Edoardo Ballico (*)

A construction of k-gonal curves with certain scrollar invariants (**)

1 - Introduction

Let X be a smooth projective curve of genus $g \geqslant 3$ and $R \in \operatorname{Pic}^{k}(X)$ with $h^{0}(X, R)=2$ and R spanned. Using the pencil R one can produce $k-1$ integers $e_{i}, l \leqslant i \leqslant k-1$, (or $e_{i}(R)$ if there is any danger of misunderstanding) with $e_{1} \geqslant \ldots$ $\geqslant e_{k-1} \geqslant 0$ and $e_{1}+\ldots+e_{k-1}=g-k+1$. These invariants are called the scrollar invariants of R; see [6], Th. 2.5, for their geometric interpretation in terms of a certain scroll containing the canonical model of X . There is another interpretation of these invariants. Let $f: X \rightarrow \boldsymbol{P}^{1}$ be the degree k morphism induced by the complete linear system associated to R. We have $f_{*}\left(\boldsymbol{O}_{X}\right) \cong \boldsymbol{O}_{P^{1}} \oplus E$ with E vector bundle on X with $\operatorname{rank}(E)=r-1$. Since $\chi\left(\boldsymbol{O}_{X}\right)=1-g=\chi\left(f_{*}\left(\boldsymbol{O}_{X}\right)\right)=k+\operatorname{deg}(E)$ (Riemann-Roch), we have $\operatorname{deg}(E)=1-k-g$. Every vector bundle on \boldsymbol{P}^{1} is the direct sum of line bundles and this decomposition is essentially unique (Krull-Schmidt-Remak theorem). Hence there are uniquely determined integers a_{1}, \ldots, a_{k-1} with $a_{1} \geqslant \ldots \geqslant a_{k-1}$ such that $E \cong \boldsymbol{O}_{\boldsymbol{P}^{1}}\left(a_{1}\right) \oplus \ldots \oplus \boldsymbol{O}_{\boldsymbol{P}^{1}}\left(a_{k-1}\right)$. Duality theory tell us that $e_{i}:=-a_{k-1-i}-2$. Alternatinatively, take this formula as our working definition of scrollar invariants. In particular we have $a_{1}+\ldots+a_{k-1}$ $=1-g-k$ (or see Remark 2.1). Since X is connected, we have $h^{0}\left(\boldsymbol{P}^{1}, f_{*}\left(\boldsymbol{O}_{X}\right)\right)$ $=h^{0}\left(X, \boldsymbol{O}_{X}\right)=1$. Hence $a_{1}<0$. This interpretation of the scrollar invariants of the morphism f works assuming only R spanned and $h^{0}(X, R) \geqslant 2$, just taking a

[^0]base point free pencil $V \subseteq H^{0}(X, R)$ to obtain a degree k morphism $f: X \rightarrow \boldsymbol{P}^{1}$ with $R \cong f^{*}\left(\boldsymbol{O}_{P^{1}}(1)\right)$. By the projection formula we have $h^{0}(X, R)$ $=h^{0}\left(\boldsymbol{P}^{1}, \boldsymbol{O}_{P^{1}}(1)\right)+h^{0}\left(\boldsymbol{P}^{1}, E(1)\right)$. Thus $h^{0}(X, R)=2$ if and only if $a_{1} \leqslant-2$. In this paper we work over an arbitrary algebraically closed field \boldsymbol{K} with char (\boldsymbol{K}) $\neq 2$. In Section 2 we will prove the following result.

Theorem 1.1. Fix an integer $t \geqslant 2$ and integers $d_{j}, t \leqslant j \leqslant 2 t-1$ with $d_{i} \geqslant d_{j}$ if $i \leqslant j$. Then there exists an integer x_{0} such that for all integers $x \geqslant x_{0}$ there exist a smooth connected projective curve X and a morphism $f: X \rightarrow \boldsymbol{P}^{1}$ with $\operatorname{deg}(f)=2 t$ such that, setting $R \cong f^{*}\left(\boldsymbol{O}_{P^{1}}(1)\right)$ and calling $a_{1}, \ldots, a_{2 t-1}$ the associated invariants of f, we have $h^{0}(X, R)=2$ and $a_{j}=d_{j}-x$ for every j with $t \leqslant j \leqslant 2 t-1$.

