EDOARDO BALLICO (*)

A construction of *k*-gonal curves with certain scrollar invariants (**)

1 - Introduction

Let X be a smooth projective curve of genus $g \ge 3$ and $R \in \operatorname{Pic}^{k}(X)$ with $h^0(X, R) = 2$ and R spanned. Using the pencil R one can produce k-1 integers $e_i, l \leq i \leq k-1$, (or $e_i(R)$ if there is any danger of misunderstanding) with $e_1 \geq \ldots$ $\geq e_{k-1} \geq 0$ and $e_1 + \ldots + e_{k-1} = g - k + 1$. These invariants are called the scrollar invariants of R; see [6], Th. 2.5, for their geometric interpretation in terms of a certain scroll containing the canonical model of X. There is another interpretation of these invariants. Let $f: X \to \mathbf{P}^1$ be the degree k morphism induced by the complete linear system associated to R. We have $f_*(O_X) \cong O_{P^1} \oplus E$ with E vector bundle on X with rank (E) = r - 1. Since $\chi(O_X) = 1 - g = \chi(f_*(O_X)) = k + \deg(E)$ (Riemann-Roch), we have deg (E) = 1 - k - g. Every vector bundle on P^1 is the direct sum of line bundles and this decomposition is essentially unique (Krull-Schmidt-Remak theorem). Hence there are uniquely determined integers a_1, \ldots, a_{k-1} with $a_1 \ge \ldots \ge a_{k-1}$ such that $E \cong O_{P^1}(a_1) \oplus \ldots \oplus O_{P^1}(a_{k-1})$. Duality theory tell us that $e_i := -a_{k-1-i} - 2$. Alternatinatively, take this formula as our working definition of scrollar invariants. In particular we have $a_1 + \ldots + a_{k-1}$ = 1 - g - k (or see Remark 2.1). Since X is connected, we have $h^0(\mathbf{P}^1, f_*(\mathbf{O}_X))$ $=h^{0}(X, O_{X})=1$. Hence $a_{1} < 0$. This interpretation of the scrollar invariants of the morphism f works assuming only R spanned and $h^0(X, R) \ge 2$, just taking a

^(*) Dept. of Mathematics, University of Trento, 38050 Povo (TN) Italy; fax: italy + 0461881624; e-mail: ballico@science.unitn.it

^(**) Received January 26, 2001 and in revised form August 7 2001. AMS classification 14 H 51. The author was partially supported by MURST and GNSAGA of INdAM (Italy).

base point free pencil $V \subseteq H^0(X, R)$ to obtain a degree k morphism $f: X \to P^1$ with $R \cong f^*(O_{P^1}(1))$. By the projection formula we have $h^0(X, R)$ $= h^0(P^1, O_{P^1}(1)) + h^0(P^1, E(1))$. Thus $h^0(X, R) = 2$ if and only if $a_1 \le -2$. In this paper we work over an arbitrary algebraically closed field K with char $(K) \ne 2$. In Section 2 we will prove the following result.

Theorem 1.1. Fix an integer $t \ge 2$ and integers d_j , $t \le j \le 2t-1$ with $d_i \ge d_j$ if $i \le j$. Then there exists an integer x_0 such that for all integers $x \ge x_0$ there exist a smooth connected projective curve X and a morphism $f: X \to \mathbf{P}^1$ with $\deg(f) = 2t$ such that, setting $R \cong f^*(\mathbf{O}_{\mathbf{P}^1}(1))$ and calling a_1, \ldots, a_{2t-1} the associated invariants of f, we have $h^0(X, R) = 2$ and $a_j = d_j - x$ for every j with $t \le j \le 2t - 1$.

For other constructions of smooth curves with certain scrollar invariants, see [3] and [1].

2 - Proof of 1.1

In this section we prove Theorem 1.1 and give a variation of Theorem 1.1 for k odd but not prime (see Remark 2.3).

