László Tóth (*)

On the asymptotic densities of certain subsets of N^{k} (**)

1 - Introduction

Let $k \ge 2$ be a fixed integer. What is the asymptotic density δ_k of the set of ordered k-tuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$, such that there exists no prime power $p^a, a \ge 1$, appearing in the canonical factorization of each n_i , $1 \le i \le k$?

This problem is analogous to the following one: What is the asymptotic density d_k of the set of k-tuples which are relatively prime, i.e. k-tuples $(n_1, \ldots, n_k) \in N^k$ such that there exists no prime p, appearing in the canonical factorization of each n_i , $1 \leq i \leq k$?

It is known that $d_k = 1/\zeta(k)$, where ζ is the Riemann zeta function, and this value can be considered as the probability that k integers $(k \ge 2)$ chosen at random are relatively prime. More precisely,

(1.1)
$$N_k(x) \coloneqq \# \{ (n_1, \dots, n_k) \in (N \cap [1, x])^k : gcd(n_1, \dots, n_k) = 1 \} = \frac{1}{\zeta(k)} x^k + R_k(x),$$

where $R_k(x) = O(x^{k-1})$ for k > 2, $R_2(x) = O(x \log x)$ for k = 2, and $d_k = \lim_{x \to \infty} N_k(x)/x^k = 1/\zeta(k)$. This result goes back to the work of J. J. SYLVESTER [9] and D. N. LEHMER [3], see also J. E. NYMANN [5].

There are several generalizations of (1.1) in the literature. For example, let S

^(*) Institute of Mathematics and Informatics, Univ. of Pécs, 7624, Ifjúság u. 6, Hungary, e-mail: ltoth@math.ttk.pte.hu.

^(**) Received May 5, 2001. AMS classification 11 A 25, 11 N 37.

LÁSZLÓ TÓTH

be an arbitrary subset of N. Then

(1.2)
$$N_k(x,S) \coloneqq \#\{(n_1,\ldots,n_k) \in (N \cap [1,x])^k : gcd(n_1,\ldots,n_k) \in S\} = \frac{\zeta_S(k)}{\zeta(k)} x^k + T_k(x),$$

where

$$\zeta_S(k) = \sum_{\substack{n=1\\n \in S}}^{\infty} \frac{1}{n^k}$$

and $T_k(x) = O(x^{k-1})$ for k > 2, $T_2(x) = O(x \log^2 x)$ for k = 2, for every $S \subseteq N$, due to E. COHEN [1]. Therefore the asymptotic density of the set of ordered k-tuples (n_1, \ldots, n_k) for which $gcd(n_1, \ldots, n_k)$ belongs to S is $\lim_{x \to \infty} N_k(x, S)/x^k = \frac{\zeta_S(k)}{\zeta(k)}$. J. E. NYMANN [6] shows that if the characteristic function ϱ_S of $\emptyset \neq S \subseteq N$ is

completely multiplicative and if $\#\{n : n \in S \cap [1, x]\} = Ax + O(1)$, where A is the asymptotic density of S, then

(1.3)
$$\#\{(n_1,\ldots,n_k)\in (S\cap[1,x])^k: gcd(n_1,\ldots,n_k)=1\} = A^k \prod_{p\in S} \left(1-\frac{1}{p^k}\right) x^k + R_k(x),$$

where $R_k(x)$ is the same as above. Therefore, if $P_k^S(n)$ denotes the probability that k integers $(k \ge 2)$ chosen at random from $S \cap [1, n]$ are relatively prime, then

$$\lim_{n \to \infty} P_k^S(n) = \prod_{p \in S} \left(1 - \frac{1}{p^k} \right).$$

This result can be applied for $S = \{n : gcd(n, p_1 \dots p_r) = 1\}$, where $\{p_1, \dots, p_r\}$ is a given finite set of distinct primes.

Now return to the problem at the beginning. It is obvious that $\delta_k \ge d_k = 1/\zeta(k)$ for every $k \ge 2$ and thus $\lim_{k \to \infty} \delta_k = 1$. Which is the exact value of δ_k ?

In order to solve this problem we use the concept of the unitary divisor. For $d, n \in \mathbb{N}, d$ is called a unitary divisor (or block divisor) of n if $d \mid n$ and gcd(d, n/d) = 1, notation $d \mid n$. Various other problems concerning unitary divisors, including properties of arithmetical functions and arithmetical convolutions defined by unitary divisors, have been studied extensively in the literature, see for example [4] and its bibliography. Denote the greatest common unitary divisor of n_1, \ldots, n_k by $gcud(n_1, \ldots, n_k)$.

