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1 - Basic assumptions and equations

Let a passive tracer be released istantaneously at a given point of a semi-en-
closed marine basin and subsequently dispersed by sea motions. It is assumed
that the time and space distribution u(t , x) of the tracer satisfies an advection-dif-
fusion problem. This paper is addressed to derive some inequalities for the distri-
bution u(t , x), satisfying homogeneous boundary conditions expressed in terms of
the total flux of the tracer. An inequality of Friedrich’s second type ([1] p. 124, [7]
p. 20) is obtained, which holds for any time t (see equation (11)). From this ine-
quality we get an upper bound of the total quantity of the tracer in the basin in
terms of a negative exponential in t (see equations (12) and (17)). These inequali-
ties are used in particular in proving that the residence time ([2], [3]) of the tracer
in the basin has a finite value.

Let a semi-enclosed water basin be represented by a bounded, open, con-
nected set V%Rd, d42, 3 (figure 1). Let G4G sNG f be the boundary of V, as-
sumed sufficiently smooth, where G s and G f are the solid and fluid boundaries
respectively. Let u(t , x) be the distribution of the passive tracer. The evolution

(*) G. BUFFONI: ENEA, C.P. 224, 19100 La Spezia, Italy; e-mail: buffoniHestosf.santa-
teresa.enea.it; F. LUNARDINI: Dipartimento di Matematica, Univ. di Parma, via D’Azeglio 85,
43100 Parma, Italy; e-mail: francesca.lunardiniHunipr.it

(**) Received October 24, 2000 and in revised form December 13, 2000. AMS classifica-
tion 76 R 99 and 35 B 05. This work was partially funded by the ENEA-MURST Programma
Ambiente Mediterraneo, Analisi e Valutazioni Modellistiche.



2 G. BUFFONI and F. LUNARDINI [2]

FIGURE 1 - Scheme of an horizontal section of a basin

of the dispersion process is described by the following initial boundary value
problem:

.
/
´

¯hu

¯t
1˜ Qh(2A˜1b) u40

(2A˜u1bu) Qn4b * u

u(0 , x)4u0 (x)F0

in V T4 (0 , T]3V

on G T4 (0 , T]3G

in V4VNG

(1)

where h(t , x) depends on the type of problem (see section 3 and 4) and
satisfies

0EhminGh(t , x)Ghmax ,(2)

A(x) is the eddy diffusivity matrix, assumed diagonal with diag A(x)4 (a1 (x),
R , ad (x) ) and ai (x)D0, b(t , x)4 (b1 (t , x), R , bd (t , x) ) is the large scale mean
velocity field, with b Qn40 on G s, b *(t , x) is a parameter regulating the flux of
the tracer between the basin and the open sea. Here n denotes the outward unit
normal vector on the boundary G.

In the following we will consider dispersion processes in two different hydro-
dynamics scenarios: basins with unidirectional flows, for which the sign of b Qn on
G f is time independent, and flows forced by the tidal motion, for which the the si-
gn of b Qn on a part of G f is periodical in time. Let G f4G f2NG f1 where:

(i) G f2 is the inflow part of G f , b QnE0 on G f2 ;
(ii) G f1 is the outflow part of G f , b QnD0 on G f1 , for unidirectional

flows;
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(iii) G f1 is the inflow-outflow part of G f for flows forced by tidal mo-
tion.

The boundary condition in (1) is illustrated in [2], [3]; here we assume

b *(t , x)40 on G sNG f2 , b *(t , x)Fmax (0 , b(t , x) Qn) on G f1 .(3)

Some basic assumptions are necessary to assure the existence, uniqueness,
positivity, boundedness and regularity of the solution of (1). We assume that,
for a� (0 , 1 ), G is of class C 21a, u0 (x)� C 21a (V), ai� C 11a (V), h(t , x)
�C 11a/2, 21a([0, T]3V), bi (t, x)�C 1/21a/2, 11a ([0, T]3V), b *�C 1/21a/2, 11a ([0,T]
3V). Moreover we must assume that the compatibility condition holds: (2A˜u0

1bu0 ) Qn4b * u0 for t40 and x�¯V. Under these assumptions, we can state
that problem (1) has a unique solution, in the sense that u has continuous partial
derivatives ut, uxi

and uxi xj
and satisfies equation (1) for every (t , x)�V T. The

boundary and initial conditions are also satisfied in the pointwise sense. Hence the
solution necessarily lies in S 4 C 11a/2 , 21a ( [0 , T]3V) ([10]). More smooth pro-
perties of the solution can be obtained by assuming additional conditions on the
coefficients of the differential operator and the given data. Since M4max

x�V
u0 (x)

D0 and 0 are ordered upper and lower solutions for (1), the solution u is positive
and bounded, in particular holds: MFuF0 (for more details see [9]).

2 - Global balance equations

For any solution u(t , x)� S let we define

fi (t)4�
V

hu i dV , i41, 2 ,

g1 (t)4�
G

h(2A˜u1bu) Qn dG ,

g2 (t)42 �
V

h(A˜u Q˜u) dV12 �
G

hu g2A˜u1
1

2
buh Qn dG .

(4)

Taking into account the boundary conditions in (1) and the second equation in (3)
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we obtain

g1 (t)4�
G f

hb * u dG ,

g2 (t)42 �
V

h(A˜u Q˜u) dV12 �
G f

hu 2gb *2
1

2
b Qnh dG .

