G. A. CANNON and L. KABZA (*)

Right ideals in transformation nearrings (**)

Introduction

Let (G, +) be a group with identity 0, but not necessarily abelian. The set of functions $M(G) = \{f: G \to G\}$ is a (right) nearring under pointwise addition and composition. For general results about nearrings see [1], [4], or [5]. It is well known that M(G) is a simple nearring if $|G| \ge 3$ ([4], 1.43), hence studying two-sided ideals is trivial. Heatherly [2] and Johnson [3] studied left ideals in the simple nearring $M_0(G) = \{f: G \to G \mid f(0) = 0\}$. In this paper we assume that G is a finite group and find all right ideals in $M_0(G)$ and all right ideals in M(G) when G is abelian.

For $f \in M(G)$ we let $\langle f \rangle_R$ denote the right ideal generated by f in M(G). The identical notation will be used when generating right ideals in $M_0(G)$, but the nearring will be clear from the context.

Main Results

Let G be a finite group and let H be a normal subgroup of G. We define

 $(H:G) = \{ f \in M(G) \mid f(g) \in H \text{ for all } g \in G \}$

and

$$(H:G)_0 = \{ f \in M_0(G) \mid f(g) \in H \text{ for all } g \in G \}.$$

^(*) Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402, U.S.A. E-mail: acannon@selu.edu, lkabza@selu.edu

^(**) Received September 18, 2000. AMS classification 16 Y 30.

It is straightforward to check that (H : G) is a right ideal of M(G) and $(H : G)_0$ is a right ideal of $M_0(G)$.

We first determine all right ideals in $M_0(G)$.

Theorem 1. If G is a finite group, then every right ideal of $M_0(G)$ is of the form $(H:G)_0$ for some normal subgroup H of G. Furthermore, every right ideal of $M_0(G)$ is principal.

Proof. Let $f \in M_0(G)$ and let N be the normal subgroup of G generated by Im f. We claim that $\langle f \rangle_R = (N : G)_0$. Since $\operatorname{Im} f \subseteq N$, it is clear that $\langle f \rangle_R \subseteq (N : G)_0$. Let $G = \{0 = x_0, x_1, \dots, x_n\}$. Choose arbitrary elements $y_j \in \operatorname{Im} f$, say $f(x_j) = y_j$, and $x_k \in G$, and define the function $h_k(x) = \begin{cases} x_j & \text{if } x = x_k \\ 0 & \text{if } x \neq x_k \end{cases}$. Then $(f \circ h_k)(x)$ $= \begin{cases} y_j & \text{if } x = x_k \\ 0 & \text{if } x \neq x_k \end{cases}$. So $f_{k,j} = f \circ h_k \in \langle f \rangle_R$. Since every function in $(N : G)_0$ can be generated by the functions $f_{k,j}$, we conclude that $\langle f \rangle_R = (N : G)_0$.

Let I be a right ideal of $M_0(G)$ and let $f_j \in I$. Then $\langle f_j \rangle_R = (H_j; G)_0$ for some normal subgroup H_j of G. So for $I = \{f_1, f_2, \dots, f_m\}$, we have

$$I = \sum_{j=1}^{m} \langle f_j \rangle_R = \sum_{j=1}^{m} (H_j; G)_0 = \left(\sum_{j=1}^{m} H_j; G\right)_0$$

Letting $H = \sum_{j=1}^{m} H_j$ yields the result. The function $f(x) = \begin{cases} x & \text{if } x \in H \\ 0 & \text{if } x \notin H \end{cases}$ gives $\langle f \rangle_R = (H:G)_0$ and $(H:G)_0$ is principal.

Now we focus our attention on the non-zerosymmetric nearring M(G). For the remainder of the paper, we assume that G is a finite abelian group.

Let *K* be a subgroup of *G* and define $C_K = \{c_k | k \in K\}$ where $c_k : G \to G$ with $c_k(g) = k$ for all $g \in G$. It is straightforward to verify that C_K is a right ideal of M(G). We note that *G* being abelian is not a necessary condition for C_K to be a right ideal. Letting *K* be a subgroup of the center of *G* is sufficient. Notice, however, that if *K* is not a subgroup of the center of *G*, then C_K is not a right ideal of M(G). Therefore, we must impose a commutativity condition on *K* or *G* in order to ensure that C_K is a right ideal.