Our question can be reformulated in this way: What is the asymptotic density

122

 δ_k of the set of ordered k-tuples (n_1, \ldots, n_k) such that $gcud(n_1, \ldots, n_k) = 1$, or more generally, $gcud(n_1, \ldots, n_k) \in S$?

123

Furthermore, what is the probability that for k integers n_1, \ldots, n_k chosen at random from $S \cap [1, n]$ one has $gcud(n_1, \ldots, n_k) = 1$?

In this paper we determine the value δ_k and deduce asymptotic formulae with error termes analogous to (1.1)-(1.3), regarding these problems. We give numerical approximations of the constants δ_k and also improve the error term of (1.2) of E. COHEN.

The treatment we use is based on the inversion functions μ_S^* and μ_S attached to the subset S. We point out that this is applicable also in case k = 1 in order to establish asymptotics regarding the densities of certain subsets S of N, generalizing in this way an often cited result of G. J. RIEGER [7].

Note that the value δ_2 is given by D. SURYANARAYANA and M. V. SUBBARAO [8], Corollary 3.6.3, applying other arguments as those of the present paper.

Using the concept of regular cross-convolution, see [11], [12], it is possible to deduce more general results, including (1.1) - (1.3) and (2.1) and (2.4) of this paper. We do not go into details.

2 - Results

Let $S \subseteq N$. We say that S is (completely) multiplicative if $1 \in S$ and its characteristic function $\rho_S(n)$ is (completely) multiplicative. Define the function $\mu_S^*(n)$ by

$$\sum_{d \mid n} \mu_S^*(d) = \varrho_S(n), \qquad n \in \mathbb{N}$$

that is

$$\mu_S^*(n) = \sum_{d \mid n} \varrho_S(d) \, \mu^*(n/d) \,, \qquad n \in \mathbb{N} \,,$$

where the sums are extended over the unitary divisors of n and $\mu^*(n) := \mu^*_{\{1\}}(n) = (-1)^{\omega(n)}$, $\omega(n)$ denoting the number of distinct prime factors of n.

Furthermore, let $\phi(n)$ and $\theta(n)$ denote Euler's function and the number of squarefree divisors of n, respectively.

Theorem 2.1. If $k \ge 2$ and S is an arbitrary subset of N, then

(2.1) $\#\{(n_1, \ldots, n_k) \in (N \cap [1, x])^k: gcud(n_1, \ldots, n_k) \in S\} = \delta_k(S) x^k + V_k(x, S),$

where

$$\delta_k(S) = \sum_{n=1}^{\infty} \frac{\mu_S^*(n) \, \phi^k(n)}{n^{2k}}$$

and the remainder term can be evaluated as follows:

(1) $V_k(x, S) = O(x^{k-1})$ for k > 2 and for an arbitrary S,

(2) $V_2(x, S) = O(x \log^4 x)$ for an arbitrary S,

(3) $V_2(x, S) = O(x \log^2 x)$ for an S such that $\sum_{n \in S} \frac{\theta(n)}{n} < \infty$ (in particular for every finite S) and for every multiplicative S,

(4) $V_2(x, S) = O(x)$ for every multiplicative S such that $\sum_{p \notin S} \frac{1}{p} < \infty$ (in particular if the set $\{p : p \notin S\}$ is finite).

If S is multiplicative, then

$$\delta_k(S) = \prod_p \left(1 - \left(1 - \frac{1}{p}\right)^k \sum_{\substack{a=1\\p^a \notin S}}^{\infty} \frac{1}{p^{ak}} \right).$$

If $S = \{1\}$ *, then*

$$\delta_k := \delta_k(\{1\}) = \prod_p \left(1 - \frac{(p-1)^k}{p^k(p^k-1)}\right).$$

Theorem 2.2. If $k \ge 2$ and S is an arbitrary subset of N, then the asymptotic densities of the sets of ordered k-tuples (n_1, \ldots, n_k) such that $gcud(n_1, \ldots, n_k)$ $\in S$ and $gcud(n_1, ..., n_k) = 1$ are $\delta_k(S)$ and δ_k , respectively, given in Theorem 2.1.

Theorem 2.3. Let p_n denote the n-th prime and for $r \in N$ let $N = 10^r/2$. Then

$$\delta_k \approx \prod_{n=1}^N \left(1 - \frac{(p_n - 1)^k}{p_n^k (p_n^k - 1)} \right)$$

is an approximation of δ_k with r exact decimals.

