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LÁSZLÓ TÓ T H (*)

On the asymptotic densities of certain subsets of Nk (**)

1 - Introduction

Let kF2 be a fixed integer. What is the asymptotic density d k of the set of or-
dered k-tuples (n1 , R , nk )�Nk , such that there exists no prime power p a , aF1,
appearing in the canonical factorization of each ni , 1G iGk?

This problem is analogous to the following one: What is the asymptotic density
dk of the set of k-tuples which are relatively prime, i.e. k-tuples (n1 , R , nk )�Nk

such that there exists no prime p , appearing in the canonical factorization of each
ni , 1G iGk?

It is known that dk41/z(k), where z is the Riemann zeta function, and this
value can be considered as the probability that k integers (kF2) chosen at ran-
dom are relatively prime. More precisely,

(1.1) Nk (x)»4J](n1 ,R,nk)�(NO[1, x])k : gcd(n1 ,R,nk)41(4
1

z(k)
x k1Rk (x) ,

where Rk (x)4O(x k21 ) for kD2, R2 (x)4O(x log x) for k42, and
dk4 lim

xKQ
Nk (x) /x k41/z(k). This result goes back to the work of J. J. SYLVESTER

[9] and D. N. LEHMER [3], see also J. E. NYMANN [5].
There are several generalizations of (1.1) in the literature. For example, let S
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be an arbitrary subset of N. Then

(1.2) Nk (x, S)»4J](n1 ,R,nk)�(NO[1, x])k : gcd(n1 ,R,nk)�S(4
z S(k)

z(k)
x k1Tk (x) ,

where

z S (k)4 !
n41
n�S

Q 1

n k

and Tk (x)4O(x k21 ) for kD2, T2 (x)4O(x log2 x) for k42, for every S’N , due
to E. COHEN [1]. Therefore the asymptotic density of the set of ordered k-tuples

(n1 , R , nk) for which gcd(n1 , R , nk) belongs to S is lim
xKQ

Nk(x, S)/x k4
zS(k)

z(k)
.

J. E. NYMANN [6] shows that if the characteristic function r S of ¯cS’N is
completely multiplicative and if J]n : n�SO [1 , x](4Ax1O(1), where A is
the asymptotic density of S , then

(1.3) J](n1 ,R,nk)�(SO[1, x])k : gcd(n1 ,R , nk)41(4A k»
p�S
g12 1

p k h x k1Rk (x) ,

where Rk (x) is the same as above. Therefore, if Pk
S (n) denotes the probability

that k integers (kF2) chosen at random from SO [1 , n] are relatively prime,
then

lim
nKQ

Pk
S (n)4 »

p�S
g12 1

p k h .

This result can be applied for S4]n : gcd(n , p1 R pr )41(, where ]p1 , R , pr( is
a given finite set of distinct primes.

Now return to the problem at the beginning. It is obvious that d kFdk41/z(k)
for every kF2 and thus lim

kKQ
d k41. Which is the exact value of d k ?

In order to solve this problem we use the concept of the unitary divisor. For
d , n�N , d is called a unitary divisor (or block divisor) of n if dNn and gcd(d , n/d)41,
notation dVn. Various other problems concerning unitary divisors, including pro-
perties of arithmetical functions and arithmetical convolutions defined by unitary
divisors, have been studied extensively in the literature, see for example [4] and
its bibliography. Denote the greatest common unitary divisor of n1 , R , nk by
gcud(n1 , R , nk ).

Our question can be reformulated in this way: What is the asymptotic density



123ON THE ASYMPTOTIC DENSITIES OF CERTAIN SUBSETS OF N k[3]

d k of the set of ordered k-tuples (n1 , R , nk ) such that gcud(n1 , R , nk )41, or
more generally, gcud(n1 , R , nk )�S?

Furthermore, what is the probability that for k integers n1 , R , nk chosen at
random from SO [1 , n] one has gcud(n1 , R , nk )41?

In this paper we determine the value d k and deduce asymptotic formulae with
error termes analogous to (1.1)-(1.3), regarding these problems. We give numeri-
cal approximations of the constants d k and also improve the error term of (1.2) of
E. COHEN.

The treatment we use is based on the inversion functions m*S and m S attached
to the subset S. We point out that this is applicable also in case k41 in order to
establish asymptotics regarding the densities of certain subsets S of N , generali-
zing in this way an often cited result of G. J. RIEGER [7].