Remark 2.1. Let D be a smooth projective connected curve, X an integral projective curve and $f: X \to D$ a degree k finite morphism. Since f is flat ([4], II.9.7), $f_*(\mathbf{O}_X)$ is locally free ([4], II.9.2 (e)). We have an inclusion j of \mathbf{O}_D into $f_*(\mathbf{O}_X)$ with locally free cokernel. Set $E := f_*(\mathbf{O}_X)/\mathbf{O}_D$. Hence E is a rank k-1 vector bundle on D. If either char $(\mathbf{K}) = 0$ or char $(\mathbf{K}) > k$, then the trace map shows that $j_*(\mathbf{O}_D)$ is a direct summand of $f_*(\mathbf{O}_X)$. If $D = \mathbf{P}^1$, then this is true in arbitrary characteristic for the following reason. There are uniquely determined integers a_1, \ldots, a_{k-1} with $a_1 \ge \ldots \ge a_{k-1}$ such that $E \cong \mathbf{O}_{\mathbf{P}^1}(a_1) \oplus \ldots \oplus \mathbf{O}_{\mathbf{P}^1}(a_{k-1})$. We saw in the introduction that $a_1 < 0$ and hence $a_i < 0$ for every i. Since $h^1(\mathbf{P}^1, \mathbf{O}_{\mathbf{P}^1}(t)) = 0$ for every integer t > 0, every extension of E by $\mathbf{O}_{\mathbf{P}^1}$ splits and in particular we have $f_*(\mathbf{O}_X) \cong \mathbf{O}_{\mathbf{P}^1} \oplus E$.

Proof of 1.1. Set k = 2t. Fix integers b_j , $t \le j \le 2t - 1$, with $b_i \le b_j$ for $i \le j$. Set $B := \mathbf{O}_{\mathbf{P}^1}(b_t) \oplus \dots \mathbf{O}_{\mathbf{P}^1}(b_{2t-1})$. Hence B is a rank t vector bundle on \mathbf{P}^1 . By [5], Th. 4.2, there is a smooth connected projective curve Y, a degree t morphism $h : Y \rightarrow \mathbf{P}^1$ and $L \in \operatorname{Pic}(Y)$ such that $B \cong u_*(L)$. Fix $P \in \mathbf{P}^1$ and take any integer usuch that deg $(L^*(ah^{-1}(P))) > 0$ and the linear system $|L^*(ah^{-1}(P))^{\otimes 2}|$ has an effective divisor, D, with only simple zeroes. For instance, it is sufficient to take any integer a such that $2p_a(Y) + 1 \le at - \deg(L)$. Since char $(\mathbf{K}) \ne 2$, the pair $(L^*(ah^{-1}(P)), D)$ determines uniquely a double covering $u: X \to Y$. The curve X is smooth because D has only simple zeroes. Since deg $(L^*(ah^{-1}(P))) > 0$, we have $D \neq \phi$. The curve *X* is connected because $D \neq \phi$. Set $f := h \circ u$. We have $u_*(\boldsymbol{O}_X) \cong \boldsymbol{O}_Y \oplus L(-ah^{-1}(P))$ and hence $f_*(\boldsymbol{O}_X) \cong h_*(\boldsymbol{O}_Y) \oplus h_*(L(-ah^{-1}(P)))$ $\cong u_*(\mathbf{0}_X) \oplus B(-aP)$ (projection formula). A priori the relation $f_*(\mathbf{0}_X)$ $\cong h_*(\mathbf{0}_Y) \oplus B(-aP)$ only gives that t of the 2t-1 associated integers are the integers we want, the remain ones coming from a decomposition of $h_*(\mathbf{0}_Y)$. However, if for a fixed pair (Y, u) we take $a \gg 0$, say $a \ge a_0$, then in this way we obtain that the lowest t associated integers of f are the ones coming from B(-aP). Notice that in this way we fill in all integers $x \gg 0$, say $x \ge x_0$, without any gap and with x_0 depending only on the pair (Y, u). We have $h^0(X, R) = 2$ if and only $h^{0}(\mathbf{P}^{1}, h_{*}(\mathbf{O}_{Y})(P)) + h^{0}(\mathbf{P}^{1}, B(-aP)(P)) = 2,$ i.e. if if and only if $h^0(\mathbf{P}^1, h_*(\mathbf{0}_Y)(P)) \leq 2$ and $h^0(\mathbf{P}^1, B(-aP)(P)) = 0$ (see the discussion before the statement of 1.1). Take x_0 such that $d_1 - x_0 \leq -2$. Since $x \geq x_0$ we have $h^0(\mathbf{P}^1, B(-aP)(P)) = 0$. Call $c_i, 1 \le i \le t-1$, the scrollar invariants of the morphism $h: Y \to \mathbf{P}^1$. We have $h^0(\mathbf{P}^1, h_*(\mathbf{O}_Y)(P)) \leq 2$ if and only if the morphism $h: Y \rightarrow P^1$ is associated to a complete linear system on Y, i.e. if and only if $c_1 \leq 2$ (see the discussion before the statement of 1.1). When $x \gg 0$ this can be checked as in [5]: the connectedness of Y is equivalent to the condition $c_1 < 0$.