(5)

From (2), (3) and the positivity of u it follows that gi (t)F0.
By integrating the balance equation in (1) we obtain

df1

dt
1g140 .(6)

By integrating the balance equation in (1) multiplied by u we obtain

df2

dt
1g21q40 ,(7)

where

q(t)4�
V

u 2g ¯h

¯t
1˜ Qhbh dV .(8)

For the velocity fields considered in this paper, see sections 3 and 4, we have that
q(t)40. In these sections we obtain a lower bound for g2 (t) in terms of f2 (t); thus
we are able to obtain upper bounds for f1 (t) and f2 (t). We recall that the residence

time of the tracer in the basin is defined by �
0

Q

f1 dt ([2], [3]). Thus, an upper bound

of f1 (t) can be used to estimate an upper bound of the residence time.

3 - Unidirectional flows at the fluid boundaries

In the three dimensional case, d43, we use the rigid lid approximation for the
air-sea interface ([5], p. 7); thus, this surface is included in the boundary G s. In
this section the flow is characterized by the following properties:
– the sign of b Qn on G f is time independent;
– the field b is divergence free,

˜ Qb40 in V(9)

so that �
G f

b Qn dG40.
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In the case of unidirectional flows, when (9) holds true, the function h is con-
stant; therefore, from (8), (9) it follows q(t)40.

T h e o r e m 1. Assume

1

2
Nb(t , x) QnNFb(x)F0 on G ,(10)

where b40 on G s and bD0 on G f . Then, for any solution u(t , x) to (1) there
exist positive constants l 0 , ci , m i , i41, 2, such that the following inequalities
hold:

g2 (t)F2l 0 f2 (t) ,(11)

fi (t)Gci e 2m i t , i41, 2 .(12)

P r o o f . Let us define the functional

p(v)4�
V

A˜v Q˜v dV1�
G

bv 2 dG , v�H 1 (V) .

We have that

p(v)Fl 0�
V

v 2 dV(13)

where l 0D0 is the minimum eigenvalue of the selfadjoint problem:

.
/
´

2˜ Q (A˜v)4lv

(2A˜v) Qn4bv

in V

on G .
(14)

From (3) and (10)

b *2
1

2
b QnF

1

2
Nb QnNFb .(15)

Since for any fixed t any solution u(t , x) to (1) belongs to C 21a (V)%H 1 (V), from
(5), (15) we have that

g2 (t)F2p(u(t , Q) ) .

Thus, by the monotonicity principle ([11], p. 62) it follows (11).
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From (6), (7), (11) and taking into account that

f1 (t)Gokf2 (t)�
V

dVl
we obtain (12) with

c14o�
V

dV�
V

u0
2 dV ,

c24�
V

u0
2 dV , m 14l 0 , m 242l 0 .

(16)

4 - Flows forced by the tidal motion

The analysis of this situation is performed by assuming the shallow water ap-
proximation, thus d42 ([4]). Here h(t , x) represents the total depth of the basin
and it is defined by h(t , x)4h0 (x)1h(t , x) where z42 h0 (x) represents the
bottom surface and z4h(t , x) defines the sea surface with respect to the same
horizontal reference level. We assume that Nh(t , x)Nbh0 (x); thus, the inequali-
ties (2) hold. In the shallow water approximation the velocity field b represents
averaged values over the depth of the basin (2h0 , h) and h satisfies the continui-
ty equation ([8], p. 45)

¯h

¯t
1˜ Qhb40 in V .

Thus, from (8) it follows q(t)40.
In this section we consider a basin where the flow is mainly forced by the tidal

motion through G f1 and by a possible inflow (e.g. a river) through G f2 . The ve-
locity field at G f1 is periodic in time with period u, and we assume that the tracer
leaves the basin under the action of advection during the outflow periods
(t2 j11 , t2 j ), and its flux is zero during the inflow periods (t2 j , t2 j11 ), where tj4 t0

1 j u

2
, j40, 1 , 2 , R . Thus, the boundary conditions on G f1 are written as

(bu2A˜u) Qn40 when b QnG0, t� (t2 j , t2 j11 ) ;

2A˜u Qn40 when b QnD0, t� (t2 j11 , t2 j12 ) .

Problem (1) is solved in each internal (tj , tj11 ) with the appropriate boundary
conditions and assuming the continuity of u(t , x) at times tj . Note that, owing to
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this rule of changing the boundary condition on G f , the time derivative of u(t , x)
is discontinuous at times t.

T h e o r e m 2. Assume that the velocity field can be written as

b(t , x)4 b(x)1b8 (t , x)

where b(x) is the contribution of the stationary forcings and b8 (t , x) is the field
induced by the tide, which is periodic of period u.

Then,

(i) the average u(t , x) of u(t , x) over a period u,

u(t , x)4
1

u
�
t

t1u

u(t 8 , x) dt 8 ,

satisfies a problem of type (1) with an effective eddy diffusivity Aeff [6], the velo-
city field b(x) and a b *eff (x) on G f given by

b *eff (x)4
1

2
average of b *(t , x) over the tide semiperiod of outflow ;

(ii) u(t , x) satisfies the inequality

f1 (t)Gc1 e m 1 u e 2m 1 t .(17)

P r o o f . For the proof of part (i) see [4], [6].
Part (ii). From theorem 1 and part (i) it follows that u(t , x) satisfies inequali-

ties (12) with ci , m i given by (16), where l 0 is now the minimum eigenvalue of (14)
with b4b *eff on G.

Taking into account that dfi

dt
G0, we have that

c1 e 2m 1 tF�
V

u(t , x) dV4
1

u
�
t

t1u

fi (t 8 ) dt 8F f1 (t1u) ,

and then the inequality (17).
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A b s t r a c t

We consider the dispersion process of a tracer istantaneously released in a semi-en-
closed water basin. It is assumed that the space and time distribution of the tracer is sol-
ution to an advection-diffusion problem. We derive some inequalities for this distribu-
tion, which allow to prove that the residence time of the tracer in the basin has a finite
value.

* * *