Note that the value d 2 is given by D. SURYANARAYANA and M. V. SUBBARAO [8],
Corollary 3.6.3, applying other arguments as those of the present paper.

Using the concept of regular cross-convolution, see [11], [12], it is possible to
deduce more general results, including (1.1) - (1.3) and (2.1) and (2.4) of this pa-
per. We do not go into details.

2 - Results

Let S’N. We say that S is (completely) multiplicative if 1�S and its characte-
ristic function r S (n) is (completely) multiplicative. Define the function m*S (n)
by

!
dVn

m*S (d)4r S (n) , n�N ,

that is

m*S (n)4!
dVn

r S (d) m*(n/d) , n�N ,

where the sums are extended over the unitary divisors of n and m*(n) »4m*]1( (n)
4 (21)v(n) , v(n) denoting the number of distinct prime factors of n.

Furthermore, let f(n) and u(n) denote Euler’s function and the number of
squarefree divisors of n , respectively.

T h e o r e m 2.1. If kF2 and S is an arbitrary subset of N , then

(2.1) J](n1 , R , nk )�(NO[1 , x] )k : gcud(n1 , R , nk )�S(4d k (S) x k1Vk (x , S),
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where

d k (S)4 !
n41

Q m*S (n) f k (n)

n 2k

and the remainder term can be evaluated as follows:
(1) Vk (x , S)4O(x k21 ) for kD2 and for an arbitrary S ,
(2) V2 (x , S)4O(x log4 x) for an arbitrary S ,

(3) V2 (x , S)4O(x log2 x) for an S such that !
n�S

u(n)

n
EQ (in particular for

every finite S) and for every multiplicative S ,

(4) V2 (x , S)4O(x) for every multiplicative S such that !
p�S

1

p
EQ (in parti-

cular if the set ]p : p�S( is finite).
If S is multiplicative, then

d k (S)4»
p
u12 g12 1

p
hk

!
a41
p a�S

Q 1

p ak
v .

If S4]1(, then

d k »4d k (]1()4»
p
g12 (p21)k

p k (p k21)
h .

T h e o r e m 2.2. If kF2 and S is an arbitrary subset of N , then the asympto-
tic densities of the sets of ordered k-tuples (n1 , R , nk ) such that gcud(n1 , R , nk )
�S and gcud(n1 , R , nk )41 are d k (S) and d k , respectively, given in Theorem
2.1.

T h e o r e m 2.3. Let pn denote the n-th prime and for r�N let N410r /2.
Then

d kB »
n41

N g12 (pn21)k

pn
k (pn

k21)
h

is an approximation of d k with r exact decimals.
In particular, d 2B0.8073, d 3B0.9637, d 4B0.9924, d 5B0.9983, d 6B0.9996,

d 7B0.9999, with r44 exact decimals.

T h e o r e m 2.4. For k42 the error term R2 (x) of (1.2) can be improved into
R(x , S), where
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(i) R(x , S)4O(x log x) for an S such that !
n�S

1

n
EQ (in particular for

every finite S) and for every multiplicative S ,

(ii) R(x , S)4O(x) for every multiplicative S such that !
p�S

1

p
EQ (in parti-

cular if the set ]p : p�S( is finite).

R e m a r k . It is noted in [1] that if k42 and if the function m S (n) is bounded,
cf. proof of Theorem 2.4 of the present paper, then the error term is R2 (x)
4O(x log x).

T h e o r e m 2.5. Suppose that S’N is multiplicative and min ]a : p a�S(
FrF2 for every prime p. Then

!
nGx

r S (n)4d(S)x1O(r
kx) ,(2.2)

where

d(S)4»
p
g12 1

p
h u11 !

a41
p a�S

Q 1

p a
v(2.3)

is the asymptotic density of S.

R e m a r k . In the special case S4 the set of K-void integers we reobtain
from (2.2) the result of G. J. RIEGER [7]. The K-void integers are defined as fol-
lows. Let K be a nonempty subset of N1]1(. The number n is called K-void if
n41 or nD1 and there is no prime power p a , with a�K , appearing in the cano-
nical factorization of n.

Does the density exist for an arbitrary multiplicative subset S ? Yes, and it is
d(S) given by (2.3), where the infinite product is considered to be 0 when it diver-

ges (if and only if !
p�S

1

p
4Q). This follows from a well-known result of E. WIR-

SING [13] concerning the mean-values of certain multiplicative functions f. A short
direct proof for the case f multiplicative and 0G f (n)G1 for nF1, hence appli-
cable for the characteristic function of an arbitarary multiplicative S , is given in
the book of G. TENENBAUM, [10], p. 48.