Look at the proof of Theorem 1.1 just given. By the Riemann-Hurwitz formula we have $p_a(X) = 2p_a(Y) - 2 - \deg(L(-ah^{-1}(P))) = 2p_a(Y) - 2 + \deg(L) + at$. Hence we see that there is at least one congruence class modulo t, say associated to an integer e with $0 \le e < t$, and an integer c such that if $a \ge c$, we find a solution (X, f) with $p_a(X) = e + at$. Thus we have proved the following result.

Proposition 2.2. Fix an integer $t \ge 2$ and integers d_j , $t \le j \le 2t - 1$, with $d_i \ge d_j$ if $i \ge j$. Then there exist an integer e with $0 \le e < t$ and an integer c such that for all integers $a \ge c$ there exist a smooth connected projective curve X of genus e + at, a morphism $f: X \rightarrow P^1$ with deg (f) = 2t and an integer x such that, calling a_1, \ldots, a_{2t-1} the associated invariants of f, we have $a_j = d_j - x$ for every j with $t \le j \le 2t - 1$.

Remark 2.3. Fix an integer $k \ge 4$ which is not prime, say k = ct with $2 \le a \le t$. We will use simple cyclic coverings of degree c in the sense of [2], Example 1.1, to obtain pairs (X, R) with $R \in \text{Pic}(X)$, R spanned, $h^0(X, R) = 2$ and such that we prescribe, up to a twists, the scrollar invariants e_1, \ldots, e_t . The proof of Theorem 1.1 is just the case c = 2. Here we assume either char $(\mathbf{K}) = 0$ or char $(\mathbf{K}) > c$. Fix integers b_j , $(c-1) t \le j \le ct-1$, with $b_i \le b_j$ for $i \le j$. Set $B : = \mathbf{O}_{\mathbf{P}^1}(b_{(c-1)t}) \oplus \ldots \mathbf{O}_{\mathbf{P}^1}(b_{ct-1})$. Hence B is a rank t vector bundle on \mathbf{P}^1 . By [5],

Th. 4.2, there is a smooth connected projective curve *Y*, a degree *t* morphism $h: Y \to \mathbb{P}^1$ and $L \in \operatorname{Pic}(Y)$ such that $B \cong u_*(L)$. From *L* we obtain $M \in \operatorname{Pic}(X)$, $M \cong L^*(ah - {}^1(P))$ for some large integer *a*, such that deg (M) > 0 and the linear system $|M^{\otimes c}|$ has an effective divisor with only simple zeroes. The pair (M, D) uniquely determines a simple cyclic covering $u: X \to Y$ with deg (u) = c. The curve *X* is smooth because *D* has only simple zeroes. Since deg (M) > 0, we have $D \neq \phi$. The curve *X* is connected because $D \neq \phi$. Set $f := u \circ h$. We have $u_*(O_X) \cong O_Y \oplus M^* \oplus \ldots \oplus M^{*\otimes (c-1)}$.

References

- [1] E. BALLICO, *Scrollar invariants of smooth projective curves*, J. Pure Appl. Algebra (to appear).
- [2] F. CATANESE and C. CILIBERTO, On the irregularity of cyclic coverings of algebraic surfaces, in: Geometry of Complex Projective Varieties, Cetraro, Italy, June 1990, pp. 89-115, Mediterranean Press, 1993.
- M. COPPENS, Existence of pencils with prescribed scrollar invariants of some general type, Osaka J. Math. 36 (1999), 1049-1057.
- [4] R. HARTSHORNE, Algebraic geometry, Springer-Verlag, Berlin 1977.
- [5] A. HIRSCHOWITZ and M. S. NARASIMHAN, Vector bundles as direct images of line bundles, Proc. Indian Acad. Sci. Math. Sci. 109 (1994), 191-200.
- [6] F. -O. SCHREYER, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), 105-137.

Abstract

Let X be a smooth projective curve of genus $g \ge 3$ and $R \in \operatorname{Pic}^{k}(X)$ with $h^{0}(X, R) = 2$ and R spanned. There are k-1 integers e_{i} , $1 \le i \le k-1$, with $e_{1} \ge ... \ge e_{k-1} \ge 0$ and $e_{1} + ... + e_{k-1} = g - k + 1$ associated to R (the so-called scrollar invariants of R). Here if k is even we construct a pair (X, R) such that the first k/2 scrollar invariants of R are k/2 prescribed integers c_{i} , $1 \le i \le k/2$, up to a twist, i.e. $e_{i} = c_{i} + x$ for $1 \le i \le k/2$ and any $x \in \mathbb{Z}$, $x \gg 0$.

* * *