| Riv. Mat. | Univ. Parma (6) | $\mathbf{4}$ | (2001), | $71-86$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A. Loi and D. Zuddas (*)

Some remarks on Bergmann metrics (**)

1-Introduction

Let L be a holomorphic line bundle on a compact complex manifold M. A Kähler metric on M is polarized with respect to L if the Kähler form ω_{g} associated to g represents the Chern class $c_{1}(L)$ of L. Recall that if in a complex coordinate system $\left(z_{1}, \ldots, z_{n}\right)$ of M the metric g is expressed by a tensor $\left(g_{j \bar{k}}\right)_{1 \leqslant j, \bar{k} \leqslant n}$ then ω_{g} is the d-closed $(1,1)$-form defined by $\frac{i}{2 \pi} \sum_{j, \bar{k}=0}^{n} g_{j \bar{k}} d z_{j} \wedge d \bar{z}_{k}$.

The line bundle L is called a polarization of (M, g). In terms of cohomology classes, a Kähler manifold (M, g) admits a polarization if and only if ω_{g} is integral, i.e. its cohomology class $\left[\omega_{g}\right]_{d R}$ in the de Rham group, is in the image of the natural map $H^{2}(M, Z) \hookrightarrow H^{2}(M, \mathbb{C})$. The integrality of ω_{g} implies, by a wellknown theorem of Kodaira, that M is a projective algebraic manifold. This mean that M admits a holomorphic embedding into some complex projective space $\mathrm{C} P^{N}$. In this case a polarization L of (M, g) is given by the restriction to M of the hyperplane line bundle on $\mathrm{C} P^{N}$. Given a polarized Kähler metric g with respect to L, one can find a hermitian metric h on L with its Ricci curvature form

[^0]$\operatorname{Ric}(h)=\omega_{g}$ (see Lemma 1.1 in [12]). Here $\operatorname{Ric}(h)$ is the 2 -form on M defined by the equation:
\[

$$
\begin{equation*}
\operatorname{Ric}(h)=-\frac{i}{2 \pi} \partial \bar{\partial} \log h(\sigma(x), \sigma(x)), \tag{1}
\end{equation*}
$$

\]

for a trivializing holomorphic section $\sigma: U \subset M \rightarrow L \backslash\{0\}$ of L.
For each positive integer k, we denote by $L^{\otimes k}$ the k-th tensor power of L. It is a polarization of the Kähler metric $k g$ and the hermitian metric h induces a natural hermitian metric h^{k} on $L^{\otimes k}$ such that $\operatorname{Ric}\left(h^{k}\right)=k g$.

Denote by $H^{0}\left(M, L^{\otimes k}\right)$ the space of global holomorphic sections of $L^{\otimes k}$. It is in a natural way a complex Hilbert space with respect to the norm

$$
\|s\|_{h^{k}}=\langle s, s\rangle_{h^{k}}=\int_{M} h^{k}(s(x), s(x)) \frac{\omega_{g}^{n}(x)}{n!}<\infty,
$$

for $s \in H^{0}\left(M, L^{\otimes k}\right)$.
For sufficiently large k we can define a holomorphic embedding of M into a complex projective space as follows. Let $\left(s_{0}, \ldots, s_{N_{k}}\right)$, be a orthonormal basis for $\left(H^{0}\left(M, L^{\otimes k}\right),\langle\cdot, \cdot\rangle_{h^{k}}\right)$ and let $\sigma: U \rightarrow L$ be a trivialising holomorphic section on the open set $U \subset M$. Define the map

$$
\begin{equation*}
\varphi_{\sigma}: U \rightarrow \mathbb{C}^{N_{k}+1} \backslash\{0\}: x \mapsto\left(\frac{s_{0}(x)}{\sigma(x)}, \ldots, \frac{s_{N_{k}}(x)}{\sigma(x)}\right) . \tag{2}
\end{equation*}
$$

If $\tau: V \rightarrow L$ is another holomorphic trivialisation then there exists a non-vanishing holomorphic function f on $U \cap V$ such that $\sigma(x)=f(x) \tau(x)$. Therefore one can define a holomorphic map

$$
\begin{equation*}
\varphi_{k}: M \rightarrow \mathrm{C} P^{N_{k}} \tag{3}
\end{equation*}
$$

whose local expression in the open set U is given by (2). It follows by the above mentioned Theorem of Kodaira that, for k sufficiently large, the map φ_{k} is an embedding into $\mathrm{C} P^{N_{k}}$ (see, e.g. [6] for a proof).

Let $g_{F S}^{N_{k}}$ be the Fubini-Study metric on $\mathrm{C} P^{N_{k}}$, namely the metric whose associated Kähler form is given by

$$
\begin{equation*}
\omega_{F S}^{N_{k}}=\frac{i}{2 \pi} \partial \bar{\partial} \log \sum_{j=0}^{N_{k}}\left|z_{j}\right|^{2} \tag{4}
\end{equation*}
$$

for a homogeneous coordinate system $\left[z_{0}, \ldots, z_{N_{k}}\right]$ in $\mathrm{C} P^{N_{k}}$. This restricts to a Kähler metric $g_{k}=\varphi_{k}^{*} g_{F S}^{N_{k}}$ on M which is cohomologous to $k \omega_{g}$ and is polarized with respect to $L^{\otimes k}$. In [12] Tian christined the set of normalized metrics $\frac{1}{k} g_{k}$ as the Bergmann metrics on M with respect to L and he proves that the sequence $\frac{1}{k} g_{k}$ converges to the metric g in the C^{2}-topology (see Theorem A in [12]). This theorem was further generalizes by Ruan [10] who proved that the sequence $\frac{1}{k} g_{k}$ C^{∞}-converges to the metric g (see also [13])

The aim of this paper is twofold. On one hand, in Section 2 we study, the polarized metrics g on M satisfying the equation

$$
\begin{equation*}
g_{k}=k g \tag{5}
\end{equation*}
$$

(for some natural number k) which we call self-Bergmann metrics of degree k. If our Kähler manifold (M, g) is homogeneous and simply connected then the metric g is self-Bergmann of degree k for all sufficiently large k (for a proof see Theorem 2.1 below and cf. also [2]). In Theorem 2.4 and 2.6 we prove a sort of converse of Theorem 2.1 in the case of self-Bergmann metrics of degree 2 on $\mathrm{C} P^{1}$ induced by the Veronese map and in the case of self-Bergmann metrics of degree 1 on $\mathrm{C} P^{1}$ $\times \mathrm{C} P^{1}$ induced by the Segre map.

