consequently,
(* dz)(d/dz) = dz(m ) = dz(d/dz) =1 on U\{p}, hence on U. Now, in local coor-
dinates, (7* dz) = ad¢ and d/dz = y3/3¢, where a is a holomorphic function on U,
vanishing of order N — 1 at p and y is a holomorphic function on U\{p}. By the
argument above, ya =1, hence y has a pole of order N — 1 at p: a similar argu-
ment holds for each isolated point in P, proving the meromorphic behaviour of
didz. =

. d
Lemma 3.5. The mapping 7*'—>(F, F, |,,n( = ’ )) may be extended to a P-
2 |r
meromorphic section of TM over F.

Proof. LetpeP and U be a neighbourhood of p such that there exist a local

d
chart ¢: U—C,, and holomorphic functions f, g on {(U) such that T
2 |&-1()
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d
=C;1(f(w) - ’ ); for every local chart W= (u!~"™, du'~™) on TM,
w |w

g )

WV E ) = W (Foc1<w>, F. |g1<w>¢*1(f<w> 4
g dw

f

d
=¥ (Foé‘l(w), = (w) —(Foé‘l)(w))
g dw

f

= (ul“'moFé_l(w), = (w) i(ulm oFoC_l)(’l/U))- u
g dw

Definition 3.6. The velocity field of a path Qy = (S, &, j, F', M) is the me-

=

We turn now to study vector fields on paths: an obvious example is the velo-

romorphic mapping V(Qy): S\P—TM defined by TH(F, F,

city field, defined in Definition 3.6: just as in semi-Riemannian geometry, there is
a natural way of defining the rate of change X' of a meromorphic vector field X
on a path. We study at first paths with values in a nondegenerate holomorphic
Riemannian manifold M: let Qy = (S, =, j, y, M) be a path in M; P be the set of
branch points of 77; #e S\P be such that d/dz is holomorphic at », ¥c S\P be a
neighbourhood of » such that y(V) is contained in a local chart in M; J((V) be the
ring of holomorphic functions on © and JC, (V) the Lie algebra of holomorphic vec-
tor fields over y on V: it is well known that there exists a unique mapping
V, 1 L, (V) = X, (V), called induced covariant derivative on @y such that V., (aZ;
+bZy)=aV, Z,+ 0V, Z,, V,(hZ)= (%h)ZJrth,Z, hed(V) and

V, (Voy)¥) =D (7 1 where V' is a holomorphic vector field in a neighbou-

Vi lr| = |r

rhood of y(r). More(;lizer, %(X, )=(V, X, ")+(X,V,Y); X, YeX, (V). Now
let R = {O }rex be a maximal atlas for S\P; we may assume that, for every k,
maybe shrinking V., y(V,) is contained in some local chart U; in the already in-
troduced atlas . for M.

Now, if ©, and ¥, are overlapping open sets in R, ;1% e R too, and
V, [ wnw =V, [%]]|vnvw. Now let’s complete R to an atlas S for S: keeping
into account that the local coordinate expression of the induced covariant derivati-

m d m d . . )
veis V, Z= 2| —2Z"+ X I'i —(u'oy)Z/| — , hence pairs of holomor-
=1\ dz ij=1 ° dz ou*

phic vector fields on y are transormed into P-meromorphic vector fields on y.

Definition 3.7. The P-meromorphic induced covariant derivative, or the



172 CLAUDIO MENEGHINI [10]

P-meromorphic parallel translation on a path Q= (S, 7, 5, y, M) with set of
branch points P and taking values in a nondegenerate Riemannian manifold M is
the collection consisting of the induced covariant derivatives V., [V, \P] as O,
runs over a maximal atlas S = ({V,})rcx on S.

Let’s turn now to dealing with meromorphic parallel translations induced on a
path Qv = (T, 0,J, 6, N), in a meromorphic Riemannian manifold (iV, A) admitt-
ing closed hypersurfaces ® and & such that A |y, ; is holomorphic and A |y g\ o is
nondegenerate. We set &= (D U § and restrict our attention to paths z,-starting
at metrically ordinary points, supposing, without loss in generality, that z,=0.

