G. BUFFONI and F. LUNARDINI (*)

Inequalities for solutions to advection-diffusion problems (**)

dedicated to the memory of Giulio Di Cola

1 - Basic assumptions and equations

Let a passive tracer be released istantaneously at a given point of a semi-enclosed marine basin and subsequently dispersed by sea motions. It is assumed that the time and space distribution $u(t, \mathbf{x})$ of the tracer satisfies an advection-diffusion problem. This paper is addressed to derive some inequalities for the distribution $u(t, \mathbf{x})$, satisfying homogeneous boundary conditions expressed in terms of the total flux of the tracer. An inequality of Friedrich's second type ([1] p. 124, [7] p. 20) is obtained, which holds for any time t (see equation (11)). From this inequality we get an upper bound of the total quantity of the tracer in the basin in terms of a negative exponential in t (see equations (12) and (17)). These inequalities are used in particular in proving that the residence time ([2], [3]) of the tracer in the basin has a finite value.

Let a semi-enclosed water basin be represented by a bounded, open, connected set $\Omega \subset \mathbb{R}^d$, d=2, 3 (figure 1). Let $\Gamma = \Gamma_s \cup \Gamma_f$ be the boundary of Ω , assumed sufficiently smooth, where Γ_s and Γ_f are the solid and fluid boundaries respectively. Let $u(t, \mathbf{x})$ be the distribution of the passive tracer. The evolution

^(*) G. BUFFONI: ENEA, C.P. 224, 19100 La Spezia, Italy; e-mail: buffoni@estosf.santa-teresa.enea.it; F. Lunardini: Dipartimento di Matematica, Univ. di Parma, via D'Azeglio 85, 43100 Parma, Italy; e-mail: francesca.lunardini@unipr.it

^(**) Received October 24, 2000 and in revised form December 13, 2000. AMS classification 76 R 99 and 35 B 05. This work was partially funded by the ENEA-MURST Programma Ambiente Mediterraneo, Analisi e Valutazioni Modellistiche.

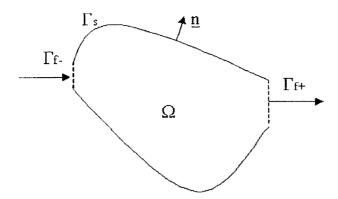


FIGURE 1 - Scheme of an horizontal section of a basin

of the dispersion process is described by the following initial boundary value problem:

(1)
$$\begin{cases} \frac{\partial hu}{\partial t} + \nabla \cdot h(-A\nabla + \boldsymbol{b}) \ u = 0 & \text{in } \Omega_T = (0, T] \times \Omega \\ (-A\nabla u + \boldsymbol{b}u) \cdot \boldsymbol{n} = b * u & \text{on } \Gamma_T = (0, T] \times \Gamma \\ u(0, \boldsymbol{x}) = u_0(\boldsymbol{x}) \ge 0 & \text{in } \overline{\Omega} = \Omega \cup \Gamma \end{cases}$$

where $h(t, \mathbf{x})$ depends on the type of problem (see section 3 and 4) and satisfies

$$(2) 0 < h_{\min} \le h(t, \mathbf{x}) \le h_{\max},$$

 $A(\mathbf{x})$ is the eddy diffusivity matrix, assumed diagonal with $\operatorname{diag} A(\mathbf{x}) = (a_1(\mathbf{x}), \ldots, a_d(\mathbf{x}))$ and $a_i(\mathbf{x}) > 0$, $\mathbf{b}(t, \mathbf{x}) = (b_1(t, \mathbf{x}), \ldots, b_d(t, \mathbf{x}))$ is the large scale mean velocity field, with $\mathbf{b} \cdot \mathbf{n} = 0$ on Γ_s , $b^*(t, \mathbf{x})$ is a parameter regulating the flux of the tracer between the basin and the open sea. Here \mathbf{n} denotes the outward unit normal vector on the boundary Γ .

In the following we will consider dispersion processes in two different hydrodynamics scenarios: basins with unidirectional flows, for which the sign of $\boldsymbol{b} \cdot \boldsymbol{n}$ on Γ_f is time independent, and flows forced by the tidal motion, for which the the sign of $\boldsymbol{b} \cdot \boldsymbol{n}$ on a part of Γ_f is periodical in time. Let $\Gamma_f = \Gamma_{f-} \cup \Gamma_{f+}$ where:

- (i) Γ_{f-} is the inflow part of Γ_f , $\boldsymbol{b} \cdot \boldsymbol{n} < 0$ on Γ_{f-} ;
- (ii) Γ_{f+} is the outflow part of Γ_f , $\boldsymbol{b}\cdot\boldsymbol{n}>0$ on Γ_{f+} , for unidirectional flows;

(iii) Γ_{f^+} is the inflow-outflow part of Γ_f for flows forced by tidal motion.