On the other hand, in Section 3, we consider the polarizations on non-compact Kähler manifolds (M, g). In particular we deal with the case of the punctured plane $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ equipped with the complete Kähler metric g^{*} whose associated Kähler form is given by

$$
\omega^{*}=\frac{i}{2} \frac{d z \wedge d \bar{z}}{|z|^{2}}
$$

and the polarization L given by the trivial bundle $L=C^{*} \times \mathrm{C}$.
Our main results are contained in Theorem 3.5 where we describe all the hermitian metrics h^{k} on $L^{\otimes k}=L$ such that $\operatorname{Ric}(h)=\omega^{*}$ (in other words all the geometric quantizations on ($\mathrm{C}^{*}, \omega^{*}$) (see Remark 2)). Moreover in Theorem 3.6 we calculate the set of Bergmann metrics $\frac{g_{k}}{k}$ and we prove that the sequence $\frac{g_{k}}{k}$ C^{∞}-converges to the metric g^{*} on every compact set $K \subset M$.

2-Self-Bergmann metrics

As we pointed our in the introduction a large class of self-Bergmann metrics is given by the following:

Theorem 2.1 (cfr. [2]). Let L be a polarization of a homogeneous and sim-ply-connected compact Kähler manifold (M, g). Then g is self-Bergmann of degree k for every sufficiently large positive integer k.

Proof. Recall that a Kähler manifold (M, g) is homogeneous if the group $\operatorname{Aut}(M) \cap \operatorname{Isom}(M, g)$ acts transitively on M, where $\operatorname{Aut}(M)$ denotes the group of holomorphic diffeomorphisms of M and $\operatorname{Isom}(M, g)$ the isometry group of M. Let k be large enough in such a way that the $\operatorname{map} \varphi_{k}: M \rightarrow \mathbb{C} P^{N_{k}}$ given by (3) is an embedding. An easy calculation shows that

$$
\begin{equation*}
\omega_{g_{k}}=\varphi_{\hat{k}}^{*}\left(\omega_{F S}^{N_{k}}\right)=k \omega_{g}+\frac{i}{2 \pi} \partial \bar{\partial} \log \sum_{j=0}^{N_{k}} h^{k}\left(s_{j}, s_{j}\right) \tag{6}
\end{equation*}
$$

where $\left\{s_{0}, \ldots, s_{N_{k}}\right\}$ is the orthonormal basis for $\left(H^{0}\left(M, L^{\otimes k},\langle\cdot, \cdot\rangle_{h^{k}}\right)\right.$, and where $\omega_{g_{k}}$, in accordance with out notation, is the Kähler form associated to g_{k}. It turns out the if the manifold M is symply-connected then the holomorphic line bundle $f^{*} L$ is isomorphic to L for any $f \in \operatorname{Aut}(M) \cap \operatorname{Isom}(M, g)$. Moreover the smooth function $\sum_{j=0}^{N_{k}} h^{k}\left(s_{j}, s_{j}\right)$ is invariant under the $\operatorname{group} \operatorname{Aut}(M) \cap \operatorname{Isom}(M, g)$. Therefore, if (M, g) is assumed to be homogeneous then this function is constant which, by formula (6), implies that the metric g is self-Bergmann of degree k.

Remark 2.2. Note that the condition of simply-connectedness in Theorem 2.1 can not be relaxed. In fact the n-dimensional complex torus M can be naturally endowed with a polarized flat metric g invariant by translation, making (M, g) into a homogeneous Kähler manifold. On the other hand the flat metric can not be the pull-back of the Fubini-Study metric via a holomorphic map (see Lemma 2.2 in [11] for a proof) and hence in particular condition (5) can not hold for any k (cf. also [8]).

Remark 2.3. In the terminology of quantization of a Kähler manifold (M, g) a pair (L, h) satisfying Ric $(h)=\omega_{g}$ is called a geometric quantization of (M, g). In the work of Cahen-Gutt-Rawnsley the function $\sum_{j=0}^{N_{k}} h^{k}\left(s_{j}, s_{j}\right)$ is the central object of the theory (see [2], [3], [4], [5]). Infact it is one of the main ingredient needed to apply a procedure called quantization by deformation introduced by Berezin in his foundational paper [1]. Observe also that our definition of selfBergmann metrics above is equivalent to the regularity of a quantization as defined in [2] and [3].

In view of Theorem 2.1 the following question naturally arises: Let (M, g) be a homogenous and simply connected Kähler manifold (and hence g is self-Bergmann of degree k for k large) and let \tilde{g} be a Kähler metric on M which is selfBergmann of degree k. Can we conclude that also \tilde{g} is homogeneous, namely there exists $f \in \operatorname{Aut}(M)$ such that $\tilde{g}=f^{*} g$?

When $M=\mathrm{C} P^{N}, g=g_{\omega_{F S}^{N}}$ and L is the hyperplane bundle, then the space $H^{0}(M, L)$ consisting of global holomorphic sections of L can be identified with the space of degree 1 homogeneous polynomials in the variables $\left\{z_{0}, \ldots, z_{n}\right\}$ (see, e.g. [6]). Let \tilde{g} be a self-Bergmann metric of degree $k=1$ then $N_{k}=\operatorname{dim} H^{0}(M, L)-1=N$ and the embedding φ_{1} given by (3) goes from $\mathrm{C} P^{N}$ to $\mathrm{C} P^{N}$. By the very definition of self-Bergmann metrics $\varphi_{1}^{*} g=\tilde{g}$ and since φ_{1} belongs to the group $\operatorname{Aut}\left(\mathrm{C} P^{N}\right)=P G L(N+1, \mathrm{C})$ we deduce that the previous question has a positive answer for $M=\mathrm{C} P^{N}, g=g_{\omega_{F S}^{N}}$ and $k=1$.

