LÁSZLÓ Tó TH (*)

On the asymptotic densities of certain subsets of $\boldsymbol{N}^{k}\left({ }^{* *}\right)$

1-Introduction

Let $k \geqslant 2$ be a fixed integer. What is the asymptotic density δ_{k} of the set of ordered k-tuples $\left(n_{1}, \ldots, n_{k}\right) \in \boldsymbol{N}^{k}$, such that there exists no prime power p^{a}, $a \geqslant 1$, appearing in the canonical factorization of each $n_{i}, 1 \leqslant i \leqslant k$?

This problem is analogous to the following one: What is the asymptotic density d_{k} of the set of k-tuples which are relatively prime, i.e. k-tuples $\left(n_{1}, \ldots, n_{k}\right) \in \boldsymbol{N}^{k}$ such that there exists no prime p, appearing in the canonical factorization of each $n_{i}, 1 \leqslant i \leqslant k$?

It is known that $d_{k}=1 / \zeta(k)$, where ζ is the Riemann zeta function, and this value can be considered as the probability that k integers $(k \geqslant 2)$ chosen at random are relatively prime. More precisely,

$$
\begin{equation*}
N_{k}(x):=\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(\boldsymbol{N} \cap[1, x])^{k}: \operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)=1\right\}=\frac{1}{\zeta(k)} x^{k}+R_{k}(x), \tag{1.1}
\end{equation*}
$$

where $\quad R_{k}(x)=O\left(x^{k-1}\right)$ for $k>2, \quad R_{2}(x)=O(x \log x) \quad$ for $\quad k=2, \quad$ and $d_{k}=\lim _{x \rightarrow \infty} N_{k}(x) / x^{k}=1 / \zeta(k)$. This result goes back to the work of J. J. Sylvester [9] and D. N. Lehmer [3], see also J. E. Nymann [5].

There are several generalizations of (1.1) in the literature. For example, let S
(*) Institute of Mathematics and Informatics, Univ. of Pécs, 7624, Ifjúság u. 6, Hungary, e-mail: ltoth@math.ttk.pte.hu.
(**) Received May 5, 2001. AMS classification 11 A 25,11 N 37.
be an arbitrary subset of N. Then

$$
\begin{equation*}
N_{k}(x, S):=\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(\boldsymbol{N} \cap[1, x])^{k}: g c d\left(n_{1}, \ldots, n_{k}\right) \in S\right\}=\frac{\zeta_{S}(k)}{\zeta(k)} x^{k}+T_{k}(x) \tag{1.2}
\end{equation*}
$$

where

$$
\zeta_{S}(k)=\sum_{\substack{n=1 \\ n \in S}}^{\infty} \frac{1}{n^{k}}
$$

and $T_{k}(x)=O\left(x^{k-1}\right)$ for $k>2, T_{2}(x)=O\left(x \log ^{2} x\right)$ for $k=2$, for every $S \subseteq N$, due to E. Cohen [1]. Therefore the asymptotic density of the set of ordered k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ for which $\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)$ belongs to S is $\lim _{x \rightarrow \infty} N_{k}(x, S) / x^{k}=\frac{\zeta_{S}(k)}{\zeta(k)}$.
J. E. Nymann [6] shows that if the characteristic function ϱ_{S} of $\emptyset \neq S \subseteq \boldsymbol{N}$ is completely multiplicative and if $\#\{n: n \in S \cap[1, x]\}=A x+O(1)$, where A is the asymptotic density of S, then

$$
\begin{equation*}
\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(S \cap[1, x])^{k}: \operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)=1\right\}=A^{k} \prod_{p \in S}\left(1-\frac{1}{p^{k}}\right) x^{k}+R_{k}(x) \tag{1.3}
\end{equation*}
$$

where $R_{k}(x)$ is the same as above. Therefore, if $P_{k}^{S}(n)$ denotes the probability that k integers $(k \geqslant 2)$ chosen at random from $S \cap[1, n]$ are relatively prime, then

$$
\lim _{n \rightarrow \infty} P_{k}^{S}(n)=\prod_{p \in S}\left(1-\frac{1}{p^{k}}\right)
$$

This result can be applied for $S=\left\{n: \operatorname{gcd}\left(n, p_{1} \ldots p_{r}\right)=1\right\}$, where $\left\{p_{1}, \ldots, p_{r}\right\}$ is a given finite set of distinct primes.