In particular, $\delta_2 \approx 0.8073$, $\delta_3 \approx 0.9637$, $\delta_4 \approx 0.9924$, $\delta_5 \approx 0.9983$, $\delta_6 \approx 0.9996$, $\delta_7 \approx 0.9999$, with r = 4 exact decimals.

Theorem 2.4. For k = 2 the error term $R_2(x)$ of (1.2) can be improved into R(x, S), where

124

(i) $R(x, S) = O(x \log x)$ for an S such that $\sum_{n \in S} \frac{1}{n} < \infty$ (in particular for every finite S) and for every multiplicative S,

(ii) R(x, S) = O(x) for every multiplicative S such that $\sum_{p \notin S} \frac{1}{p} < \infty$ (in particular if the set $\{p : p \notin S\}$ is finite).

Remark. It is noted in [1] that if k = 2 and if the function $\mu_S(n)$ is bounded, cf. proof of Theorem 2.4 of the present paper, then the error term is $R_2(x) = O(x \log x)$.

Theorem 2.5. Suppose that $S \subseteq N$ is multiplicative and $\min \{a : p^a \notin S\} \ge r \ge 2$ for every prime p. Then

(2.2)
$$\sum_{n \leq x} \varrho_S(n) = d(S)x + O(\sqrt[r]{x}),$$

where

(2.3)
$$d(S) = \prod_{p} \left(1 - \frac{1}{p} \right) \left(1 + \sum_{\substack{a=1 \\ p^{a} \in S}}^{\infty} \frac{1}{p^{a}} \right)$$

is the asymptotic density of S.

Remark. In the special case S = the set of *K*-void integers we reobtain from (2.2) the result of G. J. RIEGER [7]. The *K*-void integers are defined as follows. Let *K* be a nonempty subset of $N \setminus \{1\}$. The number *n* is called *K*-void if n = 1 or n > 1 and there is no prime power p^{a} , with $a \in K$, appearing in the canonical factorization of *n*.

Does the density exist for an arbitrary multiplicative subset S? Yes, and it is d(S) given by (2.3), where the infinite product is considered to be 0 when it diverges (if and only if $\sum_{p \notin S} \frac{1}{p} = \infty$). This follows from a well-known result of E. WIR-SING [13] concerning the mean-values of certain multiplicative functions f. A short direct proof for the case f multiplicative and $0 \leq f(n) \leq 1$ for $n \geq 1$, hence applicable for the characteristic function of an arbitrary multiplicative S, is given in the book of G. TENENBAUM, [10], p. 48.

Theorem 2.6. Let $k \ge 2$ and suppose that S is a completely multiplicative subset of N such that $\#\{n : n \in S \cap [1, x]\} = Ax + O(1)$. Then

(2.4) $\#\{(n_1, \ldots, n_k) \in (S \cap [1, x])^k : gcud(n_1, \ldots, n_k) = 1\} = A^k \beta_k(S) x^k + T_k(x),$

where

126

$$\beta_k(S) = \prod_{p \in S} \left(1 - \frac{(p-1)^k}{p^k (p^k - 1)} \right),$$

and $T_k(x) = O(x^{k-1})$ for k > 2, $T_2(x) = O(x \log^2 x)$ for k = 2.

If $Q_k^S(n)$ denotes the probability that for k integers n_1, \ldots, n_k chosen at random from $S \cap [1, n]$ one has $gcud(n_1, \ldots, n_k) = 1$, then

$$\lim_{n \to \infty} Q_k^S(n) = \beta_k(S).$$

3 - Proofs

Proof of Theorem 2.1. Using the definition of μ_S^* , the fact that $d||gcud(n_1, \ldots, n_k)$ if and only if $d||n_i$ for every $1 \le i \le k$, which can be checked easily, and the well-known estimate

$$\sum_{\substack{n \leq x \\ gcd(n, m) = 1}} 1 = \frac{\phi(m) x}{m} + O(\theta(m))$$

which holds uniformly for $x \ge 1$ and $m \in N$, we obtain

$$\# \{ (n_1, \dots, n_k) \in (N \cap [1, x])^k : gcud(n_1, \dots, n_k) \in S \} = \sum_{n_1, \dots, n_k \leq x} \varrho_S(gcud(n_1, \dots, n_k)) =$$