The case of self-Bergmann metrics of any degree $k \geqslant 2$ on $\mathrm{C} P^{N}$ is much more complicated to handle even when $N=1$. Nevertheless we prove the following:

Theorem 2.4. Let \tilde{g} be a self-Bergmann metric of degree 2 on $\mathrm{C} P^{1}$ induced by the Veronese map:

$$
\begin{equation*}
\varphi: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{2}:\left[z_{0}, z_{1}\right] \mapsto\left[a z_{0}^{2}, b z_{0} z_{1}, c z_{1}^{2}\right], \quad a, b, c \in \mathbb{C}^{*}, \tag{7}
\end{equation*}
$$

then there exists $f \in P G L(2, C)$ such that $f^{*}(2 g)=\tilde{g}$, where $g=g_{\omega_{F S}}$.

Proof. Under the action of $f \in P G L(2, \mathrm{C})$, we can suppose that the map (7) is given by

$$
\varphi\left(\left[z_{0}, z_{1}\right]\right)=\left[z_{0}^{2}, \alpha z_{0} z_{1}, z_{1}^{2}\right],
$$

for $\alpha \in \mathbb{C}^{*}\left(\right.$ one simply defines $\left.f\left(\left[z_{0}, z_{1}\right]\right)=\left[\frac{1}{\sqrt{a}} z_{0}, \frac{1}{\sqrt{c}} z_{1}\right]\right)$.
Observe that if $|\alpha|^{2}=A=2$ then $\varphi^{*} g_{F S}^{2}=\varphi_{2}^{*} g_{F S}^{2}=2 g$ which is self-Bergmann of degree k for large k by Theorem 2.1. Hence it is enough to show that if \tilde{g} is self-Bergmann of degree 2 then $A=2$. Let \tilde{h} denote the hermitian structure on $H^{0}\left(M, L^{\otimes 2}\right)$ such that $\operatorname{Ric}(\tilde{h})=\omega_{\tilde{g}}$. Since $H^{0}\left(M, L^{\otimes 2}\right)$ can be identified with the space homogeneous polynomials of degree 2 in z_{0} and z_{1}, in order to prove our Theorem we need to show that if $\left\{z_{0}^{2}, \alpha z_{0} z_{1}, z_{1}^{2}\right\}$ is a othonormal basis for $\left(H^{0}\left(M, L^{\otimes 2}\right),\langle\cdot, \cdot\rangle_{\tilde{h}}\right)$ then $A=2$.

In the chart $U_{0}=\left\{z_{0} \neq 0\right\}$, equipped with coordinate $z=\frac{z_{1}}{z_{0}}$, the Kähler form
$\omega_{\tilde{g}}$ associated to $\tilde{g}=\varphi^{*} g_{F S}^{2}$ is given by:
$\omega_{\tilde{g}}=\varphi^{*}\left(\omega_{F S}^{2}\right)=\frac{i}{2 \pi} \partial \bar{\partial} \log \left(1+A|z|^{2}+|z|^{4}\right)=\frac{i}{2 \pi} \frac{A+4|z|^{2}+A|z|^{4}}{\left(1+A|z|^{2}+|z|^{4}\right)^{2}} d z \wedge d \bar{z}$.
Let $P\left(z_{0}, z_{1}\right)$ and $Q\left(z_{0}, z_{1}\right)$ be homogeneous polynomials of degree 2 in z_{0} and z_{1}. We denote by small letter p and q their expression in U_{0}, namely $p(z)=P\left(1, \frac{z_{1}}{z_{0}}\right)$ and $q(z)=Q\left(1, \frac{z_{1}}{z_{0}}\right)$. With the above notation the hermitian structure \tilde{h} on U_{0} is given by:

$$
\tilde{h}(P, Q)=\frac{p(z) q(\bar{z})}{1+A|z|^{2}+|z|^{4}} .
$$

Hence,

$$
\langle P, Q\rangle_{\tilde{h}}=\int_{\mathrm{C} P^{1}} \tilde{h}(P, Q) \omega_{\tilde{g}}=\int_{\mathrm{C}} \frac{\left(A+4|z|^{2}+A|z|^{4}\right) p(z) q(\bar{z})}{\left(1+A|z|^{2}+|z|^{4}\right)^{3}} \frac{i}{2 \pi} d z \wedge d \bar{z} .
$$

This can be written in polar coordinates $z=r e^{i \theta}$ as

$$
\langle P, Q\rangle_{\check{n}}=\frac{1}{\pi} \int_{r=0}^{+\infty} \frac{\left(A+4 r^{2}+A r^{4}\right) p\left(r e^{i \theta}\right) q\left(r e^{-i \theta}\right)}{\left(1+A r^{2}+r^{4}\right)^{3}} r d r d \theta .
$$

By the change of variable $r^{2}=\varrho$, one obtains:

$$
\begin{equation*}
\langle P, Q\rangle_{\overparen{h}}=\frac{1}{2 \pi} \int_{\varrho=0}^{+\infty} \frac{\left(A+4 \varrho+A \varrho^{2}\right) p\left(\sqrt{\varrho} e^{i \theta}\right) q\left(\sqrt{\varrho} e^{-i \theta}\right)}{\left(1+A \varrho+\varrho^{2}\right)^{3}} d \varrho . \tag{8}
\end{equation*}
$$

It follows immediately by (8) that $\left\{z_{0}^{2}, z_{0} z_{1}, z_{2}^{2}\right\}$ (which on U_{0} is given by $\left\{1, z, z^{2}\right\}$) is an orthogonal basis of ($\left.H^{0}\left(M, L^{\otimes 2}\right),\langle\cdot, \cdot\rangle_{\tilde{h}}\right)$. Furthermore,

$$
\begin{array}{r}
\left\|z_{0}\right\|_{\hbar}^{2}=\int_{\varrho=0}^{+\infty} \frac{\left(A+4 \varrho+A \varrho^{2}\right)}{\left(1+A \varrho+\varrho^{2}\right)^{3}} d \varrho, \\
\left\|\alpha z_{0} z_{1}\right\|_{\hbar}^{2}=A \int_{\varrho=0}^{+\infty}\left(A \varrho+4 \varrho^{2}+A \varrho^{3}\right)\left(1+A \varrho+\varrho^{2}\right)^{3} d \varrho, \\
\left\|z_{2}^{2}\right\|_{h}^{2}=\int_{\varrho=0}^{+\infty} \frac{\left(A \varrho^{2}+4 \varrho^{3}+A \varrho^{4}\right)}{\left(1+A \varrho+\varrho^{2}\right)^{3}} d \varrho .
\end{array}
$$