For other constructions of smooth curves with certain scrollar invariants, see [3] and [1].

2-Proof of 1.1

In this section we prove Theorem 1.1 and give a variation of Theorem 1.1 for k odd but not prime (see Remark 2.3).

Remark 2.1. Let D be a smooth projective connected curve, X an integral projective curve and $f: X \rightarrow D$ a degree k finite morphism. Since f is flat ([4], II.9.7), $f_{*}\left(\boldsymbol{O}_{X}\right)$ is locally free ([4], II.9.2 (e)). We have an inclusion j of \boldsymbol{O}_{D} into $f_{*}\left(\boldsymbol{O}_{X}\right)$ with locally free cokernel. Set $E:=f_{*}\left(\boldsymbol{O}_{X}\right) / \boldsymbol{O}_{D}$. Hence E is a rank $k-1$ vector bundle on D. If either $\operatorname{char}(\boldsymbol{K})=0$ or $\operatorname{char}(\boldsymbol{K})>k$, then the trace map shows that $j_{*}\left(\boldsymbol{O}_{D}\right)$ is a direct summand of $f_{*}\left(\boldsymbol{O}_{X}\right)$. If $D=\boldsymbol{P}^{1}$, then this is true in arbitrary characteristic for the following reason. There are uniquely determined integers a_{1}, \ldots, a_{k-1} with $a_{1} \geqslant \ldots \geqslant a_{k-1}$ such that $E \cong \boldsymbol{O}_{P^{1}}\left(a_{1}\right) \oplus \ldots \oplus \boldsymbol{O}_{P^{1}}\left(a_{k-1}\right)$. We saw in the introduction that $a_{1}<0$ and hence $a_{i}<0$ for every i. Since $h^{1}\left(\boldsymbol{P}^{1}, \boldsymbol{O}_{P^{1}}(t)\right)=0$ for every integer $t>0$, every extension of E by $\boldsymbol{O}_{P^{1}}$ splits and in particular we have $f_{*}\left(\boldsymbol{O}_{X}\right) \cong \boldsymbol{O}_{\boldsymbol{P}^{1}} \oplus E$.

