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LAszLO TOTH (¥)

On the asymptotic densities of certain subsets of N (**)

1 - Introduction

Let &k = 2 be a fixed integer. What is the asymptotic density o ;. of the set of or-
dered k-tuples (n4, ..., n;) € N¥, such that there exists no prime power p*, a =1,
appearing in the canonical factorization of each n;, 1 <i<k?

This problem is analogous to the following one: What is the asymptotic density
d; of the set of k-tuples which are relatively prime, i.e. k-tuples (n, ..., n;) e N
such that there exists no prime p, appearing in the canonical factorization of each
n;, 1 <i1<k?

It is known that d, = 1/C(k), where C is the Riemann zeta function, and this
value can be considered as the probability that k integers (k = 2) chosen at ran-
dom are relatively prime. More precisely,

1.1) Ni(» :=#{(n1,...,nk)e(Nﬁ[l,x])k:gcd(nl,...,nk)=1} = %xkﬂ—}?k(x),

where Ry (x) =0(x*" 1) for k>2, Ry(x)=O0(xlogx) for k=2, and
dy, = xli_{% N, (x)/x* = 1/&(k). This result goes back to the work of J. J. SYLVESTER

[9] and D. N. LEHMER [3], see also J. E. NYMANN [5].
There are several generalizations of (1.1) in the literature. For example, let S
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be an arbitrary subset of N. Then

)

(1.2) N, S) =#{(ny,...,n) e NN[1,2])": gcd(ny,...,n)eS} = ) e+ T, (),
where
1
@s(k) = E %
nes

and T} (x) = O(x* 1) for k> 2, Ty(x) = O(xlog®x) for k = 2, for every ScN, due
to E. CoHEN [1]. Therefore the asymptotic density of the set of ordered lc—tgult()]lss
s
k)
J. E. NYMANN [6] shows that if the characteristic function o5 of 9 = ScN is
completely multiplicative and if #{n:neSN[1, 2]} =Ax + O(1), where A is
the asymptotic density of S, then

(ny, ...,m,) for which gcd(ny,...,n;) belongs to S is %in%Nk(x,S)/ack=

peS

(1.3)  #{(ny,...,n)eS N1, x)F: ged(ny,...,n)=1}=A*[] 1—i "+ R, (%),
oF

where R, (x) is the same as above. Therefore, if PS(n) denotes the probability
that k& integers (k =2) chosen at random from SN [1, n] are relatively prime,
then

lim PS(n) = I1 (1— ik)
= pes p
This result can be applied for S = {n : gcd(n, p;...p,) =1}, where {p;, ..., p,} is
a given finite set of distinct primes.
Now return to the problem at the beginning. It is obvious that 6, = d;, = 1/¢(k)
for every k=2 and thus kli_r)r; 0, =1. Which is the exact value of 6,?

In order to solve this problem we use the concept of the unitary divisor. For
d, neN,dis called a unitary divisor (or block divisor) of » if d|n and gcd(d, n/d) =1,
notation d|n. Various other problems concerning unitary divisors, including pro-
perties of arithmetical functions and arithmetical convolutions defined by unitary
divisors, have been studied extensively in the literature, see for example [4] and
its bibliography. Denote the greatest common unitary divisor of %, ..., n; by
geud(ny, ..., ny).

Our question can be reformulated in this way: What is the asymptotic density
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0} of the set of ordered k-tuples (n,, ..., n;) such that gcud(n,, ..., n;) =1, or

more generally, gcud(n,, ..., n;) € S?
Furthermore, what is the probability that for & integers n,, ..., n; chosen at
random from S N[1, n] one has gecud(nq, ..., n;) =17

In this paper we determine the value 6, and deduce asymptotic formulae with
error termes analogous to (1.1)-(1.3), regarding these problems. We give numeri-
cal approximations of the constants d and also improve the error term of (1.2) of
E. CoHEN.

The treatment we use is based on the inversion functions 4§ and u g attached
to the subset S. We point out that this is applicable also in case k=1 in order to
establish asymptotics regarding the densities of certain subsets S of NV, generali-
zing in this way an often cited result of G. J. RIEGER [T7].