The boundary condition in (1) is illustrated in [2], [3]; here we assume

(3)
$$b^*(t, \mathbf{x}) = 0$$
 on $\Gamma_s \cup \Gamma_{f-}$, $b^*(t, \mathbf{x}) \ge \max(0, \mathbf{b}(t, \mathbf{x}) \cdot \mathbf{n})$ on Γ_{f+} .

Some basic assumptions are necessary to assure the existence, uniqueness, positivity, boundedness and regularity of the solution of (1). We assume that, for $\alpha \in (0, 1)$, Γ is of class $\mathcal{C}^{2+\alpha}$, $u_0(\mathbf{x}) \in \mathcal{C}^{2+\alpha}(\overline{\Omega})$, $a_i \in \mathcal{C}^{1+\alpha}(\overline{\Omega})$, $h(t, \mathbf{x})$ $\in \mathcal{C}^{1+a/2,2+a}([0,T]\times\overline{\Omega}),$ $b_i(t, \mathbf{x}) \in \mathcal{C}^{1/2 + \alpha/2, 1 + \alpha}([0, T] \times \overline{\Omega}),$ $b^* \in \mathcal{C}^{1/2 + \alpha/2, 1 + \alpha}([0,T])$ $\times \overline{\Omega}$). Moreover we must assume that the compatibility condition holds: $(-A\nabla u_0)$ $+ \boldsymbol{b}u_0 \cdot \boldsymbol{n} = b * u_0$ for t = 0 and $\boldsymbol{x} \in \partial \Omega$. Under these assumptions, we can state that problem (1) has a unique solution, in the sense that u has continuous partial derivatives u_t , u_{x_i} and u_{x_i,x_i} and satisfies equation (1) for every $(t, \mathbf{x}) \in \Omega_T$. The boundary and initial conditions are also satisfied in the pointwise sense. Hence the solution necessarily lies in $S = \mathcal{C}^{1+\alpha/2, 2+\alpha}([0, T] \times \overline{\Omega})$ ([10]). More smooth properties of the solution can be obtained by assuming additional conditions on the coefficients of the differential operator and the given data. Since $M = \max u_0(\mathbf{x})$ > 0 and 0 are ordered upper and lower solutions for (1), the solution u is positive and bounded, in particular holds: $M \ge u \ge 0$ (for more details see [9]).

2 - Global balance equations

For any solution $u(t, \mathbf{x}) \in \mathcal{S}$ let we define

$$\begin{split} f_i(t) &= \int\limits_{\Omega} h u^i d\Omega, \qquad i = 1, \, 2, \\ (4) &\qquad g_1(t) = \int\limits_{\Gamma} h (-A \nabla u + \boldsymbol{b} u) \cdot \boldsymbol{n} \, d\Gamma, \\ g_2(t) &= 2 \int\limits_{\Omega} h (A \nabla u \cdot \nabla u) \, d\Omega + 2 \int\limits_{\Gamma} h u \left(-A \nabla u + \frac{1}{2} \, \boldsymbol{b} u \right) \cdot \boldsymbol{n} \, d\Gamma. \end{split}$$

Taking into account the boundary conditions in (1) and the second equation in (3)

we obtain

$$\begin{split} g_1(t) &= \int\limits_{\Gamma_f} h b * u \, d\Gamma \,, \\ g_2(t) &= 2 \int\limits_{\Omega} h (A \nabla u \cdot \nabla u) \, d\Omega + 2 \int\limits_{\Gamma_f} h u^2 \bigg(b * - \frac{1}{2} \, \boldsymbol{b} \cdot \boldsymbol{n} \bigg) \, d\Gamma \,. \end{split}$$

From (2), (3) and the positivity of u it follows that $g_i(t) \ge 0$. By integrating the balance equation in (1) we obtain

$$\frac{df_1}{dt} + g_1 = 0.$$

By integrating the balance equation in (1) multiplied by u we obtain

(7)
$$\frac{df_2}{dt} + g_2 + q = 0 ,$$

where

(8)
$$q(t) = \int_{\Omega} u^2 \left(\frac{\partial h}{\partial t} + \nabla \cdot h \mathbf{b} \right) d\Omega.$$

For the velocity fields considered in this paper, see sections 3 and 4, we have that q(t) = 0. In these sections we obtain a lower bound for $g_2(t)$ in terms of $f_2(t)$; thus we are able to obtain upper bounds for $f_1(t)$ and $f_2(t)$. We recall that the residence time of the tracer in the basin is defined by $\int_0^x f_1 dt$ ([2], [3]). Thus, an upper bound of $f_1(t)$ can be used to estimate an upper bound of the residence time.