$$= \sum_{n_1, \dots, n_k \leq x} \sum_{d \mid (n_1, \dots, n_k)} \mu_S^*(d) = \sum_{n_1, \dots, n_k \leq x} \sum_{d \mid n_1, \dots, d \mid n_k} \mu_S^*(d) =$$

$$= \sum_{d \leq x} \mu_S^*(d) \sum_{\substack{a_i \leq x/d \\ (a_i, d) = 1 \\ 1 \leq i \leq k}} 1 = \sum_{d \leq x} \mu_S^*(d) \left(\sum_{\substack{a \leq x/d \\ (a, d) = 1}} 1 \right)^k$$

$$= \sum_{d \leq x} \mu_S^*(d) \left(\frac{x\phi(d)}{d^2} + O(\theta(d)) \right)^k = \sum_{d \leq x} \mu_S^*(d) \left(\frac{x^k \phi^k(d)}{d^{2k}} + O\left(\frac{x^{k-1} \theta(d)}{d^{k-1}} \right) \right)$$

$$= x^k \sum_{d \leq x} \frac{\mu_S^*(d) \phi^k(d)}{d^{2k}} + O\left(x^{k-1} \sum_{d \leq x} \frac{|\mu_S^*(d)| \theta(d)}{d^{k-1}} \right)$$

$$= \delta_k(S) x^k + O\left(x^k \sum_{d \geq x} \frac{|\mu_S^*(d)|}{d^k} \right) + O\left(x^{k-1} \sum_{d \leq x} \frac{|\mu_S^*(d)| \theta(d)}{d^{k-1}} \right).$$

The given error term yields now from the next statements: (a)

$$\sum_{n \leq x} \frac{\theta(n)}{n^s} = \begin{cases} O(\log^2 x), & s = 1, \\ O(1), & s > 1. \end{cases}$$
$$\sum_{n \leq x} \frac{\theta^2(n)}{n^s} = \begin{cases} O(\log^4 x), & s = 1, \\ O(1), & s > 1, \end{cases}$$

$$\sum_{n>x} \frac{1}{n^s} = O\left(\frac{1}{x^{s-1}}\right), \qquad \sum_{n>x} \frac{\theta(n)}{n^s} = O\left(\frac{\log x}{x^{s-1}}\right), \qquad s>1.$$

(b) For an arbitrary $S \subseteq N$ and for every $n \in N$, $|\mu_S^*(n)| \leq \sum_{d \mid |n} \varrho_S(d) \leq \theta(n)$, $|\mu_S^*(n)| \theta(n) \leq \sum_{d \mid |n} \varrho_S(d) \theta(d) \theta(n/d)$ and

$$\begin{split} \sum_{n \leqslant x} \frac{\left|\mu_{S}^{*}(n)\right|\theta(n)}{n} &\leqslant \sum_{d \leqslant x} \frac{\varrho_{S}(d) \ \theta(d)}{d} \sum_{e \leqslant x/d} \frac{\theta(e)}{e} \\ &= O\left(\log^{2} x \sum_{d \leqslant x} \frac{\varrho_{S}(d) \ \theta(d)}{d}\right) = \begin{cases} O(\log^{2} x), & \text{if } \sum_{n=1}^{\infty} \frac{\varrho_{S}(n) \ \theta(n)}{n} < \infty \\ O(\log^{4} x), & \text{otherwise }. \end{cases} \end{split}$$

(c) If *S* is multiplicative, then μ_S^* is multiplicative too, $\mu_S^*(p^a) = \varrho_S(p^a) - 1$ for every prime power p^a $(a \ge 1)$ and $\mu_S^*(n) \in \{-1, 0, 1\}$ for each $n \in N$.

(d) Suppose S is multiplicative. Then

$$\begin{split} \sum_{p} \sum_{a=1}^{\infty} \frac{\left|\mu_{S}^{*}(p^{a})\right| \theta(p^{a})}{p^{a}} &= 2 \sum_{p} \sum_{a=1}^{\infty} \frac{1-\varrho_{S}(p^{a})}{p^{a}} \\ &\leq 2 \sum_{p} \left(\frac{1-\varrho_{S}(p)}{p} + \sum_{a=2}^{\infty} \frac{1}{p^{a}}\right) = 2 \sum_{p \in S} \frac{1}{p(p-1)} + 2 \sum_{p \notin S} \frac{1}{p-1} \\ &\leq 4 \left(\sum_{p \in S} \frac{1}{p^{2}} + \sum_{p \notin S} \frac{1}{p}\right) < \infty \quad \text{if} \quad \sum_{p \notin S} \frac{1}{p} < \infty \end{split}$$

It follows that in this case the series $\sum_{n=1}^{\infty} \frac{|\mu_{S}^{*}(n)|\theta(n)|}{n}$ is convergent.