Now return to the problem at the beginning. It is obvious that $\delta_{k} \geqslant d_{k}=1 / \zeta(k)$ for every $k \geqslant 2$ and thus $\lim _{k \rightarrow \infty} \delta_{k}=1$. Which is the exact value of δ_{k} ?

In order to solve this problem we use the concept of the unitary divisor. For $d, n \in \boldsymbol{N}, d$ is called a unitary divisor (or block divisor) of n if $d \mid n$ and $\operatorname{gcd}(d, n / d)=1$, notation $d \| n$. Various other problems concerning unitary divisors, including properties of arithmetical functions and arithmetical convolutions defined by unitary divisors, have been studied extensively in the literature, see for example [4] and its bibliography. Denote the greatest common unitary divisor of n_{1}, \ldots, n_{k} by $\operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)$.

Our question can be reformulated in this way: What is the asymptotic density
δ_{k} of the set of ordered k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ such that $\operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)=1$, or more generally, $\operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right) \in S$?

Furthermore, what is the probability that for k integers n_{1}, \ldots, n_{k} chosen at random from $S \cap[1, n]$ one has $\operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)=1$?

In this paper we determine the value δ_{k} and deduce asymptotic formulae with error termes analogous to (1.1)-(1.3), regarding these problems. We give numerical approximations of the constants δ_{k} and also improve the error term of (1.2) of E. Cohen.

The treatment we use is based on the inversion functions μ_{S}^{*} and μ_{S} attached to the subset S. We point out that this is applicable also in case $k=1$ in order to establish asymptotics regarding the densities of certain subsets S of \boldsymbol{N}, generalizing in this way an often cited result of G. J. RIEGER [7].

Note that the value δ_{2} is given by D. Suryanarayana and M. V. Subbarao [8], Corollary 3.6.3, applying other arguments as those of the present paper.

Using the concept of regular cross-convolution, see [11], [12], it is possible to deduce more general results, including (1.1) - (1.3) and (2.1) and (2.4) of this paper. We do not go into details.

2 - Results

Let $S \subseteq \boldsymbol{N}$. We say that S is (completely) multiplicative if $1 \in S$ and its characteristic function $\varrho_{S}(n)$ is (completely) multiplicative. Define the function $\mu_{\stackrel{*}{*}}^{*}(n)$ by

$$
\sum_{d \| n} \mu_{S}^{*}(d)=\varrho_{S}(n), \quad n \in \boldsymbol{N},
$$

that is

$$
\mu \stackrel{*}{S}(n)=\sum_{d \| n} \varrho_{S}(d) \mu^{*}(n / d), \quad n \in \boldsymbol{N},
$$

where the sums are extended over the unitary divisors of n and $\mu^{*}(n):=\mu_{\{1\}}^{*}(n)$ $=(-1)^{\omega(n)}, \omega(n)$ denoting the number of distinct prime factors of n.

Furthermore, let $\phi(n)$ and $\theta(n)$ denote Euler's function and the number of squarefree divisors of n, respectively.

Theorem 2.1. If $k \geqslant 2$ and S is an arbitrary subset of \boldsymbol{N}, then

$$
\begin{equation*}
\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(\boldsymbol{N} \cap[1, x])^{k}: \operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right) \in S\right\}=\delta_{k}(S) x^{k}+V_{k}(x, S) \tag{2.1}
\end{equation*}
$$

where

$$
\delta_{k}(S)=\sum_{n=1}^{\infty} \frac{\mu_{\tilde{S}}^{*}(n) \phi^{k}(n)}{n^{2 k}}
$$

and the remainder term can be evaluated as follows:
(1) $V_{k}(x, S)=O\left(x^{k-1}\right)$ for $k>2$ and for an arbitrary S,
(2) $V_{2}(x, S)=O\left(x \log ^{4} x\right)$ for an arbitrary S,
(3) $V_{2}(x, S)=O\left(x \log ^{2} x\right)$ for an S such that $\sum_{n \in S} \frac{\theta(n)}{n}<\infty$ (in particular for every finite S) and for every multiplicative S,
(4) $V_{2}(x, S)=O(x)$ for every multiplicative S such that $\sum_{p \notin S} \frac{1}{p}<\infty$ (in particular if the set $\{p: p \notin S\}$ is finite).