A direct calculation, using Lemma 2.5 below gives:

$$
\begin{equation*}
\left\|z_{0}\right\|_{\tilde{h}}^{2}=\left(\frac{A^{3}}{4}-A\right) I_{3}+\frac{A}{4} I_{2}+1-\frac{A^{2}}{8} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\alpha z_{0} z_{1}\right\|_{\tilde{\check{ }}}^{2}=\left(\frac{A^{3}}{2}-\frac{A^{5}}{8}\right) I_{3}+\left(A-\frac{3 A^{3}}{8}\right) I_{2}+\frac{A^{4}}{16} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left\|z_{2}^{2}\right\|_{\tilde{h}}^{2}=\left(\frac{A^{5}}{16}-\frac{A^{3}}{4}\right) I_{3}+\left(\frac{3 A^{3}}{8}-\frac{5 A}{4}\right) I_{2}+\frac{3 A}{8} I_{1}+1-\frac{3 A^{2}}{16}-\frac{A^{4}}{32} \tag{11}
\end{equation*}
$$

Hence it remains to show that if $A \neq 2$, then either $\left\|z_{0}\right\|_{\tilde{\eta}}^{2} \neq A\left\|z_{0} z_{1}\right\|_{\tilde{\hbar}}^{2}$, or $\left\|z_{0}\right\|_{\tilde{h}}^{2}$ $\neq\left\|z_{2}^{2}\right\|_{\tilde{h}}^{2}$. Indeed we prove that $\left\|z_{0}\right\|_{\tilde{h}}^{2} \neq A\|z\|_{\tilde{h}}^{2}$. Suppose, by a contradiction that $\left\|z_{0}\right\|_{\tilde{\hbar}}^{2}=A\left\|z_{0} z_{1}\right\|_{\tilde{\hbar}}^{2}$. By subtracting (9) from (10) one obtains:
(12) $-32+6 A^{2}+3 A^{4}-12 A I_{1}+\left(72 A-24 A^{3}\right) I_{2}+6 A^{3}\left(A^{2}-4\right) I_{3}=0$.

We distinguish two cases: $0<A<2$ and $A>2$.
For $0<A<2$, we easily obtain:

$$
\begin{aligned}
& I_{1}=\frac{\pi}{\sqrt{4-A^{2}}}-\frac{2}{\sqrt{4-A^{2}}} \arctan \frac{A}{\sqrt{4-A^{2}}} \\
& I_{2}=\frac{2 \pi}{\left(\sqrt{4-A^{2}}\right)^{3}}-\frac{A}{4-A^{2}}-\frac{4}{\left(\sqrt{4-A^{2}}\right)^{3}} \arctan \frac{A}{\sqrt{4-A^{2}}}, \\
& I_{3}=\frac{6 \pi}{\left(\sqrt{4-A^{2}}\right)^{5}}+\frac{A^{3}-10 A}{2\left(4-A^{2}\right)^{2}}-\frac{12}{\left(\sqrt{4-A^{2}}\right)^{5}} \arctan \frac{A}{\sqrt{4-A^{2}}}
\end{aligned}
$$

By (12) one gets:

$$
-\left(8+A^{2}\right) \sqrt{4-A^{2}}+6 A \pi-12 A \arctan \frac{A}{\sqrt{4-A^{2}}}=0
$$

which can be easily seen to be impossible for $0<A<2$. Indeed the function $F(A)$ $=-\left(8+A^{2}\right) \sqrt{4-A^{2}}+6 A \pi-12 A \arctan \frac{A}{\sqrt{4-A^{2}}} \quad$ satisfies $\quad F(0)=-16$, $\lim _{A \rightarrow 2^{-}} F(A)=0, F^{\prime}(0)=6 \pi, \lim _{A \rightarrow 2^{-}} F^{\prime}(A)=0$ and $F^{\prime \prime}(A)=-6 \sqrt{4-A^{2}}$ which implies that $F(A)<0$ on the interval $(0,2)$.

For $A>2$, we get:

$$
\begin{aligned}
& I_{1}=-\frac{1}{\sqrt{A^{2}-4}} \log \frac{A-\sqrt{A^{2}-4}}{A+\sqrt{A^{2}-4}} \\
& I_{2}=\frac{A}{A^{2}-4}+\frac{2}{\left(\sqrt{A^{2}-4}\right)^{3}} \log \frac{A-\sqrt{A^{2}-4}}{A+\sqrt{A^{2}-4}} \\
& I_{3}=\frac{A^{3}-10 A}{2\left(A^{2}-4\right)^{2}}-\frac{6}{\left(\sqrt{A^{2}-4}\right)^{5}} \log \frac{A-\sqrt{A^{2}-4}}{A+\sqrt{A^{2}-4}}
\end{aligned}
$$

By (12) one gets:

$$
\left(8+A^{2}\right) \sqrt{A^{2}-4}+6 A \log \frac{A-\sqrt{A^{2}-4}}{A+\sqrt{A^{2}-4}}=0
$$

which can not hold for $A>2$.
Indeed the function $G(A)=\left(8+A^{2}\right) \sqrt{A^{2}-4}+6 A \log \frac{A-\sqrt{A^{2}-4}}{A+\sqrt{A^{2}-4}}$ satisfies $\lim _{A \rightarrow 2^{+}} F(A)=\lim _{A \rightarrow 2^{+}} F^{\prime}(A)=0, \lim _{A \rightarrow+\infty} F(A)=\lim _{A \rightarrow+\infty} F^{\prime}(A)=+\infty$, and $F^{\prime \prime}(A)$ $=6 \sqrt{A^{2}-4}$ which implies that $F(A)>0$ on $(2,+\infty)$.