If S is multiplicative, then the series giving $\delta_k(S)$ can be expanded into an infinite product of Euler-type.

127

LÁSZLÓ TÓTH

Proof of Theorem 2.2. This is a direct consequence of Theorem 2.1.

Proof of Theorem 2.3. Consider the series of positive terms

$$\sum_{p} \log \left(1 - \frac{(p-1)^{k}}{p^{k}(p^{k}-1)} \right)^{-1}$$
$$= \sum_{n=1}^{\infty} \log \left(1 + \frac{(p_{n}-1)^{k}}{p_{n}^{k}(p_{n}^{k}-1) - (p_{n}-1)^{k}} \right) = -\log \delta_{k},$$

where p_n denotes the *n*-th prime.

The N-th order error R_N of this series can be evaluated as follows:

$$\begin{split} R_N &:= \sum_{n=N+1}^{\infty} \log \left(1 + \frac{(p_n - 1)^k}{p_n^k (p_n^k - 1) - (p_n - 1)^k} \right) < \sum_{n=N+1}^{\infty} \frac{(p_n - 1)^k}{p_n^k (p_n^k - 1) - (p_n - 1)^k} \\ &< \sum_{n=N+1}^{\infty} \frac{1}{p_n^k - 1} \le \sum_{n=N+1}^{\infty} \frac{1}{p_n^2 - 1} \,. \end{split}$$

Now using that $p_n > 2n$, valid for $n \ge 5$, we have

$$R_N < \sum_{n=N+1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2} \sum_{n=N+1}^{\infty} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \frac{1}{2(2N + 1)} .$$

In order to obtain an approximation with r exact decimals we use the condition

$$\frac{1}{2(2N+1)} \leqslant \frac{1}{2} \cdot 10^{-\tau}$$

and obtain $N \ge \frac{1}{2}(10^r - 1)$.

The numerical values were obtained using the software package MAPLE.

Proof of Theorem 2.4. Define the function $\mu_S(n)$ by

$$\sum_{d\mid n} \mu_{S}(d) = \varrho_{S}(n), \qquad n \in \mathbb{N},$$

that is

$$\mu_S(n) = \sum_{d|n} \varrho_S(d) \, \mu(n/d) \,, \qquad n \in \mathbb{N} \,,$$

where $\mu(n) := \mu_{\{1\}}(n)$ is the Möbius function, see [1]. We have

$$N_k(x, S) := \# \{ (n_1, \dots, n_k) \in (N \cap [1, x])^k : gcd(n_1, \dots, n_k) \in S \}$$
$$= \sum_{n_1, \dots, n_k \leq x} \varrho_S(gcd(n_1, \dots, n_k)) = \sum_{n_1, \dots, n_k \leq x} \sum_{d \mid (n_1, \dots, n_k)} \mu_S(d)$$

and the proof runs parallel to the proof of Theorem 2.1.

Proof of Theorem 2.5

$$N_1(x, S) = \sum_{n \leq x} \varrho_S(n) = \sum_{n \leq x} \sum_{d \mid n} \mu_S(d) = x \sum_{d \leq x} \frac{\mu_S(d)}{d} + O\left(\sum_{d \leq x} |\mu_S(d)|\right).$$

Here μ_S is multiplicative, $\mu_S(p^a) = \varrho_S(p^a) - \varrho_S(p^{a-1}), a \ge 1$ and since $p, p^2, \ldots, p^{r-1} \in S$ we have $\mu_S(p) = \mu_S(p^2) = \ldots = \mu_S(p^{r-1}) = 0$ for every prime p. Hence for each $n \in \mathbb{N}$, $|\mu_S(n)| \le \varrho_{L_r}(n)$, where L_r is the set of r-full numbers, i. e. $L_r = \{1\} \cup \{n \ge 1 : p \mid n \Rightarrow p^r \mid n\}$. We get

$$N_1(x, S) = d(S) x + O\left(x \sum_{d > x} \frac{\varrho_{L_r}(d)}{d}\right) + O\left(\sum_{d \le x} \varrho_{L_r}(d)\right),$$

and using the elementary estimate

$$\sum_{n \leq x} \varrho_{L_r}(n) = C^r \sqrt{x} + O(r^{r+1} \sqrt{x}),$$

where C is a positive constant, due to P. ERDÖS and G. SZEKERES [2], obtain the given result.