Lemma 3.8. Set M =N\J, S=06"Y(M): then T\S is discrete, hence S is a
connected Riemann surface.

Proof. Suppose that there exists a subset Vc 7T\S admitting an accumula-
tion point ¢ € © and consider a countable atlas for B = {U, },,cn for N such that,
for every n, there exists ¥, e O({U,}) such that U, N F= {XeU,: ¥,=0}. Set
0 Y(U,)=T,cT and suppose, without loss of generality, that 6(t) e U,. Now
¥00|vnr,=0andte VNT,is an accumulation point of VN Ty, hence ¥ 00|y,
=0 and 6(T,) c F. Suppose now that Ty = 0 for some N: we claim that this im-
plies 6(Ty) c F to prove the asserted, pick two points 7€ T, and 7, € T,, and two
neighbourhoods 77, Ty of 7 and 7,, in T, and 7T, respectively, such that o|r; and
0| r;, are biholomorphic functions. Now the function elements (o(7), 6 (0| Td)’l)
and (o(Ty), 60 (0| T&)‘l) are connectible, hence there exists a finite chain
{W,}, -0 such that Wy =o(Ty), Wi, =0o(T%), W,NW,,,#0 for every v. Wi-
thout loss of generality, we may suppose that each W, admits a holomorphic, hence
open, immersion j,— T, hence, setting So=T,, S; =7,(W,) for A=1...L, S},
= Ty yields a finite chain of open subsets {S;};-¢..x of T connecting 7, and T'y.
Let’s prove, by induction, that, for every 1, 6(S;) c F. e At first recall that 6(S,)
cUyN & as already proved; suppose now that 6(S;_;)c & We have S,_; NS,
# 0, hence 6(S;,_1) N O(S,) # 0. For every m set X, = 6(S;_1) N 6(S,) N U,,: if
i #0, then ¥, 00|s-1s,)ns,_,ns, = 0; but 6 1(Z},) NS;_1 NS, is open in
0 16 S)NU,NS,, thus ¥,, o Ols-1es)nu,ns, =0, that is to say 6(S,) N U,
c J. e On the other hand, if X, =0, but 6(S;) U U,, # 0 we claim that 6(S;)
N U,,c F as well: proving this requires a further induction: pick a Uy such that
X u # 0 and a finite chain of open sets B' = {U, },_,.,C B (with U, N 6(S;) # ¢
for each u) connecting Uy, and U,,. Since X3, #= 0, 6(S;,) N Uy = 6(S,) N Uy C T,
suppose by induction that 6(S;) N U/-;C F then ¥; o] 61 nU_nupHns, =0,
hence ¥, 00 |s-1ospnupns, =0, ie. 6(S;) N U/ c F: this fact ends the induction
and eventually implies o(S,) N U, =d6(S,)NUjcF Summing up, 4(S;)
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= 7L}J(é(Sk) N U,)cd, for each k; hence 6(Ty) = 8(Sy) ¢ F and eventually 6(T)
= 6(NU\ITN) C J, hence 6 couldn’t startat a point in N\J. m

In the following considerations, there will still hold all notations introduced in
preceding lemma: given a path Qy = (T, 0, j, 0, N), set m = 0|5, y = 0|5 and note
that, since Qy is starting from a metrically ordinary point 72, j may be supposed
to take values in fact in S; since the preceding lemma shows that S is a connected
Riemann surface, Qy = (S, 7, j, 6|sM) is in fact a path in M, which we call the
depolarization of Qy. But M is a nondegenerate holomorphic Riemannian mani-
fold, hence if P is the set of branch points of 7, there is a P-meromorphic induced
parallel translation on @y, built up as in definition 3.7. Finally, we introduce a ma-
ximal atlas G for T and yield the following:

Definition 3.9. Let (¥, A) be a &-meromorphic and (D-degenerate Rieman-
nian manifold, M = N\(D U &), Qv = (T, 0, j, 6, N) a path: the (P U S "1(D U §))-
meromorphic induced covariant derivative on Qy is the collection consisting of
all induced covariant derivatives V, [V, N S] as U, runs over a maximal atlas G
= ({ Vs Piex for T and Qy = (S, 7, j, 6|sM) is the depolarization of Qy. A mero-
morphic (in particular, holomorphic) vector field Z on a path is parallel provided
that VZ = 0 (as a meromorphic vector field). A geodesic in a meromorphic (in par-
ticular, holomorphic) Riemannian manifold is a path whose (meormorphic) velo-
city field is parallel. N