T h e o r e m 2.6. Let kF2 and suppose that S is a completely multiplicative
subset of N such that J]n : n�SO [1 , x](4Ax1O(1). Then

(2.4) J](n1 ,R, nk)�(SO[1, x])k : gcud(n1 ,R, nk)41(4A k b k (S) x k1Tk (x) ,
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where

b k (S)4 »
p�S
g12 (p21)k

p k (p k21)
h ,

and Tk (x)4O(x k21 ) for kD2, T2 (x)4O(x log2 x) for k42.
If Qk

S (n) denotes the probability that for k integers n1 , R , nk chosen at ran-
dom from SO [1 , n] one has gcud(n1 , R , nk )41, then

lim
nKQ

Qk
S (n)4b k (S) .

3 - Proofs

P r o o f o f T h e o r e m 2.1. Using the definition of m S*, the fact that
dVgcud(n1 , R , nk ) if and only if dVni for every 1G iGk , which can be checked
easily, and the well-known estimate

!
nGx

gcd(n , m)41

14
f(m) x

m
1O(u(m) )

which holds uniformly for xF1 and m�N , we obtain

e](n1 ,R,nk)�(NO[1, x])k : gcud(n1 ,R,nk)�S(4 !
n1 ,R , nkGx

r S (gcud(n1 ,R,nk))4

4 !
n1 , R , nkGx

!
dV(n1 , R , nk )

m*S (d)4 !
n1 , R , nkGx

!
dVn1 , R , dVnk

m*S (d)4

4 !
dGx

m*S (d) !
aiGx/d

(ai , d)41
1G iGk

14 !
dGx

m*S (d) u !
aGx/d

(a , d)41

1vk

4 !
dGx

m*S (d) g xf(d)

d 2
1O(u(d) )hk

4 !
dGx

m*S (d) g x k f k (d)

d 2k
1O g x k21 u(d)

d k21 hh
4x k !

dGx

m*S (d) f k (d)

d 2k
1O gx k21 !

dGx

Nm*S (d)Nu(d)

d k21 h
4d k (S) x k1O gx k !

dDx

Nm*S (d)N

d k h1O gx k21 !
dGx

Nm*S (d)Nu(d)

d k21 h .
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The given error term yields now from the next statements:
(a)

!
nGx

u(n)

n s
4

.
/
´

O( log2 x),

O(1),

s41 ,

sD1 .

!
nGx

u 2 (n)

n s
4

.
/
´

O( log4 x),

O(1),

s41 ,

sD1 ,

!
nDx

1

n s
4O g 1

x s21 h , !
nDx

u(n)

n s
4O g log x

x s21 h , sD1 .

(b) For an arbitrary S’N and for every n�N , Nm*S (n)NG!
dVn

r S (d)Gu(n),
Nm*S (n)Nu(n)G!

dVn
r S (d) u(d) u(n/d) and

!
nGx

Nm*S (n)Nu(n)

n
G !

dGx

r S (d) u(d)

d
!

eGx/d

u(e)

e

4O glog2 x !
dGx

r S (d) u(d)

d
h4.

/
´

O( log2 x),

O( log4 x),

if !
n41

Q r S (n) u(n)

n
EQ ,

otherwise .

(c) If S is multiplicative, then m*S is multiplicative too, m*S (p a )4r S (p a )21 for
every prime power p a (aF1) and m*S (n)� ]21, 0 , 1( for each n�N.

(d) Suppose S is multiplicative. Then

!
p
!

a41

Q Nm*S (p a )Nu(p a )

p a
42 !

p
!

a41

Q 12r S (p a )

p a

G2 !
p
g 12r S (p)

p
1 !

a42

Q 1

p a h42 !
p�S

1

p(p21)
12 !

p�S

1

p21

G4 g!
p�S

1

p 2
1 !

p�S

1

p
hEQ if !

p�S

1

p
EQ .

It follows that in this case the series !
n41

Q Nm*S (n)Nu(n)

n
is convergent.

If S is multiplicative, then the series giving d k (S) can be expanded into an infi-
nite product of Euler-type.
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P r o o f o f T h e o r e m 2.2. This is a direct consequence of Theorem 2.1.