3 - Unidirectional flows at the fluid boundaries

In the three dimensional case, d=3, we use the rigid lid approximation for the air-sea interface ([5], p. 7); thus, this surface is included in the boundary Γ_s . In this section the flow is characterized by the following properties:

- the sign of $\boldsymbol{b} \cdot \boldsymbol{n}$ on Γ_f is time independent;
- the field \boldsymbol{b} is divergence free,

(9)
$$\nabla \cdot \boldsymbol{b} = 0 \quad \text{in } \Omega$$

so that
$$\int_{\Gamma_f} \boldsymbol{b} \cdot \boldsymbol{n} \, d\Gamma = 0$$
.

In the case of unidirectional flows, when (9) holds true, the function h is constant; therefore, from (8), (9) it follows q(t) = 0.

Theorem 1. Assume

(10)
$$\frac{1}{2} \left| \boldsymbol{b}(t, \boldsymbol{x}) \cdot \boldsymbol{n} \right| \geq \beta(\boldsymbol{x}) \geq 0 \quad on \ \Gamma,$$

where $\beta = 0$ on Γ_s and $\beta > 0$ on Γ_f . Then, for any solution $u(t, \mathbf{x})$ to (1) there exist positive constants λ_0 , c_i , μ_i , i = 1, 2, such that the following inequalities hold:

$$(11) g_2(t) \ge 2\lambda_0 f_2(t),$$

(12)
$$f_i(t) \leq c_i e^{-\mu_i t}, \quad i = 1, 2.$$

Proof. Let us define the functional

$$p(v) = \int_{\Omega} A \nabla v \cdot \nabla v \, d\Omega + \int_{\Gamma} \beta v^2 \, d\Gamma, \qquad v \in H^1(\Omega).$$

We have that

$$(13) p(v) \ge \lambda_0 \int_{\Omega} v^2 d\Omega$$

where $\lambda_0 > 0$ is the minimum eigenvalue of the selfadjoint problem:

(14)
$$\begin{cases} -\nabla \cdot (A\nabla v) = \lambda v & \text{in } \Omega \\ (-A\nabla v) \cdot \boldsymbol{n} = \beta v & \text{on } \Gamma. \end{cases}$$

From (3) and (10)

(15)
$$b^* - \frac{1}{2} \boldsymbol{b} \cdot \boldsymbol{n} \ge \frac{1}{2} |\boldsymbol{b} \cdot \boldsymbol{n}| \ge \beta.$$

Since for any fixed t any solution $u(t, \mathbf{x})$ to (1) belongs to $\mathcal{C}^{2+\alpha}(\overline{\Omega}) \subset H^1(\Omega)$, from (5), (15) we have that

$$g_2(t) \ge 2p(u(t, \cdot))$$
.

Thus, by the monotonicity principle ([11], p. 62) it follows (11).

From (6), (7), (11) and taking into account that

$$f_1(t) \le \sqrt{\left[f_2(t) \int\limits_{\Omega} d\Omega\right]}$$

we obtain (12) with

$$c_1 = \sqrt{\int_{\Omega} d\Omega \int_{\Omega} u_0^2 d\Omega},$$

$$c_2 = \int_{\Omega} u_0^2 d\Omega, \ \mu_1 = \lambda_0, \ \mu_2 = 2\lambda_0.$$

4 - Flows forced by the tidal motion

The analysis of this situation is performed by assuming the shallow water approximation, thus d=2 ([4]). Here $h(t, \mathbf{x})$ represents the total depth of the basin and it is defined by $h(t, \mathbf{x}) = h_0(\mathbf{x}) + \eta(t, \mathbf{x})$ where $z = -h_0(\mathbf{x})$ represents the bottom surface and $z = \eta(t, \mathbf{x})$ defines the sea surface with respect to the same horizontal reference level. We assume that $|\eta(t, \mathbf{x})| \ll h_0(\mathbf{x})$; thus, the inequalities (2) hold. In the shallow water approximation the velocity field \mathbf{b} represents averaged values over the depth of the basin $(-h_0, \eta)$ and h satisfies the continuity equation ([8], p. 45)

$$\frac{\partial h}{\partial t} + \nabla \cdot h \boldsymbol{b} = 0$$
 in Ω .

Thus, from (8) it follows q(t) = 0.

In this section we consider a basin where the flow is mainly forced by the tidal motion through Γ_{f+} and by a possible inflow (e.g. a river) through Γ_{f-} . The velocity field at Γ_{f+} is periodic in time with period θ , and we assume that the tracer leaves the basin under the action of advection during the outflow periods $(t_{2j+1},\,t_{2j})$, and its flux is zero during the inflow periods $(t_{2j},\,t_{2j+1})$, where $t_j=t_0+j\,\frac{\theta}{2}$, $j=0,\,1,\,2,\,\ldots$ Thus, the boundary conditions on Γ_{f+} are written as

$$(\boldsymbol{b}u - A\nabla u) \cdot \boldsymbol{n} = 0$$
 when $\boldsymbol{b} \cdot \boldsymbol{n} \leq 0$, $t \in (t_{2j}, t_{2j+1})$;
 $-A\nabla u \cdot \boldsymbol{n} = 0$ when $\boldsymbol{b} \cdot \boldsymbol{n} > 0$, $t \in (t_{2j+1}, t_{2j+2})$.