The local equations 3 + > 11" “(B) BB’ =0,k=1...N of elements of geode-

1,)=

sics (U, ) are a system of N second-order o.d.e’s in the complex domain, with
meromorphic coefficients, in turn equivalent to an autonomous system of 2N first-
order equations; as a consequence of general theory (see e.g. [HIL], th. 2.2.2) for
every metrically ordinary point peM, every holomorphic tangent vector V,
eT,M and every z,e C, there exists a unique germ B, of geodesic such that
B.,(20)=p and B, . (d/dz) |, =V,; moreover any continuation of B. is a geodesic.

Definition 3.10. A meromorphic Riemannian manifold is complete provided
that the Riemann surface, with L-singularities, of each geodesic starting at a me-
trically ordinary point is complete.

4 - Completeness theorems

In this section we shall be concerned with warped products of Riemann surfa-
ces, each one endowed with some meromorphic metric: in this framework we shall
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prove a geodesic completeness criterion. Consider at first, like in foreword, a war-
ped product of unit dises or complex planes

N N
(H Uy, by(uh) du Odu’+ 2 a;(ul) fi(u?) duiGdui):
i=1 i=2
in the following we shall denote it by
U = ‘LLI Xaz(u1>u2 Xa3(u1)u3 X ><aN(H1)‘LLN,

and call it a direct manifold. We recall that b, the a;’s and the f;’s are nonzero
meromorphic functions, with b and the a;’s defined on U,. Each element of geode-
sic of (U, A) satisfies the following system of N o.d.e’s in the complex do-
main:

. bl (u'(z)) . 5o (@) fiu'(2) .
1 12 L)) = 0
@ e 20, (u'(2)) e 122 26, (u'(2)) )
. fi k@) . af(uwr@) ..
k k(o2 4 P27 N ok 1 =0,k=2...N
w5 (z) + ka(u"'(z)) W (z))” + ak(ul(z)) W ()@ (2)) , ,

provided that it starts at a metrically ordinary point.
Lemma 4.1. The equations (1) admit the following first integrals:

(12 1 S A

@' (@) (b (u'(2) = Ay — X ————
: =2 a;(u(2))
(A) if ul# const

@) L GFR)2 L)) e, R)E=4, k=2...N oe.
w'(@) =4, ¢

W) (k) =4, k=2..N Q,

(B) if u'=const

\

where the A,’s are suitable complex constants.

Proof. We prove only (A); (B) is analogous. Divide the k-th equation in (4.1)
by u” and integrate once: then

@ (@) fie(w" @) (u' @) TF = @ (20) £ (u* (2o Dy (u' (20) P 1= Ay

As to &, by the first equation of (1) there holds 2b;(u!'(2))u!(2)u(2)
N

+ b/ (u' ()@ (2))° — lZ @/ (u'(2)) filu'(2))@ (2))*4' (z) = 0; by e, already pro-
—2
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ved, (i'(2)7fi(u' (@)l (u' (2))F = A;, hence

N ’ 1
by ()i (@) () + b (u () () — 3 4, L E)

_ _WRURRD) iy -
M Tatip 70

integrating once, dividing by b;(#'(z)) and setting A; = K/b;(u'(z,)) ends the
proof. =

Definition 4.2. A direct manifold U with metric Aw?'...u")
N

=b(uh)du'Odu'+ > a;(ul) fi(u?) du’ ©du’, where by, the a;’s and the f;’s
i=2

are nonzero meromorphic functions is coercive provided that, for every metrically
ordinary point X, = (2 ...2") and

NoA

e for every n-tuple (4, ... Ay) e CY such that b;(x) =0, A, — > ( ll) =0
1=2 (%o

and, for each one of the two HFGs X; and X,, such that (X;)?