If S is multiplicative, then

$$
\delta_{k}(S)=\prod_{p}\left(1-\left(1-\frac{1}{p}\right)^{k} \sum_{\substack{a=1 \\ p^{a} \notin S}}^{\infty} \frac{1}{p^{a k}}\right) .
$$

If $S=\{1\}$, then

$$
\delta_{k}:=\delta_{k}(\{1\})=\prod_{p}\left(1-\frac{(p-1)^{k}}{p^{k}\left(p^{k}-1\right)}\right) .
$$

Theorem 2.2. If $k \geqslant 2$ and S is an arbitrary subset of \boldsymbol{N}, then the asymptotic densities of the sets of ordered k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ such that $\operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)$ $\in S$ and $\operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)=1$ are $\delta_{k}(S)$ and δ_{k}, respectively, given in Theorem 2.1.

Theorem 2.3. Let p_{n} denote the n-th prime and for $r \in \boldsymbol{N}$ let $N=10^{r} / 2$. Then

$$
\delta_{k} \approx \prod_{n=1}^{N}\left(1-\frac{\left(p_{n}-1\right)^{k}}{p_{n}^{k}\left(p_{n}^{k}-1\right)}\right)
$$

is an approximation of δ_{k} with r exact decimals.
In particular, $\delta_{2} \approx 0.8073, \delta_{3} \approx 0.9637, \delta_{4} \approx 0.9924, \delta_{5} \approx 0.9983, \delta_{6} \approx 0.9996$, $\delta_{7} \approx 0.9999$, with $r=4$ exact decimals.

Theorem 2.4. For $k=2$ the error term $R_{2}(x)$ of (1.2) can be improved into $R(x, S)$, where
(i) $R(x, S)=O(x \log x)$ for an S such that $\sum_{n \in S} \frac{1}{n}<\infty$ (in particular for every finite S) and for every multiplicative S,
(ii) $R(x, S)=O(x)$ for every multiplicative S such that $\sum_{p \notin S} \frac{1}{p}<\infty$ (in particular if the set $\{p: p \notin S\}$ is finite).

Remark. It is noted in [1] that if $k=2$ and if the function $\mu_{S}(n)$ is bounded, cf. proof of Theorem 2.4 of the present paper, then the error term is $R_{2}(x)$ $=O(x \log x)$.

Theorem 2.5. Suppose that $S \subseteq \boldsymbol{N}$ is multiplicative and $\min \left\{a: p^{a} \notin S\right\}$ $\geqslant r \geqslant 2$ for every prime p. Then

$$
\begin{equation*}
\sum_{n \leqslant x} \varrho_{S}(n)=d(S) x+O\left(^{r} \sqrt{x}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
d(S)=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\sum_{\substack{a=1 \\ p^{a} \in S}}^{\infty} \frac{1}{p^{a}}\right) \tag{2.3}
\end{equation*}
$$

is the asymptotic density of S.
Remark. In the special case $S=$ the set of K-void integers we reobtain from (2.2) the result of G. J. Rieger [7]. The K-void integers are defined as follows. Let K be a nonempty subset of $N \backslash\{1\}$. The number n is called K-void if $n=1$ or $n>1$ and there is no prime power p^{a}, with $a \in K$, appearing in the canonical factorization of n.

Does the density exist for an arbitrary multiplicative subset S ? Yes, and it is $d(S)$ given by (2.3), where the infinite product is considered to be 0 when it diverges (if and only if $\sum_{p \notin S} \frac{1}{p}=\infty$). This follows from a well-known result of E. Wir$\operatorname{SING}[13]$ concerning the mean-values of certain multiplicative functions f. A short direct proof for the case f multiplicative and $0 \leqslant f(n) \leqslant 1$ for $n \geqslant 1$, hence applicable for the characteristic function of an arbitarary multiplicative S, is given in the book of G. Tenenbaum, [10], p. 48.