Proof of 1.1. Set $k=2 t$. Fix integers $b_{j}, t \leqslant j \leqslant 2 t-1$, with $b_{i} \leqslant b_{j}$ for $i \leqslant j$. Set $\left.B:=\boldsymbol{O}_{P^{1}}\left(b_{t}\right) \oplus \ldots \boldsymbol{O}_{P^{1}\left(b_{2 t-1}\right)}\right)$. Hence B is a rank t vector bundle on \boldsymbol{P}^{1}. By [5], Th. 4.2, there is a smooth connected projective curve Y, a degree t morphism $h: Y$ $\rightarrow \boldsymbol{P}^{1}$ and $L \in \operatorname{Pic}(Y)$ such that $B \cong u_{*}(L)$. Fix $P \in \boldsymbol{P}^{1}$ and take any integer u such that $\operatorname{deg}\left(L^{*}\left(a h^{-1}(P)\right)\right)>0$ and the linear system $\left|L^{*}\left(a h^{-1}(P)\right)^{\otimes 2}\right|$ has an effective divisor, D, with only simple zeroes. For instance, it is sufficient to take any integer a such that $2 p_{a}(Y)+1 \leqslant a t-\operatorname{deg}(L)$. Since char $(\boldsymbol{K}) \neq 2$, the pair
$\left(L^{*}\left(a h^{-1}(P)\right), D\right)$ determines uniquely a double covering $u: X \rightarrow Y$. The curve X is smooth because D has only simple zeroes. Since $\operatorname{deg}\left(L^{*}\left(a h^{-1}(P)\right)\right)>0$, we have $D \neq \phi$. The curve X is connected because $D \neq \phi$. Set $f:=h \circ u$. We have $u_{*}\left(\boldsymbol{O}_{X}\right) \cong \boldsymbol{O}_{Y} \oplus L\left(-a h^{-1}(P)\right)$ and hence $f_{*}\left(\boldsymbol{O}_{X}\right) \cong h_{*}\left(\boldsymbol{O}_{Y}\right) \oplus h_{*}\left(L\left(-a h^{-1}(P)\right)\right.$ $\cong u_{*}\left(\boldsymbol{O}_{X}\right) \oplus B(-a P) \quad$ (projection formula). A priori the relation $f_{*}\left(\boldsymbol{O}_{X}\right)$ $\cong h_{*}\left(\boldsymbol{O}_{Y}\right) \oplus B(-a P)$ only gives that t of the $2 t-1$ associated integers are the integers we want, the remaing ones coming from a decomposition of $h_{*}\left(\boldsymbol{O}_{Y}\right)$. However, if for a fixed pair (Y, u) we take $a \gg 0$, say $a \geqslant a_{0}$, then in this way we obtain that the lowest t associated integers of f are the ones coming from $B(-a P)$. Notice that in this way we fill in all integers $x \gg 0$, say $x \geqslant x_{0}$, without any gap and with x_{0} depending only on the pair (Y, u). We have $h^{0}(X, R)=2$ if and only if $\quad h^{0}\left(\boldsymbol{P}^{1}, h_{*}\left(\boldsymbol{O}_{Y}\right)(P)\right)+h^{0}\left(\boldsymbol{P}^{1}, B(-a P)(P)\right)=2$, i.e. if and only if $h^{0}\left(\boldsymbol{P}^{1}, h_{*}\left(\boldsymbol{O}_{Y}\right)(P)\right) \leqslant 2$ and $h^{0}\left(\boldsymbol{P}^{1}, B(-a P)(P)\right)=0$ (see the discussion before the statement of 1.1). Take x_{0} such that $d_{1}-x_{0} \leqslant-2$. Since $x \geqslant x_{0}$ we have $h^{0}\left(\boldsymbol{P}^{1}, B(-a P)(P)\right)=0$. Call $c_{i}, 1 \leqslant i \leqslant t-1$, the scrollar invariants of the morphism $h: Y \rightarrow \boldsymbol{P}^{1}$. We have $h^{0}\left(\boldsymbol{P}^{1}, h_{*}\left(\boldsymbol{O}_{Y}\right)(P)\right) \leqslant 2$ if and only if the morphism $h: Y \rightarrow \boldsymbol{P}^{1}$ is associated to a complete linear system on Y, i.e. if and only if $c_{1} \leqslant 2$ (see the discussion before the statement of 1.1). When $x \gg 0$ this can be checked as in [5]: the connectedness of Y is equivalent to the condition $c_{1}<0$.

Look at the proof of Theorem 1.1 just given. By the Riemann-Hurwitz formula we have $p_{a}(X)=2 p_{a}(Y)-2-\operatorname{deg}\left(L\left(-a h^{-1}(P)\right)\right)=2 p_{a}(Y)-2+\operatorname{deg}(L)+a t$. Hence we see that there is at least one congruence class modulo t, say associated to an integer e with $0 \leqslant e<t$, and an integer c such that if $a \geqslant c$, we find a solution (X, f) with $p_{a}(X)=e+a t$. Thus we have proved the following result.

Proposition 2.2. Fix an integer $t \geqslant 2$ and integers $d_{j}, t \leqslant j \leqslant 2 t-1$, with $d_{i} \geqslant d_{j}$ if $i \geqslant j$. Then there exist an integer e with $0 \leqslant e<t$ and an integer c such that for all integers $a \geqslant c$ there exist a smooth connected projective curve X of genus $e+a t$, a morphism $f: X \rightarrow \boldsymbol{P}^{1}$ with $\operatorname{deg}(f)=2 t$ and an integer x such that, calling $a_{1}, \ldots, a_{2 t-1}$ the associated invariants of f, we have $a_{j}=d_{j}-x$ for every j with $t \leqslant j \leqslant 2 t-1$.