Note that the value 0, is given by D. SURYANARAYANA and M. V. SUBBARAO [8],
Corollary 3.6.3, applying other arguments as those of the present paper.

Using the concept of regular cross-convolution, see [11], [12], it is possible to
deduce more general results, including (1.1) - (1.3) and (2.1) and (2.4) of this pa-
per. We do not go into details.

2 - Results

Let ScN. We say that S is (completely) multiplicative if 1 € S and its characte-
ristic function o g(n) is (completely) multiplicative. Define the function u%(n)
by

> ufd) =og(n), meN,

dlln

that is

ugn) = % os(d)u*(m/d), neN,

where the sums are extended over the unitary divisors of # and u*(n) :=u’;,(n)
=(=1)"", w(n) denoting the number of distinct prime factors of .

Furthermore, let ¢(n) and 6(n) denote Euler’s function and the number of
squarefree divisors of n, respectively.

Theorem 2.1. If k=2 and S is an arbitrary subset of N, then

@1 #{(ny, ..., m)e(NN[1, x])¥: geud(ny, ..., n)eS} =06,(8) x*+ V. (x, S),
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where

00 £ k
5.(S) = ;#s(n)fﬁ (n)

,nZk

and the remainder term can be evaluated as follows:
Q) Vi(x, S) =0* 1) for k>2 and for an arbitrary S,
(2) Va(x, S) = O(x log*x) for an arbitrary S,
6(

(3) Va(x, S) = O(x log®x) for an S such that ZS _n) < oo (in particular for
ne n

every finite S) and for every multiplicative S,

1
@) Vy(x, S) = O(x) for every multiplicative S such that Y, — < o (in parti-

peS P
cular if the set {p:pe¢S} is finite).

If S is multiplicative, then

W:n(l_(l_zyi ! )

P a=1
peS

If S={1}, then

6k:6ﬂ{nj=g(k— (b= 1) )

pF(p*-1)

Theorem 2.2. Ifk=2andS is an arbitrary subset of N, then the asympto-

tic densities of the sets of ordered k-tuples (n,, ..., n;) such that gcud(n,, ..., n;)
eS and geud(ny, ..., n,) =1 are 6 ,(S) and O, respectively, given in Theorem
2.1.

Theorem 2.3. Let p, denote the n-th prime and for reN let N=10"/2.
Then

ul (pn - l)k
op=1II(1- 227
’ ,}1( p:f(pf;—n)

is an approximation of O, with r exact decimals.
In particular, 6,=0.8073, d5=0.9637, 0 ,=0.9924, § ;= 0.9983, 0 c= 0.9996,
07=0.9999, with r=4 exact decimals.

Theorem 2.4. For k=2 the error term Ry(x) of (1.2) can be improved into
R(x, S), where
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1
(i) R(x, S)=0(xlogx) for an S such that ZS— < o (in particular for
neS N

every finite S) and for every multiplicative S,

1
(i) R(x, S) = O(x) for every multiplicative S such that >, — < o (in parti-
peS P
cular if the set {p:pe¢S} is finite).

Remark. It is noted in [1] that if £ = 2 and if the function u g(n) is bounded,
cf. proof of Theorem 2.4 of the present paper, then the error term is R,(x)
= O(x log x).

Theorem 2.5. Suppose that SCN is multiplicative and min{a:p“¢S}
=r=2 for every prime p. Then

@22) 3 os(n) =d(S)x +0(Va),
where
1 &1
2.3) d(S)=H(1——)(1+ S _a)
SR A W%

1s the asymptotic density of S.

Remark. In the special case S = the set of K-void integers we reobtain
from (2.2) the result of G. J. RIEGER [7]. The K-void integers are defined as fol-
lows. Let K be a nonempty subset of N\ {1}. The number » is called K-void if
n =1 or n > 1 and there is no prime power p“, with a € K, appearing in the cano-
nical factorization of .