Theorem 2.6. Let $k \geqslant 2$ and suppose that S is a completely multiplicative subset of \boldsymbol{N} such that $\#\{n: n \in S \cap[1, x]\}=A x+O(1)$. Then

$$
\begin{equation*}
\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(S \cap[1, x])^{k}: \operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)=1\right\}=A^{k} \beta_{k}(S) x^{k}+T_{k}(x) \tag{2.4}
\end{equation*}
$$

where

$$
\beta_{k}(S)=\prod_{p \in S}\left(1-\frac{(p-1)^{k}}{p^{k}\left(p^{k}-1\right)}\right)
$$

and $T_{k}(x)=O\left(x^{k-1}\right)$ for $k>2, T_{2}(x)=O\left(x \log ^{2} x\right)$ for $k=2$.
If $Q_{k}^{S}(n)$ denotes the probability that for k integers n_{1}, \ldots, n_{k} chosen at random from $S \cap[1, n]$ one has $\operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)=1$, then

$$
\lim _{n \rightarrow \infty} Q_{k}^{S}(n)=\beta_{k}(S)
$$

3-Proofs

Proof of Theorem 2.1. Using the definition of μ_{S}^{*}, the fact that $d \| \operatorname{gcud}\left(n_{1}, \ldots, n_{k}\right)$ if and only if $d \| n_{i}$ for every $1 \leqslant i \leqslant k$, which can be checked easily, and the well-known estimate

$$
\sum_{\substack{n \leqslant x \\ \operatorname{gcd}(n, m)=1}} 1=\frac{\phi(m) x}{m}+O(\theta(m))
$$

which holds uniformly for $x \geqslant 1$ and $m \in \boldsymbol{N}$, we obtain

$$
\begin{gathered}
\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(\boldsymbol{N} \cap[1, x])^{k}: g c u d\left(n_{1}, \ldots, n_{k}\right) \in S\right\}=\sum_{n_{1}, \ldots, n_{k} \leqslant x} \varrho_{S}\left(g c u d\left(n_{1}, \ldots, n_{k}\right)\right)= \\
=\sum_{n_{1}, \ldots, n_{k} \leqslant x} \sum_{d \|\left(n_{1}, \ldots, n_{k}\right)} \mu_{S}^{*}(d)=\sum_{n_{1}, \ldots, n_{k} \leqslant x} \sum_{d\left\|n_{1}, \ldots, d\right\| n_{k}} \mu_{\tilde{S}}^{*}(d)= \\
=\sum_{d \leqslant x} \mu_{S}^{*}(d) \sum_{\substack{a_{i} \leqslant x / d \\
\left(a_{i}, d\right)=1 \\
1 \leqslant i \leqslant k}} 1=\sum_{d \leqslant x} \mu_{S}^{*}(d)\left(\sum_{\substack{a \leqslant x / d \\
(a, d)=1}} 1\right)^{k} \\
=\sum_{d \leqslant x} \mu_{\stackrel{*}{*}}^{*}(d)\left(\frac{x \phi(d)}{d^{2}}+O(\theta(d))\right)^{k}=\sum_{d \leqslant x} \mu_{\tilde{S}}^{*}(d)\left(\frac{x^{k} \phi^{k}(d)}{d^{2 k}}+O\left(\frac{x^{k-1} \theta(d)}{d^{k-1}}\right)\right) \\
=x^{k} \sum_{d \leqslant x} \frac{\mu_{\tilde{S}}^{*}(d) \phi^{k}(d)}{d^{2 k}}+O\left(x^{k-1} \sum_{d \leqslant x} \frac{\left|\mu_{S}^{*}(d)\right| \theta(d)}{d^{k-1}}\right) \\
=\delta_{k}(S) x^{k}+O\left(x^{k} \sum_{d>x} \frac{\left|\mu_{S}^{*}(d)\right|}{d^{k}}\right)+O\left(x^{k-1} \sum_{d \leqslant x} \frac{\left|\mu_{S}^{*}(d)\right| \theta(d)}{d^{k-1}}\right) .
\end{gathered}
$$

The given error term yields now from the next statements:
(a)

$$
\begin{gathered}
\sum_{n \leqslant x} \frac{\theta(n)}{n^{s}}= \begin{cases}O\left(\log ^{2} x\right), & s=1, \\
O(1), & s>1\end{cases} \\
\sum_{n \leqslant x} \frac{\theta^{2}(n)}{n^{s}}= \begin{cases}O\left(\log ^{4} x\right), & s=1, \\
O(1), & s>1,\end{cases} \\
\sum_{n>x} \frac{1}{n^{s}}=O\left(\frac{1}{x^{s-1}}\right), \quad \sum_{n>x} \frac{\theta(n)}{n^{s}}=O\left(\frac{\log x}{x^{s-1}}\right), \quad s>1 .
\end{gathered}
$$