1 N A
= [—(A1 - —l)] 1=1, 2, the Riemann surface (S;, 7+, j1, 1, U) of both
by =2 ay /lo
ul d
the HFG’s [f < (77) ] i=1, 2; is such that P'\@(S;) is a finite set;
o Ni\17) Jpd
o for each k, 2 <k % N and for each one of the two HFG’s ¢ ;; and ¢, such

that (¢ ki)21= [filsls © =1, 2, the Riemann surface (Sy, 7y, ji, @i, W of both the
HFG’s [fq)ki(n) dn] i=1, 2 is such that P'\®,(S,) is a finite set.
ol .

Defination 4.2 may be checked for just one metrically ordinary point X,: this
is proved in Lemma 4.3; moreover, we may assume,without loss of generality
Xy =0: were not, we could carry it into 0 by applying an automorphism of U,
that is to say a dirvect product of automorphisms of the unit ball or of the com-
plex plane, according to the nature of each U;. Then a simple pullback procedure
would yield back the nitial situation: in the following we shall understand this
choice.

In the following lemma we shall use the «square root» symbol in the meaning
of Definition 4.2: in other words, given a HFG, which is not vanishing at some
point, it should denote any one of the two HFG’s yielding it back when
squared.

Lemma 4.3. For every metrically ordinary point (E'...EN) of U and every

NooA
n-tuple (4, ... Ay) e CN such that by(xd) =0, A, — >, ( L 20, b (EY) =0, 4,
1=2 (X
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% A s
— =0, set Wl
s s =4 2 az(n)

f\/bl(n)/ll’(n dn] and [f \V b1 (n)/¥ () dn] are 1somorphic: moreover So
&1
are, for each k, those of [f V() dn] and [f V() dn] . nm
] 0

0
Theorem 4.4. A direct manifold U with metric A(u'...u)
=b(ul)du'Odu' + Z a;(ut) fi(u’) du'©du' is geodesically complete if and

only if it is coercive.’

, the Riemann surfaces of the HFG’s

&k

Proof. a) Suppose that U is coercive and that U is an element of geodesic,
starting at a metrically ordinary point; moreover, let (%'(0) ... #~(0)) be the in-
itial velocity of U. Suppose at first that z—u!(z) is a constant function (hence
#'(0) =0): then, by Lemma 4.1, the equations of U are

(u'(z) =4,

3)

1 @ () f(u*(2) =4, k=2..N.

The Riemann surface of z+—u1(z) is trivially isomorphic to P!; if A, =0 so is the
one of z—u*(z) is isomorphic to (P!, id, id, A) for some complex constant A; if
A, #0 we could rewrite the k-th equation of (3) in the form:

uk(z)

) f $(n) dn =2,

7«"(0)

where ¢2 = f, and B? = Ay, the choice of ¢, and B, being made in such a way that
W (0) ¢ k(O) = B;,. By hypothesis, the Riemann surface (S, 7}, ji, @) of the

HFG [fqbkdn is such that Pl \@,(8;) is a finite set; by Lemma 4.3 1) the Rie-

mann surface of the HFG [ f ¢ rdn is isomorphie to (Sy, 7y, ji, @); but,
wko) uk(0)
u
by (4), the germs u’_, and [ [ ¢.dy are each one inverse of the other;
uk(0) wk(0)
hence, by Lemma 2.5 the Riemann surface of u”_ is complete; this eventually im-
plies that the Riemann surface of the element z—>(u'(z) ... 4"~ (z)) is complete

too: this fact ends the proof of a) in the case that «! is a constant function. Other-
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wise, by Lemma 4.1, the equations of U are

) N4
@ (2)2(by(ut(2) =4, — 2 —
(5) 1=2 a;(u”(2))

@ @)P ) (u' (@) F=4, k=2..N oo

®

for suitable complex constants A;...Ay. Consider now the germ z—u'(z) in
z =0: rewrite the first equation of (5) in the form:

ul(z)

dn
(6) i
J R(7)u1(0) ¢

ul(0)

N

where (N(n)ul(o))2= (Al — EAl/al(n))/bl(n) in a neighbourhood of z =0, the
I=2

choice of the square root N, being made in such a way that X,1.)(u'(0))