Does the density exist for an arbitrary multiplicative subset S ? Yes, and it is
d(S) given by (2.3), where the infinite product is considered to be 0 when it diver-

1
ges (if and only if > = = o). This follows from a well-known result of E. WIRr-
peS

SING [13] concerning the mean-values of certain multiplicative functions f. A short
direct proof for the case f multiplicative and 0 < f(n) <1 for n = 1, hence appli-
cable for the characteristic function of an arbitarary multiplicative S, is given in
the book of G. TENENBAUM, [10], p. 48.

Theorem 2.6. Let k=2 and suppose that S is a completely multiplicative
subset of N such that #{n:neSNI[1,x]} =Ax+ O(1). Then

2.4)  #{ny,...,n)eSN[Lx): geudny, ...,n)=1}=A*B.(S)x*+ T\ (x),
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where
(p-1)
BuS =11 (1— fT),
pes p (p"—1)

and Ty (x) = 0"~ 1) for k>2, Ty(x) = O(xlog®x) for k=2

If QS (n) denotes the probability that for k integers n,, ..., n;, chosen at ran-
dom from SN [1,n] one has gcud(n,, ..., n,) =1, then

lim QF(n) = B.(S).
3 - Proofs

Proof of Theorem 2.1. Using the definition of u¥%, the fact that
d||lgeud(n,, ..., n;) if and only if d|n; for every 1 <i <k, which can be checked
easily, and the well-known estimate

+0(6(m))

S 1= p(m) x
n<w m

ged(n, m) =1

which holds uniformly for x =1 and m e N, we obtain

#{(ny,...,m)e(NO[Lx)": gcud(ny,...,n)eSy= >  os(geudmng,...,n))=

NYyeee, ST

= 2 2 uid= X 2 ukd) =

Ny ooy <o d|(ng, ..., n) Ny .y < dng, ..., dy

a; < x/d a<ux/d

k
=S uz@ 3 1=d§u§(d>( S 1)

(a5, d) =1 (@, d) =1
1<i<k
) xg(d) k x ¢k (d) " =10(d)
:dzx#s(d)( 7 +0(9(d))) ngx s(d)( FEL O(T))

d<uwx d2k d<ux d -1

iy KE@9R@ ( . |#s(d)|9(d))

zék(S)ackJrO(xkdgx T

|uk(d) | )+ ( _— |#s(d)|9(d))

d<u d -1
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The given error term yields now from the next statements:
(a)
s o(n) O(log’x), s=1,
n<x NS 0(1), s>1.
s 0%(n) ~ O(logx), s=1,
n<e NS 0O(1), s>1,
1 1 7] 1
E—= ( ) > (n.)=0(0gx), s>1.
v>x 0 xs—1 n>c N’ ps~1
(b) For an arbitrary ScN and for every neN, |ué(n)|< dEH: os(d) < 6(n),
luk(n)|6(n) < dEH: 05(d) 6(d) 6(n/d) and !

> |uk(n)|6(n) < 0 s(d) 6(d) s 6(e)

n<w n

d<uwx d eswy/d €

0
os(d) 6(d) O(log2x), if 2 Qs(n) (n)
log*a dE —a | n
b O(log*x), otherwise .

(¢) If S is multiplicative, then u % is multiplicative too, u%(p®) =0 s(p®) — 1 for
every prime power p“ (¢=1) and u§(n)e{-1,0,1} for each neN.
(d) Suppose S is multiplicative. Then

= uEp) |6 % 1-045(p")
D L D

1- 1
SZE(LW—I—E—):Z E— )\
P p =2p pes p(p—1) peS p—1

1 1 1
<43+ z_)<oo D
eSp peS P peS P
n) |0(n
It follows that in this case the series E M is convergent.
n=1 n

If S is multiplicative, then the series giving 6 ,.(S) can be expanded into an infi-
nite product of Euler-type.
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Proof of Theorem 2.2. This is a direct consequence of Theorem 2.1.