(b) For an arbitrary $S \subseteq \boldsymbol{N}$ and for every $n \in \boldsymbol{N},\left|\mu_{\stackrel{~}{*}}^{*}(n)\right| \leqslant \sum_{d \| n} \varrho_{S}(d) \leqslant \theta(n)$, $\left|\mu_{S}^{*}(n)\right| \theta(n) \leqslant \sum_{d \| n} \varrho_{S}(d) \theta(d) \theta(n / d)$ and

$$
\begin{gathered}
\sum_{n \leqslant x} \frac{\left|\mu_{S}^{*}(n)\right| \theta(n)}{n} \leqslant \sum_{d \leqslant x} \frac{\varrho_{S}(d) \theta(d)}{d} \sum_{e \leqslant x / d} \frac{\theta(e)}{e} \\
=O\left(\log ^{2} x \sum_{d \leqslant x} \frac{\varrho_{S}(d) \theta(d)}{d}\right)=\left\{\begin{array}{l}
O\left(\log ^{2} x\right), \quad \text { if } \sum_{n=1}^{\infty} \frac{\varrho_{S}(n) \theta(n)}{n}<\infty, \\
O\left(\log ^{4} x\right), \\
\text { otherwise } .
\end{array}\right.
\end{gathered}
$$

(c) If S is multiplicative, then μ_{S}^{*} is multiplicative too, $\mu_{S}^{*}\left(p^{a}\right)=\varrho_{S}\left(p^{a}\right)-1$ for every prime power $p^{a}(a \geqslant 1)$ and $\mu_{S}^{*}(n) \in\{-1,0,1\}$ for each $n \in \boldsymbol{N}$.
(d) Suppose S is multiplicative. Then

$$
\begin{gathered}
\sum_{p} \sum_{a=1}^{\infty} \frac{\left|\mu_{S}^{*}\left(p^{a}\right)\right| \theta\left(p^{a}\right)}{p^{a}}=2 \sum_{p} \sum_{a=1}^{\infty} \frac{1-\varrho_{S}\left(p^{a}\right)}{p^{a}} \\
\leqslant 2 \sum_{p}\left(\frac{1-\varrho_{S}(p)}{p}+\sum_{a=2}^{\infty} \frac{1}{p^{a}}\right)=2 \sum_{p \in S} \frac{1}{p(p-1)}+2 \sum_{p \notin S} \frac{1}{p-1} \\
\leqslant 4\left(\sum_{p \in S} \frac{1}{p^{2}}+\sum_{p \notin S} \frac{1}{p}\right)<\infty \quad \text { if } \quad \sum_{p \notin S} \frac{1}{p}<\infty
\end{gathered}
$$

It follows that in this case the series $\sum_{n=1}^{\infty} \frac{\left|\mu_{S}^{*}(n)\right| \theta(n)}{n}$ is convergent.
If S is multiplicative, then the series giving $\delta_{k}(S)$ can be expanded into an infinite product of Euler-type.

Proof of Theorem 2.2. This is a direct consequence of Theorem 2.1.
Proof of Theorem 2.3. Consider the series of positive terms

$$
\begin{gathered}
\sum_{p} \log \left(1-\frac{(p-1)^{k}}{p^{k}\left(p^{k}-1\right)}\right)^{-1} \\
=\sum_{n=1}^{\infty} \log \left(1+\frac{\left(p_{n}-1\right)^{k}}{p_{n}^{k}\left(p_{n}^{k}-1\right)-\left(p_{n}-1\right)^{k}}\right)=-\log \delta_{k},
\end{gathered}
$$

where p_{n} denotes the n-th prime.
The N-th order error R_{N} of this series can be evaluated as follows:

$$
\begin{aligned}
R_{N}:=\sum_{n=N+1}^{\infty} \log (1+ & \left.\frac{\left(p_{n}-1\right)^{k}}{p_{n}^{k}\left(p_{n}^{k}-1\right)-\left(p_{n}-1\right)^{k}}\right)<\sum_{n=N+1}^{\infty} \frac{\left(p_{n}-1\right)^{k}}{p_{n}^{k}\left(p_{n}^{k}-1\right)-\left(p_{n}-1\right)^{k}} \\
& <\sum_{n=N+1}^{\infty} \frac{1}{p_{n}^{k}-1} \leqslant \sum_{n=N+1}^{\infty} \frac{1}{p_{n}^{2}-1} .
\end{aligned}
$$