. 1 N oA
= 1/%'(0). Denote now by X, _, the HFG such that (X,)* = [b_ (A1 - zEz = )] ,
1 =2 /o

the choice of the «square root» X, being arbitrary. By hypothesis, the Riemann

ul

surface (S;, 71, ji, @) of the HFG [fl/xo] is such that P'\@(S;) is a finite
0

0
1

set. By Lemma 4.3 the Riemann surfaces of [ f 1/&0] and of [ f 1/x0] are both
0 1 ul

0 Uy 1 0

u
isomorphic to (S;, 71, j1, @1); but, by (4), the germs u!_, and [fl/No are
0 u'(0)
each one inverse of the other; hence, by Lemma 2.5 the Riemann surface of ul_,

is complete. Let now 2 <k <N: if A, =0 the Riemann surface of z—>u"(2) is
isomorphic to (P!, id, id, A) for some complex constant A4; if A;, = 0 we could re-
write the k-th equation of (5) in the form:

) [ oo an- f%

Joa@' @)’

where ¢% =f,, and BZ = Ay, the choice of ¢, and B, being made in such a way that
w(0) p(u*(0)) a;,(u'(2)) = B,. Denote now by [¢ ], -, the HFG defined by set-
ting [@2¢_o=[fi)ut—o, the choice of the «square root» [¢],r_, being arbit-

k

rary. By hypothesis, the Riemann surface (S, 7y, jz, @) of the HFG | [ ¢ k] is
0 0

such that P \@,(S;) is a finite set; moreover, by Lemma 4.3 the Riemann surfaces
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uk
of the HF G [ J ¢kd77] is isomorphic to (S, 7, jx, D ); but, by (7) the ger-
u*(0)

u*(0)
u z B
ms [z—ub],_,, [ [ ¢.dn and [z—>f—1kd§ satisfy, in the abo-
uk(0) u*(0) 0 az(u-(0)) 2=0

ve order, the hypotheses of Lemma 2.5 2); moreover, the Riemann surface with L-
k

u

singularities of [ [ ¢ kdn] is complete, since the one of [¢ ], is complete
uF(0) wk(0)

without L-singularities. Therefore the Riemann surface with L-singularities of

ub_,is complete, hence so is the one of z—(u!(2) ...uN(z)), : this fact ends the
proof of a). Vice versa, suppose that U is not coercive: then either there exists a

yooA
complex n-tuple (4, ... Ay) € CY such that by (xg) =0, 4; — >, ( ! ) # 0 and for
1=2 a;(Xg
: , [1 N A,
each one of the two HFG’s X; and X, such that (R;)?= o A- D=
1 =2 a ] lo
un dn

i=1,2, the Riemann surface (S;, 71, j;, @;) of both the HFG’s | [ )

o N\77) ]l
i=1, 2; is such that P'\@,(S;) is an infinite set; or there exists k, 2 <k $Z\Of
such that, for each one of the two HFG’s [¢ 1]y and [¢ 2]y such that [¢ ;]
=[filo, 1=(1, 2), the Riemann surface (S, 7, Ji, @) of both the HFG’s

[fq)ki(n) dr]] 1=1, 2 is such that P'\@,(S;) is an infinite set. In the first
0 0

case the geodesic element z—U(z) = (u'(z) ...u"(z)) starting from 0 with

1 NoA A
velocity (L ...Ly), such that LZ= (Al -y =L ) Li=_—"*%
b;(0) =2 ;(0) 11(0) a;,(0)
ul(z)
k=2 ...N, satisfies the equation [
o Ni(n)
2.5, this fact implies that the Riemann surface of [z—u(2)], is incomplete, hence

=z, where 1 =1 or ¢ = 2; by Lemma

the same holds about z— U(z). Consider now the second case: first construct a
geodesic element z—U(z) = (0...u"(z)...0) with all constant components

except u”*, k =2. Now recall Lemma 4.1 to conclude that z—u"(z) satisfies, in a
uk(z)

neighbourhood of z = 0 the equation o [ ¢.:(n) dy =z, for a suitable complex
0

3
constant Cj; therefore its Riemann surface is incomplete by Lemma 2; this fact

ends the proof. m

Definition 4.5. Let U and © be direct manifolds they are directly biholo-
morphic provided that they are biholomorphic under a direct product of biholo-
morphic functions between each U; and each V.
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Remark 4.6. Definition 4.2 is invariant by direct biholomorphism (see Defi-
nition 4.5): in other words, if U and © are directly biholomorphic, then U is coer-
cive if and only Vis too: this is a simple consequence of «changing variable» in in-
tegrals in Definition 4.2.