Proof of Theorem 2.3. Consider the series of positive terms

(-1 \7!
log(1- 227
> Og( pk(pk—l))

(pn - l)k
prpi—1)—(p, — 1)

=2 10g(1+ ):_10g5k,
n=1

where p, denotes the n-th prime.
The N-th order error Ry of this series can be evaluated as follows:

[

Ry:= 2> log(l +

n=N+1

(p,— 1) )< $ (p, — 1)
pwlf(pf_l)_(pn_l)k ”:N+1p7]f(p7]f_1)_(pn_1)k

& 1 < i 1

< .
n=N+1 p,,]f—l n=N+1p3—]_

Now using that p, > 2n, valid for » =5, we have

1 1

11 . 1
2n—1 2m+1 202N +1)

Ry < —
N ’VL:%‘FI 47[,2—1 2n

>
=N+1
In order to obtain an approximation with » exact decimals we use the condi-
tion

1 1
< -

- = '].()_‘yl
2(2N +1) 2

1
and obtain N = 5(10”— 1).
The numerical values were obtained using the software package MAPLE.

Proof of Theorem 2.4. Define the function ug(n) by

%ﬂs(d):Qs(n), neN,

that is

us(n) = % os(d) u(w/d), meN,
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where u(n) :=pu1(n) is the Mobius function, see [1]. We have

Ni(x, S) :=#{(ny, ..., ) e NN [1, 2])*: ged(ny, ..., n;) €S}

= Z QS(ng(nly ey nk)) = E E ﬂs(d)

Nyy ooy NS ny, ., <x dl(ng, ..., n)
and the proof runs parallel to the proof of Theorem 2.1.

Proof of Theorem 2.5

d
Ni@, )= 2 estm= 3 Spusd)=v 2 ”S; )

n<x dn sw

+0( 2 Jus@]).

Here ug is multiplicative, ug(p®) =0s(@*) —o0s(p® '), a=1 and since
p, p2, ..., p" " teSwehave ugs(p) =us(p?) =...=ug(p’1) =0 for every prime
p. Hence for each neN, |us(n)| <o, (n), where L, is the set of »-full numbers,
ie L={1}U{n>1:p|n = p"|n}. We get

d>ux

d)
Nl(x,S)=d(S)ac+O(x > QL;; )+O(d§<: QLT(d)),

and using the elementary estimate

> 0., (m)=CVr+0( V),

n<w

where C is a positive constant, due to P. ERDOS and G. SZEKERES [2], obtain the
given result.

Proof of Theorem 2.6

#{(ny, ..., m) e (SN[, x])F: geud(ny, ..., m) =1}

= 2 o0sny)... Z o0s(ny) 2 uxd)= E 0s(y)... Z os(ny) Z wd)

nsr NS | (1, ..., M%) nsT NSO |nl ||nk

:d§<: w(d) 2 os(da)... 2 os(da)

ay <w/d ap < w/d

(ay,d) =1 (ay, d) =1

k
=d§ Qs(d),u*(d)( Z Qs(a))

(a, d) 1
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Here we use the estimate, valid for every leN,

> Qs(%)Zngs(n) > ud)

dnsx d|ged(n, 1)
ged(n, 1) =1

= S os(d) 3 QS(G)=%#(d)Qs(d)(A§ +o<1>)

e<uw/d

| (1 _ l) + 06())
pll p

peS

and obtain the desired result, see the proof of Theorem 2.1.
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Abstract

We determine the asymptotic density &, of the set of orderved k-tuples (nq, ..., n)
eN*, k=2, such that there exists no prime power p®, a =1, appearing in the canonical
factorization of each n;, 1 <i<k, and deduce asymptotic formulae with error terms re-
garding this problem and analogous ones. We give numerical approximations of the con-
stants 0, and tmprove the error term of formula (1.2) due to E. Cohen. We point out that
our treatment, based on certain inversion functions, is applicable also in case k =1 in or-
der to establish asymptotic formulae with error terms regarding the densities of subsets of
N with additional multiplicative properties. These generalize an often cited result of G. J.
Rieger.