Lemma 2.5. The following equalities hold:

$$
\begin{aligned}
& \int_{\varrho=0}^{+\infty} \frac{\varrho}{\left(1+A \varrho+\varrho^{2}\right)^{3}} d \varrho=\frac{1}{4}-\frac{A}{2} I_{3} ; \\
& \int_{\varrho=0}^{+\infty} \frac{\varrho}{\left(1+A \varrho+\varrho^{2}\right)^{3}} d \varrho=\frac{1}{4} I_{2}+\frac{A^{2}}{4} I_{3}-\frac{A}{8} ; \\
& \int_{\varrho=0}^{+\infty} \frac{\varrho}{\left(1+A \varrho+\varrho^{2}\right)^{3}} d \varrho=\frac{1}{4}+\frac{A^{2}}{16}-\frac{3 A}{8} I_{2}-\frac{A^{3}}{8} I_{3} ; \\
& \int_{\varrho=0}^{+\infty} \frac{\varrho}{\left(1+A \varrho+\varrho^{2}\right)^{3}} d \varrho=\frac{3}{8} I_{1}+\frac{3 A^{2}}{8} I_{2}+\frac{A^{4}}{16} I_{3}-\frac{5 A}{16}-\frac{A^{3}}{32},
\end{aligned}
$$

where

$$
I_{n}=\int_{\varrho=0}^{+\infty} \frac{1}{\left(1+A \varrho+\varrho^{2}\right)^{n}} d \varrho, \quad n=1,2,3
$$

Proof. Direct calculation integrating by parts.
Let consider now $M=\mathrm{C} P^{1} \times \mathrm{C} P^{1}$ endowed with the metric $g=g_{F S}^{1}+g_{F S}^{1}$ which we know to be self-Bergmann of degree k for all k (compare Theorem 2.1). In this case the map φ_{1} (given by 3)) (which satisfies $\varphi_{1}^{*} g_{F S}^{3}=g$) is given by:

$$
\varphi_{1}: \mathrm{C} P^{1} \times \mathrm{C} P^{1} \rightarrow \mathrm{C} P^{3}:\left(\left[z_{0}, z_{1}\right],\left[w_{0}, w_{1}\right]\right) \mapsto\left[z_{0} w_{0}, z_{0} w_{1}, z_{1} w_{0}, z_{1} w_{1}\right]
$$

The polarization L on M is the restriction to M of the hyperplane bundle on $\mathrm{C} P^{3}$ via the $\operatorname{map} \varphi_{1}$ and a basis of $H^{0}(M, L)$ is $\left\{z_{0} w_{0}, z_{0} w_{1}, z_{1} w_{0}, z_{1} w_{1}\right\}$.

Theorem 2.6. Let \tilde{g} be a self-Bergmann metric of degree $k=1$ on $M=\mathrm{C} P^{1}$ $\times \mathrm{C} P^{1}$ induced by the Segree embedding $\varphi: M \rightarrow \mathrm{C} P^{3}$ given by:
(13) $\varphi\left(\left[z_{0}, z_{1}\right],\left[w_{0}, w_{1}\right]\right) \mapsto\left[a z_{0} w_{0}, b z_{0} w_{1}, c z_{1} w_{0}, d z_{1} w_{1}\right], a, b, c, d \in \mathbb{C}^{*}$.

Then there exists $f \in \operatorname{Aut}(M)=P G L(2, \mathrm{C}) \times P G L(2, \mathrm{C})$ such that $f^{*} g=\tilde{g}$.
Proof. The proof follows the same pattern of that of Theorem 2.4. First of all under the action of $f \in \operatorname{Aut}(M)$, we can suppose that the map (13) is given by

$$
\varphi\left(\left[z_{0}, z_{1}\right],\left[w_{0}, w_{1}\right]\right)=\left[\alpha z_{0} w_{0}, z_{0} w_{1}, z_{1} w_{0}, z_{1} w_{1}\right]
$$

for $\alpha \in \mathbb{C}^{*}$. Indeed one takes $f\left(\left[z_{0}, z_{1}\right],\left[w_{0}, w_{1}\right]\right)=\left[\frac{1}{b} z_{0}, \frac{1}{d} z_{1}\right],\left[\frac{d}{c} w_{0}, w_{1}\right]$. Hence it is enough to show that if $\tilde{g}=\varphi^{*} g_{F S}^{3}$ is a self-Bergmann metric of degree 1 then $A=|\alpha|^{2}=1$. Let \tilde{h} be the hermitian structure on $H^{0}(M, L)$ such that $\operatorname{Ric}(\tilde{h})=\omega_{\tilde{g}}$. In order to prove our Theorem it suffices to show that if $\left\{\alpha z_{0} w_{0}, z_{0} w_{1}, z_{1} w_{0}, z_{1} w_{1}\right\}$ is a othonormal basis for $\left(H^{0}(M, L),\langle\cdot, \cdot\rangle_{\tilde{h}}\right)$ then $A=1$. Let $U \cong \mathbb{C}^{2}$ be the chart on M defined by $\left(z_{0}, w_{0}\right) \neq(0,0)$ equipped with coordinates $(z, w)=\left(\frac{z_{1}}{z_{0}}, \frac{w_{1}}{w_{0}}\right)$. We can easily calculate the Kähler form $\omega_{\tilde{g}}$ $=\varphi^{*}\left(\omega_{F S}^{3}\right)$ on U and obtain:

$$
\omega_{\tilde{g}}^{2}=\omega_{g} \wedge \omega_{g}=\frac{A\left(1+|z|^{2}+|w|^{2}\right)+|z|^{2}|w|^{2}}{\left(A+|z|^{2}+|w|^{2}+|z|^{2}|w|^{2}\right)^{3}} d v
$$

where $d v=\left(\frac{i}{2 \pi}\right)^{2} d z \wedge d \bar{z} \wedge d w \wedge d \bar{w}$.