Proof of Theorem 2.6

$$\# \{ (n_1, \dots, n_k) \in (S \cap [1, x])^k : gcud(n_1, \dots, n_k) = 1 \}$$

$$= \sum_{n_1 \le x} \varrho_S(n_1) \dots \sum_{n_k \le x} \varrho_S(n_k) \sum_{d \parallel (n_1, \dots, n_k)} \mu^*(d) = \sum_{n_1 \le x} \varrho_S(n_1) \dots \sum_{n_k \le x} \varrho_S(n_k) \sum_{d \parallel n_1, \dots, d \parallel n_k} \mu^*(d)$$

$$= \sum_{d \le x} \mu^*(d) \sum_{\substack{a_1 \le x/d \\ (a_1, d) = 1}} \varrho_S(da_1) \dots \sum_{\substack{a_k \le x/d \\ (a_k, d) = 1}} \varrho_S(da_k)$$

$$= \sum_{d \le x} \varrho_S(d) \mu^*(d) \left(\sum_{\substack{a \le x/d \\ (a, d) = 1}} \varrho_S(a) \right)^k.$$

Here we use the estimate, valid for every $l \in N$,

$$\sum_{\substack{n \leq x \\ gcd(n, l) = 1}} \varrho_S(n) = \sum_{n \leq x} \varrho_S(n) \sum_{\substack{d \mid gcd(n, l)}} \mu(d)$$
$$= \sum_{d \mid l} \mu(d) \, \varrho_S(d) \sum_{\substack{e \leq x/d}} \varrho_S(e) = \sum_{d \mid l} \mu(d) \, \varrho_S(d) \left(A \frac{x}{d} + O(1) \right)$$
$$= Ax \prod_{\substack{p \mid l \\ p \in S}} \left(1 - \frac{1}{p} \right) + O(\theta(l))$$

and obtain the desired result, see the proof of Theorem 2.1.

References

- E. COHEN, Arithmetical functions associated with arbitrary sets of integers, Acta Arith. 5 (1959), 407-415.
- [2] P. ERDÖS and G. SZEKERES, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged) 7 (1935), 95-102.
- [3] D. N. LEHMER, An asymptotic evaluation of certain totient sums, Amer. J. Math. 22 (1900), 293-355.
- P. J. MCCARTHY, Introduction to arithmetical functions, Springer Verlag, New York - Berlin - Heidelberg - Tokyo 1986.
- J. E. NYMANN, On the probability that k positive integers are relatively prime, J. Number Theory 4 (1972), 469-473.
- [6] J. E. NYMANN, On the probability that k positive integers are relatively prime, II., J. Number Theory 7 (1975), 406-412.
- [7] G. J. RIEGER, Einige Verteilungsfragen mit K-leeren Zahlen, r-Zahlen und Primzahlen, J. Reine Angew. Math. 262/263 (1973), 189-193.
- [8] D. SURYANARAYANA and M. V. SUBBARAO, Arithmetical functions associated with the bi-unitary k-ary divisors of an integer, Indian J. Math. 22 (1980), 281-298.
- [9] J. J. SYLVESTER, The collected mathematical papers of James Joseph Sylvester, vol. III., Cambridge Univ. Press, London - New York 1909.
- [10] G. TENENBAUM, Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, 1995.
- [11] L. TÓTH, Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, I. Divisor-sum functions and Euler-type functions, Publ. Math. Debrecen 50 (1997), 159-176.

- [12] L. ΤότΗ, Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, VIII. On the product and the quotient of σ_{A, s} and φ_{A, s}, Riv. Mat. Univ. Parma (6) 2 (1999), 199-206.
- [13] E. WIRSING, Das aymptotische Verhalten von Summen über multiplikative Funktionen, II., Acta Math. Acad. Sci. Hung. 18 (1967), 411-467.

Abstract

We determine the asymptotic density δ_k of the set of ordered k-tuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$, $k \ge 2$, such that there exists no prime power p^a , $a \ge 1$, appearing in the canonical factorization of each n_i , $1 \le i \le k$, and deduce asymptotic formulae with error terms regarding this problem and analogous ones. We give numerical approximations of the constants δ_k and improve the error term of formula (1.2) due to E. Cohen. We point out that our treatment, based on certain inversion functions, is applicable also in case k = 1 in order to establish asymptotic formulae with error terms regarding the densities of subsets of N with additional multiplicative properties. These generalize an often cited result of G. J. Rieger.

* * *