Therefore, we could yield the following

Definition 4.7. An equivalence class [U] of direct manifolds, consisting of
mutually directly (see Definition 4.5) biholomorphic elements is coercive provided
that any one of its representatives is coercive.

Our goal is now to extend Definitions 4.2 and 4.7 to warped products containg
some PV’s among their factors. Keeping into account Remark 4.6, consider a war-

N
ped product ( ITu;, /1) of Riemann spheres, complex planes or one-dimensional
i<1

unit balls, which we shall call direct manifold too; let Lc {1... N} be the set of in-
dices such that U;=P! for each leL.

Definition 4.8. Let Y= (y!...yY)e U: then (Y, L) is a principal multipo-
le of U provided that b;(y') = % and f;(y') = = for each [e L\{1}; A direct ma-

N
nifold (H U, /1) of Riemann spheres, complex planes or one-dimensional unit
i=1

balls with metric is partially projective if some one of its factors is biholomorphic
to the Riemann sphere P'; a partially direct manifold U is coercive in opposition
U; ifiglL N .
o then [] 9, is
U;\{y'} ifieL, i=1
coercive in the sense of Definition 4.7, that is to say, belongs to a coercive equiva-
lence class with respect to direct biholomorphicity.

to the principal multipole (Y, L) if, set W, = {

4.1 - Warped product of Riemann surfaces
Consider now the warped product of Riemann surfaces
S= 8 X, 8 X, Sg X i X an SN

where each S; is endowed with meromorphic metric 1,;: S’ metric A is defined by
N

setting 4 =1, + > a;A;, and each @, is a not everywhere vanishing meromor-
k=2

phic function on S;: as a simple consequence of Riemann’s uniformization theorem,
S admits universal covering ¥ : U— S, where U is a direct manifold, endowed
with the pull-back meromorphic metric ¥* A: this universal covering is unique up
to direct biholomorphisms.
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Definition 4.9. Sis totally unelliptic provided that none of the S; is elliptic;
L-elliptic provided that there exists a nonempty set of indices L such that S; is el-
liptic if and only if le L.

If S is a L-elliptic warped product with universal covering ¥ : U — S, then
(Z, L) is a principal multipole for S provided that Z e S and each Ye ¥ "1(Z) is a
principal multipole for U.

A totally unelliptic warped product of Riemann surfaces is coercive provided
that its universal covering is coercive in the sense of Definition 4.7; a L-elliptic
warped product of Riemann surfaces is coercive in opposition to the principal
multipole (Z, L) provided that its universal covering U is coercive in opposition
to each principal multipole (Y, L) as Y runs over ¥ 1(Z).

Theorem 4.10. A totally unelliptic warped product of Riemann surfaces S
18 geodesically complete if and only if it is coercive.

Proof. Let ¥:U— S be the universal covering of S: by Definition 4.9 U is
coercive, hence geodesically complete by Theorem 4.4. Let now y be a germ of
geodesic in S, starting at a metrically ordinary point: since ¥ is a local isometry,
there exists a germ f of geodesic in U, starting at a metrically ordinary point,
such that y= %o f. By definition of completeness, the Riemann surface with L-
singularities (X, x, j, B, U) of B is such that P'\n(X) is a finite set; moreover,
(2, m,j, WoB, S is an analytical continuation, with L-singularities, of y. This
proves that, if S, 7, f, G, S) is the Riemann surface with L-singularities of ¥,
then P'\7#(2) is a finite set too, hence § is geodesically complete. On the other si-
de, if S admits an incomplete germ of geodesic y, starting at a metrically ordinary
point, then there exists an incomplete germ of geodesic f in U, starting at a me-
trically ordinary point, such that y = ¥o ; this means by Theorem 4.4, that U is
not coercive; eventually, by Definition 4.9, S is not coercive: this fact ends the
proof. =

Theorem 4.11. A L-elliptic warped product of Riemann surfaces S is geo-
desically complete if and only if it is coercive in opposition to some principal
multipole.