Now using that $p_{n}>2 n$, valid for $n \geqslant 5$, we have

$$
R_{N}<\sum_{n=N+1}^{\infty} \frac{1}{4 n^{2}-1}=\frac{1}{2} \sum_{n=N+1}^{\infty}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)=\frac{1}{2(2 N+1)} .
$$

In order to obtain an approximation with r exact decimals we use the condition

$$
\frac{1}{2(2 N+1)} \leqslant \frac{1}{2} \cdot 10^{-r}
$$

and obtain $N \geqslant \frac{1}{2}\left(10^{r}-1\right)$.
The numerical values were obtained using the software package MAPLE.
Proof of Theorem 2.4. Define the function $\mu_{S}(n)$ by

$$
\sum_{d \mid n} \mu_{S}(d)=\varrho_{S}(n), \quad n \in \boldsymbol{N}
$$

that is

$$
\mu_{S}(n)=\sum_{d \mid n} \varrho_{S}(d) \mu(n / d), \quad n \in \boldsymbol{N},
$$

where $\mu(n):=\mu_{\{1\}}(n)$ is the Möbius function, see [1]. We have

$$
\begin{gathered}
N_{k}(x, S):=\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(\boldsymbol{N} \cap[1, x])^{k}: \operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right) \in S\right\} \\
=\sum_{n_{1}, \ldots, n_{k} \leqslant x} \varrho_{S}\left(\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)\right)=\sum_{n_{1}, \ldots, n_{k} \leqslant x} \sum_{d \mid\left(n_{1}, \ldots, n_{k}\right)} \mu_{S}(d)
\end{gathered}
$$

and the proof runs parallel to the proof of Theorem 2.1.
Proof of Theorem 2.5

$$
N_{1}(x, S)=\sum_{n \leqslant x} \varrho_{S}(n)=\sum_{n \leqslant x} \sum_{d \mid n} \mu_{S}(d)=x \sum_{d \leqslant x} \frac{\mu_{S}(d)}{d}+O\left(\sum_{d \leqslant x}\left|\mu_{S}(d)\right|\right)
$$

Here μ_{S} is multiplicative, $\mu_{S}\left(p^{a}\right)=\varrho_{S}\left(p^{a}\right)-\varrho_{S}\left(p^{a-1}\right), a \geqslant 1$ and since $p, p^{2}, \ldots, p^{r-1} \in S$ we have $\mu_{S}(p)=\mu_{S}\left(p^{2}\right)=\ldots=\mu_{S}\left(p^{r-1}\right)=0$ for every prime p. Hence for each $n \in \boldsymbol{N},\left|\mu_{S}(n)\right| \leqslant \varrho_{L_{r}}(n)$, where L_{r} is the set of r-full numbers, i. e. $L_{r}=\{1\} \cup\left\{n>1: p\left|n \Rightarrow p^{r}\right| n\right\}$. We get

$$
N_{1}(x, S)=d(S) x+O\left(x \sum_{d>x} \frac{\varrho_{L_{r}}(d)}{d}\right)+O\left(\sum_{d \leqslant x} \varrho_{L_{r}}(d)\right),
$$

and using the elementary estimate

$$
\sum_{n \leqslant x} \varrho_{L_{r}}(n)=C^{r} \sqrt{x}+O\left({ }^{r+1} \sqrt{x}\right)
$$

where C is a positive constant, due to P. Erdös and G. Szekeres [2], obtain the given result.