Remark 2.3. Fix an integer $k \geqslant 4$ which is not prime, say $k=c t$ with $2 \leqslant a$ $\leqslant t$. We will use simple cyclic coverings of degree c in the sense of [2], Example 1.1, to obtain pairs (X, R) with $R \in \operatorname{Pic}(X), R$ spanned, $h^{0}(X, R)=2$ and such that we prescribe, up to a twists, the scrollar invariants e_{1}, \ldots, e_{t}. The proof of Theorem 1.1 is just the case $c=2$. Here we assume either $\operatorname{char}(\boldsymbol{K})=0$ or $\operatorname{char}(\boldsymbol{K})>c$. Fix integers $b_{j},(c-1) t \leqslant j \leqslant c t-1$, with $b_{i} \leqslant b_{j}$ for $i \leqslant j$. Set B : $=\boldsymbol{O}_{\boldsymbol{P}^{1}\left(b_{(c-1) t}\right)} \oplus \ldots \boldsymbol{O}_{\boldsymbol{P}^{1}}\left(b_{c t-1}\right)$. Hence B is a rank t vector bundle on \boldsymbol{P}^{1}. By [5],

Th. 4.2, there is a smooth connected projective curve Y, a degree t morphism $h: Y$ $\rightarrow \boldsymbol{P}^{1}$ and $L \in \operatorname{Pic}(Y)$ such that $B \cong u_{*}(L)$. From L we obtain $M \in \operatorname{Pic}(X), M$ $\cong L^{*}\left(a h-{ }^{1}(P)\right)$ for some large integer a, such that $\operatorname{deg}(M)>0$ and the linear system $\left|M^{\otimes c}\right|$ has an effective divisor with only simple zeroes. The pair (M, D) uniquely determines a simple cyclic covering $u: X \rightarrow Y$ with $\operatorname{deg}(u)=c$. The curve X is smooth because D has only simple zeroes. Since $\operatorname{deg}(M)>0$, we have $D \neq \phi$. The curve X is connected because $D \neq \phi$. Set $f:=u \circ h$. We have $u_{*}\left(\boldsymbol{O}_{X}\right)$ $\cong \boldsymbol{O}_{Y} \oplus M^{*} \oplus \ldots \oplus M^{* \otimes(c-1)}$.

References

[1] E. Ballico, Scrollar invariants of smooth projective curves, J. Pure Appl. Algebra (to appear).
[2] F. Catanese and C. Ciliberto, On the irregularity of cyclic coverings of algebraic surfaces, in: Geometry of Complex Projective Varieties, Cetraro, Italy, June 1990, pp. 89-115, Mediterranean Press, 1993.
[3] M. Coppens, Existence of pencils with prescribed scrollar invariants of some general type, Osaka J. Math. 36 (1999), 1049-1057.
[4] R. Hartshorne, Algebraic geometry, Springer-Verlag, Berlin 1977.
[5] A. Hirschowitz and M. S. Narasimhan, Vector bundles as direct images of line bundles, Proc. Indian Acad. Sci. Math. Sci. 109 (1994), 191-200.
[6] F. -O. Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), 105-137.

Abstract

Let X be a smooth projective curve of genus $g \geqslant 3$ and $R \in \operatorname{Pic}^{k}(X)$ with $h^{0}(X, R)=2$ and R spanned. There are $k-1$ integers $e_{i}, 1 \leqslant i \leqslant k-1$, with $e_{1} \geqslant \ldots \geqslant e_{k-1} \geqslant 0$ and $e_{1}+\ldots+e_{k-1}=g-k+1$ associated to R (the so-called scrollar invariants of R). Here if k is even we construct a pair (X, R) such that the first $k / 2$ scrollar invariants of R are $k / 2$ prescribed integers $c_{i}, 1 \leqslant i \leqslant k / 2$, up to a twist, i.e. $e_{i}=c_{i}+x$ for $1 \leqslant i \leqslant k / 2$ and any $x \in \boldsymbol{Z}, x \gg 0$.

[^0]: (*) Dept. of Mathematics, University of Trento, 38050 Povo (TN) Italy; fax: italy + 0461881624; e-mail: ballico@science.unitn.it
 (**) Received January 26, 2001 and in revised form August 7 2001. AMS classification 14 H 51 . The author was partially supported by MURST and GNSAGA of INdAM (Italy).