Let $P \in H^{0}(M, L)=\operatorname{span}\left\{z_{0} w_{0}, z_{0} w_{1}, z_{1} w_{0}, z_{1} w_{1}\right\}$. We denote by small letter p its expression in the chart U, namely $p(z, w)=P\left(1, \frac{w_{1}}{w_{0}}, \frac{z_{1}}{z_{0}}, \frac{z_{1}}{z_{0}} \frac{w_{1}}{w_{0}}\right)$. With the above notation the hermitian structure \tilde{h} on U is given by:

$$
\tilde{h}(P, Q)=\frac{p(z, w) q(\bar{z}, \bar{w})}{A+|z|^{2}+|w|^{2}+|z|^{2}|w|^{2}}
$$

Hence,

$$
\langle P, Q\rangle_{\tilde{h}}=\int_{M} \tilde{h}(P, Q) \frac{\omega_{\tilde{g}}^{2}}{2!}=\frac{1}{2} \int_{\mathrm{C}^{2}} \frac{\left(A\left(1+|z|^{2}+|w|^{2}\right)+|z|^{2}|w|^{2}\right) p \bar{q}}{\left(A+|z|^{2}+|w|^{2}+|z|^{2}|w|^{2}\right)^{4}} d v
$$

for $P, Q \in H^{0}(M, L)$.
It follows that $\left\{\alpha z_{0} w_{0}, z_{0} w_{1}, z_{1} w_{0}, z_{1} w_{1}\right\}$ (which on U is given by $\{\alpha, w, z, z w\})$ is a othogonal basis of $\left(H^{0}(M, L),\langle\cdot, \cdot\rangle_{\tilde{h}}\right)$. By passing in polar coordinates, a straightforward calculation gives:

$$
\begin{equation*}
\left\|\alpha z_{0} w_{0}\right\|_{\tilde{\tilde{h}}}^{2}=\left\|z_{1} w_{1}\right\|_{\tilde{h}}^{2}=\frac{1-3 A+2 A^{2}-A \log A}{48(A-1)^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|z_{0} w_{1}\right\|_{\tilde{h}}^{2}=\left\|z_{1} w_{0}\right\|_{\tilde{h}}^{2}=\frac{2-3 A+A^{2}+A \log A}{48(A-1)^{2}} \tag{15}
\end{equation*}
$$

It is now easy to see that (14) and (15) are equal if and only if $A=1$ which concludes the proof of our theorem.

3- Quantizations and Bergmann metrics of (C*, g^{*})

In this section we consider the case of a complete Kähler manifold (M, g). Let L be a holomorphic line bundle on M endowed with an hermitian structure h. Following Tian (Sect. 4 in [12]) we denote by $H_{(2)}^{0}\left(M, L^{\otimes k}\right)$ the Hilbert space consisting of all L^{2} integrable global holomorphic sections of $L^{\otimes k}$, namely

$$
s \in H_{(2)}^{0}\left(M, L^{\otimes k}\right) \Leftrightarrow\langle s, s\rangle_{h^{k}}=\int_{M} h^{k}(s(x), s(x)) \frac{\omega_{g}^{n}(x)}{n!}<\infty
$$

Let $\left\{s_{j}\right\}_{j \geqslant 0}$ be an orthonormal basis of $\left(H_{(2)}^{0}\left(M, L^{\otimes k}\right),\langle\cdot, \cdot\rangle_{h^{k}}\right)$. One if his main re-
sult, which generalizes the above mentioned Theorem A, is summarized in the following:

Theorem 3.1. (Tian) Let M be a complete Kähler manifold with a polarized Kähler metric g and let L be a holomorphic line bundle with hermitian metric h such that its Ricci curvature form satisfies: Ric $(h)=\omega_{g}$. Then for any compact set $K \subset M$ and k sufficiently large

$$
\begin{equation*}
\omega_{k}=\frac{i}{2 \pi} \partial \bar{\partial} \log \sum_{j=0}^{+\infty}\left|s_{j}\right|^{2} \tag{16}
\end{equation*}
$$

defines a Kähler form on K. Moreover if g_{k} denotes the Kähler metric on K associated to ω_{k} (i.e. $\omega_{g_{k}}=\omega_{k}$) then the sequence of metrics $\frac{g_{k}}{k} C^{2}$-converges to the Kähler metric g on K.

As in the compact case, a geometric quantization of a complete Kähler manifold (M, g) is given by a pair (L, h), where L is a holomorphic line bundle on M equipped with a hermitian metric h such that $\operatorname{Ric}(h)=\omega_{g}$ (see Remark 2.3)). The metrics $\frac{g_{k}}{k}$ (defined only on compact sets $K \subset M$) are called the Bergmann metrics on (M, g).

Remark 3.2. In analogy with the compact case, we say that a Kähler metric on a complete manifold is self-Bergmann of degree k if $g_{k}=k g$. Observe that this implies that g_{k} is globally defined on M and not only in a compact set $K \subset M$. A slight modification of Theorem 2.1 shows that in a homogeneous and simply-connected Kähler manifold (M, g) then the metric g is self-Bergmann of degree k for all k. Therefore, for example, the flat metric on the complex Euclidean space \mathbb{C}^{n} is self-Bergmann of degree k.

In order to describe all the geometric quantizations of a Kähler manifold (M, g) one gives the following (cf. e.g. [9]):

Definition 3.3. Two holomorphic hermitian line bundles $\left(L_{1}, h_{1}\right)$ and $\left(L_{2}, h_{2}\right)$ on a Kähler manifold (M, g) are called equivalent if there exists an isomorphism of holomorphic line bundles $\psi: L_{1} \rightarrow L_{2}$ such that $\psi^{*} h_{2}=h_{1}$.

Let us denote by $[L, h]$ the equivalence class of (L, h) and by $\mathscr{L}(M, g)$ the set of equivalence classes. We refer the reader to [2] for the proof of the following:

Theorem 3.4. The group $\operatorname{Hom}\left(\pi_{1}(M), S^{1}\right)$ acts transitively on the set of equivalence classes $\mathfrak{L}(M, g)$.