Problem (1) is solved in each internal (t_j, t_{j+1}) with the appropriate boundary conditions and assuming the continuity of $u(t, \mathbf{x})$ at times t_j . Note that, owing to

this rule of changing the boundary condition on Γ_f , the time derivative of $u(t, \mathbf{x})$ is discontinuous at times t.

Theorem 2. Assume that the velocity field can be written as

$$\boldsymbol{b}(t,\boldsymbol{x}) = \overline{\boldsymbol{b}}(\boldsymbol{x}) + \boldsymbol{b}'(t,\boldsymbol{x})$$

where $\overline{b}(x)$ is the contribution of the stationary forcings and b'(t, x) is the field induced by the tide, which is periodic of period θ .

Then,

(i) the average $\overline{u}(t, \mathbf{x})$ of $u(t, \mathbf{x})$ over a period θ ,

$$\overline{u}(t, \mathbf{x}) = \frac{1}{\theta} \int_{t}^{t+\theta} u(t', \mathbf{x}) dt',$$

satisfies a problem of type (1) with an effective eddy diffusivity A_{eff} [6], the velocity field $\overline{b}(\mathbf{x})$ and a $b_{\text{eff}}^*(\mathbf{x})$ on Γ_f given by

$$b_{\text{eff}}^*(\mathbf{x}) = \frac{1}{2}$$
 average of $b^*(t, \mathbf{x})$ over the tide semiperiod of outflow;

(ii) $u(t, \mathbf{x})$ satisfies the inequality

(17)
$$f_1(t) \le c_1 e^{\mu_1 \theta} e^{-\mu_1 t}.$$

Proof. For the proof of part (i) see [4], [6].

Part (ii). From theorem 1 and part (i) it follows that $\overline{u}(t, \mathbf{x})$ satisfies inequalities (12) with c_i , μ_i given by (16), where λ_0 is now the minimum eigenvalue of (14) with $\beta = b_{eff}^*$ on Γ .

Taking into account that $\frac{df_i}{dt} \leq 0$, we have that

$$c_1 e^{-\mu_1 t} \geqslant \int\limits_{\Omega} \overline{u}(t, \mathbf{x}) \ d\Omega = \frac{1}{\theta} \int\limits_{t}^{t+\theta} f_i(t') \ dt' \geqslant f_1(t+\theta),$$

and then the inequality (17).

Acknowledgements. The authors would like to thank A. Lunardi for helpful suggestions and comments.

References

- [1] O. AXELSSON and V. A. BARKER, Finite element solution of boundary value problems, Academic Press, London 1984.
- [2] G. Buffoni, A. Cappelletti and E. Cupini, Advection-diffusion processes and residence times in semienclosed marine basins, Internat. J. Numerical Methods Fluids 22 (1996), 1207-1229.
- [3] G. Buffoni, P. Falco, A. Griffa and E. Zambianchi, Dispersion processes and residence times in a semi-enclosed basin with recirculating gyres. An application to the Tyrrhenian Sea., J. Geophys. Res. 102 (1997), 18699-18713.
- [4] G. Buffoni, A. Griffa and E. Zambianchi, Modelling of dispersion processes in a tide-forced flow, Hydrobiologia 393 (1999), 19-24.
- [5] G. I. Marchuk and A. S. Sarkisyan, Mathematical modelling of ocean circulation, Springer-Verlag, Berlin 1988.
- [6] I. Mezic, J. F. Brady and S. Wiggins, Maximal effective diffusivity for timeperiodic incompressible fluid flows, SIAM J. Appl. Math. 56 (1996), 40-56.
- [7] J. Necas, Les methodes directes en theorie des equations elliptiques, Masson, Paris 1967.
- [8] S. C. J. Nihoul editor, *Modelling of marine systems*, Elsevier Scientific Publishing Company, Amsterdam 1975.
- [9] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York 1992
- [10] W. A. Solonnikov, Boundary value problems of mathematical phisics III, Proceedings of the Steklov Inst. of Math., AMS, Rhode Island 1967.
- [11] H. F. Weinberger , Variational methods for eigenvalue approximation, SIAM, Philadelphia 1974.

Abstract

We consider the dispersion process of a tracer istantaneously released in a semi-enclosed water basin. It is assumed that the space and time distribution of the tracer is solution to an advection-diffusion problem. We derive some inequalities for this distribution, which allow to prove that the residence time of the tracer in the basin has a finite value.

* * *