Proof. Suppose that S is coercive in opposition to some principal multipole
(Z, L): then, by Theorem 4.10, S is coercive in opposition to (Z, L) if and only if
S\Z is geodesically complete; since Z is not metrically ordinary, S is geodesically
complete. On the other hand, suppose that S admits an incomplete geodesic
(2, m, 7, v,S):let (Z, L) be a principal multipole of S wich is known to exist; set
R=y7'S\Z)cX. Now (R, 7|z, J, ¥|r, S\Z) is an incomplete geodesic of S\Z:



[19] GEODESIC COMPLETENESS FOR SOME MEROMORPHIC METRICS 181

this fact implies that S\Z is not geodesically complete, hence it is not coercive,
that is to say, S is not coercive in opposition to (7, L). The arbitrariness of Z allo-
ws us to conclude the proof. =

4.2 - Examples

We show a wide class of coercive direct manifolds. To do this, we need some
technicalities from integral calculus, hence we state:

1

Van?+by+c
one of the following primitives, depending on a, b, c:
1 b b
— log|n+ — +\/772+ —n+ ) 4 cost| the same branch of \V, any
Va 2a a a 0
branch of the logarithm, if a # 0 and A4 = 0; [ Vo +c+ cost] the same branch
of V, if a=0 and b=0; [5/\/c+costl, the same branch of \/, if a=b=0.

Proposition 4.12. Set 4=0b%—4ac, the germ [ ] admits
0

Let now S;, =1 ... N be Riemann surfaces, which we suppose for simplicity
parabolic or hyperbolie, p;: U;—S; their universal covering, where each U;=C
or D; finally, let ¢; be meromorphic functions such that ¢; op; and (¢;op;)’,
1=1 ... N take all complex values but at most a finite number (the hypothesis on
phi; o p; could be weakened; even dropped, if S; is parabolic: see [HAY], introduc-

N N
tion). Moreover, let (a;, b;, ¢;)eC3\0 i=1...N, set S=[IS;, U= I =U,,
i=1 i=1
= (p;...py) and consider the meromorphic metric

dg;Odg,;
A= g Odpit S
P P i= 1a2¢1+b¢1+cz

Theorem 4.13. (U, A) is coercive (hence geodesically complete).

Proof. By pulling back A with respect to the universal covering p we
get

oY Rdzi ©dzt
pFAR'...2N) = [(¢1opy) Pdz' O dz +z [(p;op) Pde'Odz"
i1 ai(prop)P+bigiop+ ¢

We claim that (U, p*A) is coercive: indeed, for every n-tuple (A4;...Ay) e C¥
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N
such that (¢;0p;)'(0)=0 and A; — X A;a;(prop)?+bidpiop+¢;#=0, set
¢ op; =1, there holds =2

Hl

N -1/2
[(4= S ac@r+b+eom)  wymd-ow),

0

where @ is one (depending on the constants A; ... Ay) of the holomorphic function
germs on the right hand member of Proposition 4.12.

This fact shows that the maximal analytical continuation of
ul—=>d(¢p; opy(ul)) takes all PVs values but a finite number, because so does the
meromorphic function ¢ ; and hence ¢ ; o p;; moreover, for each 7, 2 <1< N, each
one of the two HFG’s =[(¢; op;)’'] could be continuated to =[(¢; o p;)'] which,
by assumption, takes all values but at most two ones. =
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Abstract

In this paper we investigate possible extensions of the idea of geodesic completeness
m complex manifolds, following two directions: metrics are somewhere allowed not to be
of maximum rank, or to have «poles» somewhere else. Geodesics are eventually defined on
Riemann surfaces over regions in the Riemann sphere. Completeness theorems are given
m the framework of warped products of Riemann surfaces.