Theorem 2. Let H be a proper subgroup of G. Then the set $(H:G) + C_G$ is a proper right ideal of M(G).

Proof. Since the sum of right ideals is a right ideal ([4], 1.30), then $(H:G) + C_G$ is a right ideal of M(G).

Consider $id_G \in M(G)$ and suppose that $id_G \in (H:G) + C_G$. Then $id_G = f + c_k$ for some constant function $c_k \in C_G$ and $f \in (H:G)$. So $f = id_G - c_k$. In particular,

 $f(0) = 0 - k = -k \in H$. So $k \in H$. Since *H* is a proper subgroup of *G*, we can choose an element $g \in G \setminus H$. Hence $f(g) = g - k \in H$. Since $k \in H$, then $g \in H$, a contradiction. So $id_G \in M(G) \setminus [(H:G) + C_G]$ and $(H:G) + C_G$ is a proper right ideal of M(G).

Corollary 3. Let H and K be proper subgroups of G. Then the set $(H:G) + C_K$ is a proper right ideal of M(G).

Proof. Since $(H:G) + C_K \subseteq (H:G) + C_G \neq M(G)$, the result follows immediately from the theorem.

If G is nonabelian, then the previous corollary does not necessarily hold. As an example, consider $G = S_3$. Then for $(1 \ 2) \in G$, $\langle c_{(1 \ 2)} \rangle_R = M(G)$.

Theorem 4. For each $f \in M(G)$, $\langle f \rangle_R = (H : G) + C_K$ for some subgroups H and K of G.

Proof. Let $f \in M(G)$ and assume $\operatorname{Im} f = \{x_1, x_2, \dots, x_n\}$. Fix $x_t \in \operatorname{Im} f$ and let K be the cyclic subgroup of G generated by x_t . Since $c_{x_t} \in \langle f \rangle_R$, then $C_K \subseteq \langle f \rangle_R$. Let $f_t = f - c_{x_t}$. Then $f_t \in \langle f \rangle_R$. Since $x_t \in \operatorname{Im} f$, then there exists an element $y \in G$ such that $f(y) = x_t$. Then $f_t(y) = f(y) - c_{x_t}(y) = x_t - x_t = 0$. Using a proof similar to that in Theorem 1, we get $\langle f_t \rangle_R = (H : G)$ where H is the subgroup of G generated by $\operatorname{Im} f_t$. So $(H : G) = \langle f_t \rangle_R \subseteq \langle f \rangle_R$ and $(H : G) + C_K \subseteq \langle f \rangle_R$. But $f = f_t + c_{x_t} \in (H : G) + C_K$ implies that $\langle f \rangle_R \subseteq (H : G) + C_K$. The result now follows.

Since the subgroup generated by $\text{Im} f_t = \{x_1 - x_t, x_2 - x_t, \dots, x_n - x_t\}$ is the same for each x_t , then the subgroup H does not depend upon the choice of x_t in the above proof. On the other hand, the subgroup K could also have been defined as the subgroup of G generated by Im f. Therefore, the representation of $\langle f \rangle_R = (H:G) + C_K$ is not unique.

We now reach the main result for right ideals in M(G).

Theorem 5. If G is a finite abelian group, then every right ideal of M(G) is of the form $(H:G) + C_K$ for some subgroups H and K of G.

Proof. Let *I* be a right ideal of M(G). Then for every $f_i \in I$, i = 1, 2, ..., n, $\langle f_i \rangle_R = (H_i: G) + C_{K_i}$ for some subgroups H_i and K_i of *G* by Theorem 4. So

$$I = \sum_{i=1}^{n} \langle f_i \rangle_R = \sum_{i=1}^{n} \left[(H_i: G) + C_{K_i} \right] = \left(\sum_{i=1}^{n} H_i: G \right) + C_{\left[\sum_{i=1}^{n} K_i \right]}$$

Letting $H = \sum_{i=1}^{n} H_i$ and $K = \sum_{i=1}^{n} K_i$ yields the result.