P r o o f o f T h e o r e m 2.3. Consider the series of positive terms

!
p

log g12 (p21)k

p k (p k21)
h21

4 !
n41

Q

log g11 (pn21)k

p k
n (p k

n 21)2 (pn21)k h42 log d k ,

where pn denotes the n-th prime.
The N-th order error RN of this series can be evaluated as follows:

RN »4 !
n4N11

Q

log g11 (pn21)k

p k
n (p k

n 21)2 (pn21)k hE !
n4N11

Q (pn21)k

p k
n (p k

n 21)2 (pn21)k

E !
n4N11

Q 1

p k
n 21

G !
n4N11

Q 1

p 2
n 21

.

Now using that pnD2n , valid for nF5, we have

RNE !
n4N11

Q 1

4n 221
4

1

2
!

n4N11

Q g 1

2n21
2

1

2n11
h4 1

2(2N11)
.

In order to obtain an approximation with r exact decimals we use the condi-
tion

1

2(2N11)
G

1

2
Q102r

and obtain NF
1

2
(10r21).

The numerical values were obtained using the software package MAPLE.

P r o o f o f T h e o r e m 2.4. Define the function m S (n) by

!
dNn

m S (d)4r S (n) , n�N ,

that is

m S (n)4!
dNn

r S (d) m(n/d) , n�N ,
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where m(n) »4m ]1( (n) is the Möbius function, see [1]. We have

Nk (x , S) »4e ](n1 , R , nk )� (NO [1 , x] )k : gcd(n1 , R , nk )�S(

4 !
n1 , R , nkGx

r S ( gcd(n1 , R , nk ) )4 !
n1 , R , nkGx

!
dN(n1 , R , nk )

m S (d)

and the proof runs parallel to the proof of Theorem 2.1.

P r o o f o f T h e o r e m 2.5

N1 (x , S)4 !
nGx

r S (n)4 !
nGx

!
dNn

m S (d)4x !
dGx

m S (d)

d
1O g !

dGx
Nm S (d)Nh .

Here m S is multiplicative, m S (p a )4r S (p a )2r S (p a21 ), aF1 and since
p , p 2 , R , p r21�S we have m S (p)4m S (p 2 )4R4m S (p r21 )40 for every prime
p. Hence for each n�N , Nm S (n)NGr Lr

(n), where Lr is the set of r-full numbers,
i. e. Lr4]1(N ]nD1 : pNn ¨ p r Nn(. We get

N1 (x , S)4d(S) x1O gx !
dDx

r Lr
(d)

d
h1O g !

dGx
r Lr

(d)h ,

and using the elementary estimate

!
nGx

r Lr
(n)4C r

kx1O(r11
kx) ,

where C is a positive constant, due to P. ERDÖS and G. SZEKERES [2], obtain the
given result.

P r o o f o f T h e o r e m 2.6

e](n1 , R , nk )� (SO [1 , x] )k : gcud(n1 , R , nk )41(

4 !
n1Gx

r S (n1)R !
nkGx

r S (nk) !
dV(n1 ,R, nk)

m*(d)4 !
n1Gx

r S (n1)R !
nkGx

r S (nk) !
dVn1 ,R, dVnk

m*(d)

4 !
dGx

m*(d) !
a1Gx/d

(a1 , d)41

r S (da1 )R !
akGx/d

(ak , d)41

r S (dak )

4 !
dGx

r S (d) m*(d) u !
aGx/d

(a , d)41

r S (a)vk

.
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Here we use the estimate, valid for every l�N ,

!
nGx

gcd(n , l)41

r S (n)4 !
nGx

r S (n) !
dNgcd(n , l)

m(d)

4!
dNl

m(d) r S (d) !
eGx/d

r S (e)4!
dNl

m(d) r S (d) gA x

d
1O(1)h

4Ax »
pNl

p�S

g12 1

p
h1O(u(l) )

and obtain the desired result, see the proof of Theorem 2.1.
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A b s t r a c t

We determine the asymptotic density d k of the set of ordered k-tuples (n1 , R , nk )
�N k , kF2, such that there exists no prime power p a , aF1, appearing in the canonical
factorization of each ni , 1G iGk , and deduce asymptotic formulae with error terms re-
garding this problem and analogous ones. We give numerical approximations of the con-
stants d k and improve the error term of formula (1.2) due to E. Cohen. We point out that
our treatment, based on certain inversion functions, is applicable also in case k41 in or-
der to establish asymptotic formulae with error terms regarding the densities of subsets of
N with additional multiplicative properties. These generalize an often cited result of G. J.
Rieger.

* * *