Proof of Theorem 2.6

$$
\begin{gathered}
\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in(S \cap[1, x])^{k}: g c u d\left(n_{1}, \ldots, n_{k}\right)=1\right\} \\
=\sum_{n_{1} \leqslant x} \varrho_{S}\left(n_{1}\right) \ldots \sum_{n_{k} \leqslant x} \varrho_{S}\left(n_{k}\right) \sum_{d \|\left(n_{1}, \ldots, n_{k}\right)} \mu^{*}(d)=\sum_{n_{1} \leqslant x} \varrho_{S}\left(n_{1}\right) \ldots \sum_{n_{k} \leqslant x} \varrho_{S}\left(n_{k}\right) \sum_{d\left\|n_{1}, \ldots, d\right\| n_{k}} \mu^{*}(d) \\
=\sum_{d \leqslant x} \mu^{*}(d) \sum_{\substack{a_{1} \leqslant x / d \\
\left(a_{1}, d\right)=1}}^{\varrho_{S}\left(d a_{1}\right) \ldots \sum_{\substack{a_{k} \leqslant x i d d \\
\left(a_{k}, d\right)=1}} \varrho_{S}\left(d a_{k}\right)} \\
=\sum_{d \leqslant x} \varrho_{S}(d) \mu^{*}(d)\left(\sum_{\substack{a \leqslant x / d \\
(a, d)=1}} \varrho_{S}(a)\right)^{k} .
\end{gathered}
$$

Here we use the estimate, valid for every $l \in N$,

$$
\begin{gathered}
\sum_{\substack{n \leqslant x \\
\operatorname{gcd}(n, l)=1}} \varrho_{S}(n)=\sum_{n \leqslant x} \varrho_{S}(n) \sum_{d \mid \operatorname{gcd}(n, l)} \mu(d) \\
=\sum_{d \mid l} \mu(d) \varrho_{S}(d) \sum_{e \leqslant x / d} \varrho_{S}(e)=\sum_{d \mid l} \mu(d) \varrho_{S}(d)\left(A \frac{x}{d}+O(1)\right) \\
=A x \prod_{\substack{p \mid l \\
p \in S}}\left(1-\frac{1}{p}\right)+O(\theta(l))
\end{gathered}
$$

and obtain the desired result, see the proof of Theorem 2.1.

References

[1] E. CoHEN, Arithmetical functions associated with arbitrary sets of integers, Acta Arith. 5 (1959), 407-415.
[2] P. Erdös and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged) 7 (1935), 95-102.
[3] D. N. Lehmer, An asymptotic evaluation of certain totient sums, Amer. J. Math. 22 (1900), 293-355.
[4] P. J. McCarthy, Introduction to arithmetical functions, Springer Verlag, New York - Berlin - Heidelberg - Tokyo 1986.
[5] J. E. Nymann, On the probability that k positive integers are relatively prime, J. Number Theory 4 (1972), 469-473.
[6] J. E. Nymann, On the probability that k positive integers are relatively prime, II., J. Number Theory 7 (1975), 406-412.
[7] G. J. Rieger, Einige Verteilungsfragen mit K-leeren Zahlen, r-Zahlen und Primzahlen, J. Reine Angew. Math. 262/263 (1973), 189-193.
[8] D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the bi-unitary k-ary divisors of an integer, Indian J. Math. 22 (1980), 281-298.
[9] J. J. Sylvester, The collected mathematical papers of James Joseph Sylvester, vol. III., Cambridge Univ. Press, London - New York 1909.
[10] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, 1995.
L. Tótн, Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, I. Divisor-sum functions and Euler-type functions, Publ. Math. Debrecen 50 (1997), 159-176.
[12] L. Tóтн, Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, VIII. On the product and the quotient of $\sigma_{A, s}$ and $\phi_{A, s}$, Riv. Mat. Univ. Parma (6) 2 (1999), 199-206.
[13] E. Wirsing, Das aymptotische Verhalten von Summen über multiplikative Funktionen, II., Acta Math. Acad. Sci. Hung. 18 (1967), 411-467.

Abstract

We determine the asymptotic density δ_{k} of the set of ordered k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ $\in \boldsymbol{N}^{k}, k \geqslant 2$, such that there exists no prime power $p^{a}, a \geqslant 1$, appearing in the canonical factorization of each $n_{i}, 1 \leqslant i \leqslant k$, and deduce asymptotic formulae with error terms regarding this problem and analogous ones. We give numerical approximations of the constants δ_{k} and improve the error term of formula (1.2) due to E. Cohen. We point out that our treatment, based on certain inversion functions, is applicable also in case $k=1$ in order to establish asymptotic formulae with error terms regarding the densities of subsets of \boldsymbol{N} with additional multiplicative properties. These generalize an often cited result of G. J. Rieger.