Corollary 6. Every maximal right ideal of M(G) is of the form $(N:G) + C_G$ for some maximal subgroup N of G.

Theorem 7. If G is a finite abelian group and N is a maximal subgroup of G, then every maximal right ideal $(N:G) + C_G$ of M(G) is principal.

Proof. Let $g \in G$ such that $g \notin N$ and define $f(x) = \begin{cases} x & \text{if } x \in N \\ 0 & \text{if } x \notin N \end{cases}$ We claim that $\langle f + c_g \rangle_R = (N : G) + C_G$. Clearly $\langle f + c_g \rangle_R \subseteq (N : G) + C_G$. Since $(f + c_g) \circ c_g = c_g \in \langle f + c_g \rangle_R$, then $f \in \langle f + c_g \rangle_R$. As in Theorem 1, $\langle f \rangle_R = (N : G) \subseteq \langle f + c_g \rangle_R$. It follows that $C_N \subseteq \langle f + c_g \rangle_R$. Since N is a maximal subgroup of G, then $\langle C_N, c_g \rangle_R = C_G \subseteq \langle f + c_g \rangle_R$. Therefore $(N : G) + C_G \subseteq \langle f + c_g \rangle_R$ and the result follows.

Applications to nearrings of polynomials

In this section we consider the nearring of polynomials F[x] where F is a finite field. We use the results of the previous section to find some right ideals in F[x].

Let (H, +) be a subgroup of (F, +). We define

$$(H:F)_x = \{p(x) \in F[x] \mid p \circ a \in H \text{ for all } a \in F\}$$

and $P_H = \{p_h | h \in H\}$ where $p_h \in F[x]$ with $p_h \circ a = h$ for all $a \in F$. It is easy to check that $(H:F)_x$ and P_H are right ideals of F[x].

In a finite field F with q elements we have that $a^q = a$ for all $a \in F$. So any polynomial that is a multiple of $x^q - x$ acts as the zero function on F. Therefore, $(0:F)_x = \{p(x) \cdot (x^q - x) \mid p(x) \in F[x]\}$. Since elements in P_H act as constant functions on F, then $P_H = \{h + p(x) \cdot (x^q - x) \mid h \in H \text{ and } p(x) \in F[x]\}$.

Theorem 8. Let I be a right ideal of F[x] that contains $(0: F)_x$. Then for some subgroups H and K of F, $I = (H:F)_x + P_K$.

Proof. Consider the function $\varphi: F[x] \to M(F)$ which assigns to each polynomial its corresponding function. It is straightforward to check that φ is a nearring homomorphism with kernel $(0:F)_x$. Then φ is an epimorphism ([6], 2.4). Hence by Theorem 1.31 of [4], there is a one-to-one correspondence between right ideals of M(F) and right ideals of F[x] containing $(0:F)_x$. In particular, the inverse image of each right ideal $(H:F) + C_K$ of M(F) under φ gives the corresponding right ideal in F[x]. But the inverse image of $(H:F) + C_K$ under φ is $(H:F)_x + P_K$, and the result follows.

RIGHT IDEALS IN TRANSFORMATION NEARRINGS

References

- J. R. CLAY, Nearrings: geneses and applications, Oxford Univ. Press, Oxford 1992.
- [2] H. E. HEATHERLY, One-sided ideals in near-rings of transformations, J. Austral. Math. Soc. 13 (1972), 171-179.
- [3] M. J. JOHNSON, Maximal right ideals of transformation near-rings, J. Austral. Math. Soc. 19 (1975), 410-412.
- [4] J. D. P. MELDRUM, *Near-rings and their links with groups*, Pitman Advanced Publishing, Boston 1985.
- [5] G. PILZ, Near-rings, Revised ed., North Holland Publishing Co., Amsterdam 1983.
- [6] C. SMALL, Arithmetic of finite fields, Marcel Dekker, Inc., New York 1991.

Abstract

For a finite group G, all right ideals of the nearring $M_0(G) = \{f: G \rightarrow G \mid f(0) = 0\}$ are determined. If G is a finite abelian group, all right ideals of the nearring M(G) $= \{f: G \rightarrow G\}$ are determined. These results are used to find related right ideals in the nearring of polynomials F[x] where F is a finite field.

* * *