In Theorem 3.5 below we describe this action in the case of ($\left.\mathrm{C}^{*}, g^{*}\right)$. We first observe that any holomorphic line bundle L on C^{*} is holomorphically trivial. Let h be the hermitian metric on L given by:

$$
h(f(z), f(z))=e^{\frac{-\pi}{2} \log ^{2}|z|^{2}}|f(z)|^{2}
$$

for a holomorphic function f on \mathbb{C}^{*}. It is easily seen that $\operatorname{Ric}\left(h_{0}\right)=\omega^{*}$ and hence L is a quantization of $\left(\mathrm{C}^{*}, g^{*}\right)$. We can prove now the first result of this section:

Theorem 3.5. The group

$$
\operatorname{Hom}\left(\pi_{1}\left(\mathbb{C}^{*}\right), S^{1}\right)=\operatorname{Hom}\left(\mathbb{Z}, S^{1}\right) \cong S^{1} \cong \frac{\mathbb{R}}{\mathbb{Z}}
$$

acts on the set of equivalence classes $\mathfrak{L}\left(\mathbb{C}^{*}, g^{*}\right)$ by defining:

$$
\begin{equation*}
[\lambda] \cdot(L, h)=\left(L, h_{\lambda}\right), \tag{17}
\end{equation*}
$$

where $[\lambda]$ denotes the equivalence class of λ in $S^{1} \cong \frac{\mathbb{R}}{Z}$ and h_{λ} is the hermitian metric on L defined by:

$$
\begin{equation*}
h_{\lambda}(f(z), f(z))=|z|^{2 \lambda} h(f(z), f(z)) \tag{18}
\end{equation*}
$$

for a holomorphic function f on \mathbb{C}^{*}.

Proof. Let λ and μ be real numbers such that $\lambda-\mu \in \mathbb{Z}$. It is easy to see that the map

$$
\psi:\left(L, h_{\mu}\right) \rightarrow\left(L, h_{\lambda}\right):(z, t) \mapsto\left(z, z^{v-\lambda} t\right)
$$

is a holomorphic automorphism of the trivial bundle and $\psi^{*}\left(h_{\lambda}\right)=h_{\nu}$, namely $\left[L_{0}, h_{\mu}\right]=\left[L_{0}, h_{\lambda}\right]$. Furthermore, if $\lambda-\mu \notin \mathbb{Z}$ then $\left[L, h_{\lambda}\right] \neq\left[L, h_{\mu}\right]$. Indeed, sup-
pose that $\psi: L \rightarrow L$ is a holomorphic automorphism of the trivial bundle, such that $\psi^{*} h_{\lambda}=h_{\mu}$. It follows that $\psi(z, t)=(z, f(z) t)$, where f is a holomorphic function on \mathbb{C}^{*}, satisfying $|f(z)|^{2}=|z|^{2(\mu-\lambda)}$. This is impossible unless $\lambda-\mu$ is an integer.

Given a natural number k it follows immediately that the trivial bundle L endowed with the hermitian structure

$$
h^{k}(f(z), f(z))=e^{\frac{-k \pi}{2} \log ^{2}|z|^{2}}|f(z)|^{2}
$$

defines a quantization of ($\mathrm{C}^{*}, \mathrm{~kg}$ *). By Theorem 3.5 we know that every class in

$$
\begin{equation*}
h_{\lambda}^{k}(f(z), f(z)):=e^{\frac{-k \pi}{2} \log ^{2}|z|^{2}}|z|^{2 \lambda}|f(z)|^{2}, \tag{19}
\end{equation*}
$$

and two such pairs $\left(L, h_{\lambda}^{k}\right)$ and $\left(L, h_{\mu}^{k}\right)$ are equivalent iff $[\lambda]=[\mu]$. In what follows, to simplify the notation, we consider the class corresponding to $\lambda=0$, namely the trivial bundle L on C^{*} endowed with the hermitian metric

$$
h^{k}(f(z), f(z)):=e^{\frac{-k \pi}{2} \log ^{2}|z|^{2}}|f(z)|^{2} .
$$

It follows that the space $\left(H_{(2)}^{0}\left(\mathbb{C}^{*}, L\right),\langle\cdot, \cdot\rangle_{h^{k}}\right)$, which we will denote by \mathscr{H}_{k}, equals the space of holomorphic functions f in \mathbb{C}^{*} such that

$$
\|f\|_{h^{k}}^{2}=\langle f, f\rangle_{h^{k}}=\int_{\mathrm{C}^{*}} e^{\frac{-k \pi}{2} \log ^{2}|z|^{2}}|f(z)|^{2} k \frac{i}{2} \frac{d z \wedge d \bar{z}}{|z|^{2}}<+\infty .
$$

One can check that the functions z^{j}, with $j \in \mathbb{Z}$, form an orthogonal system for \mathscr{H}_{k}. Since every holomorphic function in C^{*} can be expanded in Laurent series, it follows that z^{j} are in fact a complete orthogonal system. Their norms are given by

$$
\begin{aligned}
\left\|z^{j}\right\|_{h_{0}^{k}}^{2 k} & =k \int_{C^{\circ}} \mathrm{e}^{\frac{-k \pi}{2} \log ^{2}|z|^{2}}|z|^{2 j} \frac{i}{2} \frac{d z \wedge d \bar{z}}{|z|^{2}} \\
& =k \pi \int_{0}^{+\infty} e^{\frac{-k \pi}{2} \log ^{2} r^{2}} r^{2 j} \frac{2 r}{r^{2}} d r .
\end{aligned}
$$

By the change of variable $e^{\varrho}=r^{2}$ one gets

$$
\begin{aligned}
\left\|z^{j}\right\|_{h^{k}}^{2} & =k \pi \int_{-\infty}^{+\infty} e^{\frac{-k \pi}{2} \varrho^{2}} e^{j \varrho} d \varrho=k \pi e^{\frac{j^{2}}{2 k \pi}} \int_{-\infty}^{+\infty} e^{-\left(\sqrt{\frac{k \pi}{2}} \varrho-\sqrt{\frac{1}{2 k \pi}}\right)^{2}} \\
& =k \pi e^{\frac{j^{2}}{2 k \pi}} \sqrt{\frac{2}{k \pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} d t=\sqrt{2 k} \pi e^{\frac{j^{2}}{2 k \pi}} .
\end{aligned}
$$

Then a orthonormal basis for \mathcal{H}_{k} is given by

$$
s_{j}=\left(\frac{1}{\sqrt{2 k} \pi} e^{-\frac{j^{2}}{2 k \pi}}\right)^{\frac{1}{2}} z^{j}
$$

and by formula (16) we get:

$$
\begin{equation*}
\omega_{k}=\frac{i}{2 \pi} \partial \bar{\partial} \log \sum_{j \in \mathbb{Z}} e^{-\frac{j^{2}}{2 k \pi}}|z|^{2 j} \tag{20}
\end{equation*}
$$

Let $\frac{g_{k}}{k}$ be the corresponding sequence of Bergmann metrics (which are defined, by Theorem 3.1, on every compact set $K \subset C^{*}$ for k sufficiently large). The following Theorem extends Tian's theorem 3.1 in the case of the punctured plane endowed with the metric g^{*}.

Theorem 3.6. Let C^{*} be endowed with the complete metric g^{*}. Then the sequence of Bergmann metrics $\frac{g_{k}}{k} C^{\infty}$-converges to the metric $g *$ on every compact set $K \subset \mathbb{C}^{*}$.

Proof. By formula (20) it is enough to show that the sequence of functions

$$
\begin{equation*}
f_{k}(x)=\frac{1}{k} \log \left(\sum_{j \in \mathbb{Z}} e^{\frac{-j^{2}}{2 k \pi}} x^{j}\right) \tag{21}
\end{equation*}
$$

(defined on \mathbb{R}^{+}) C^{∞}-converges to the function $f(x)=\frac{\pi}{2} \log ^{2} x$ on every compact set $C \subset \mathbb{R}^{+}$. In order to prove it we apply the Poisson summation formula (see p. 347, Theorem 24 in [7]) to the function $f(j)=e^{\frac{-j^{2}}{2 k \pi}} x^{j}=e^{\frac{-j^{2}}{2 k \pi}+j \log x}$. Namely, one has: $\sum_{j \in \mathbb{Z}} f(j)=\sum_{j \in \mathbb{Z}} \widehat{f}(j)$, where $\widehat{f}(j)=\int_{-\infty}^{+\infty} e^{-2 \pi i j v} f(v)$. By a straightforward calcu-
lation one gets:

$$
\begin{aligned}
\widehat{f}(j) & =e^{k \frac{\pi}{2}(2 \pi i j-\log x)^{2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2 \pi k}\left(v+2 \pi^{2} i j k-\pi k \log x\right)^{2}} \\
& =2 \pi \sqrt{k} e^{k \frac{\pi}{2} \log ^{2} x} e^{-2 k \pi^{2} j(\pi j-i \log x)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{1}{k} \log \sum_{j \in \mathbb{Z}} f(j) & =\lim _{k \rightarrow \infty} \frac{1}{k} \log \sum_{j \in \mathbb{Z}} \widehat{f}(j) \\
& =\frac{\pi}{2} \log ^{2} x+\lim _{k \rightarrow \infty} \frac{1}{k} \log \sum_{j \in \mathbb{Z}} e^{-2 k \pi^{2} j(\pi j j-i \log x)}
\end{aligned}
$$

It is now immediate to see that the sequence $\sum_{j \in \mathbb{Z}} e^{-2 k \pi^{2} j(\pi j-i \log x)} C^{\infty}$-converges to the constant function 1 on every compact set $C \subset \mathbb{R}^{+}$, which concludes the proof of our Theorem. Indeed,

$$
\left|\sum_{j \in \mathbb{Z}} e^{-2 k \pi^{2} j(x j-i \log x)}\right| \leqslant 1+\sum_{j \in \mathbb{Z} \backslash\{0\}} e^{-2 k \pi^{3} j^{2}}<1+\int_{-\infty}^{+\infty} e^{-2 k \pi^{3} t^{2}} d t=1+\frac{1}{\sqrt{2 k} \pi} .
$$

References

[1] F. A. Berezin, Quantization, Izv. Akad. Nauk. SSSR Ser. Mat. 8 (1974), 1116-1175.
[2] M. Cahen, S. Gutt and J. H. Rawnsley, Quantization of Kähler manifolds I: Geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990), 45-62.
[3] M. Cahen, S. Gutt and J. H. Rawnsley, Quantization of Kähler manifolds II, Trans. Amer. Math. Soc. 337 (1993), 73-98.
[4] M. Cahen, S. Gutt and J. H. Rawnsley, Quantization of Kähler manifolds III, Lett. Math. Phys. 30 (1994), 291-305.
[5] M. Cahen, S. Gutt and J. H. Rawnsley, Quantization of Kähler manifolds IV, Lett. Math. Phys. 34 (1995), 159-168.
[6] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley and Sons Inc, New York 1978.
[7] R. Godement, Analyse mathématique II, Springer, Berlin 1998.
[8] A. LoI, The function epsilon for complex tori and Riemann surfaces, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), 229-236.
[9] J. H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford Ser. 28 (1977), 403-415.
[10] W. D. Ruan, Canonical coordinates and Bergmann metrics, Comm. Anal. Geom. 6 (1998), 589-631.
[11] M. TAKEUCHI, Homogeneous Kähler manifolds in complex projective space, Japan J. Math. 4 (1978), 171-219.
[12] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130.
[13] S. Zeldtich, Szegö kernel and a theorem of Tian, J. Differential Geom. 32 (1990), 99-130.

Abstract

In this paper we study the set of self-Bergmann metrics on the Riemann sphere endowed with the Fubini-study metric and we extend a theorem of Tian to the case of the punctured plane endowed with a natural flat metric.

[^0]: (*) A. Loi: Struttura Dipartimentale di Matematica e Fisica, Università, Via Vienna 2, 07100 Sassari, Itlay, e-mail: loi@ssmain.uniss.it; D. Zuddas: Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy, e-mail: zuddas@cibs.sns.it.
 (**) Received April 4, 2001. AMS classification 53 C 55, 58 F 06.

