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Inequalities for solutions to advection-diffusion problems (**)

dedicated to the memory of Giulio Di Cola

1 - Basic assumptions and equations

Let a passive tracer be released istantaneously at a given point of a semi-en-
closed marine basin and subsequently dispersed by sea motions. It is assumed
that the time and space distribution u(%, x) of the tracer satisfies an advection-dif-
fusion problem. This paper is addressed to derive some inequalities for the distri-
bution u(t, x), satisfying homogeneous boundary conditions expressed in terms of
the total flux of the tracer. An inequality of Friedrich’s second type ([1] p. 124, [7]
p- 20) is obtained, which holds for any time ¢ (see equation (11)). From this ine-
quality we get an upper bound of the total quantity of the tracer in the basin in
terms of a negative exponential in ¢ (see equations (12) and (17)). These inequali-
ties are used in particular in proving that the residence time ([2], [3]) of the tracer
in the basin has a finite value.

Let a semi-enclosed water basin be represented by a bounded, open, con-
nected set QcR% d =2, 3 (figure 1). Let '=I, Ul + be the boundary of 2, as-
sumed sufficiently smooth, where I'y and I'y are the solid and fluid boundaries
respectively. Let u(t, x) be the distribution of the passive tracer. The evolution
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FIGURE 1 - Scheme of an horizontal section of a basin

of the dispersion process is described by the following initial boundary value
problem:

oh
7:f+v-h(—Av+b)u=o in Q,=(0, TIxQ
1
W (—AVu+bu) n=>b*u on I'p=(0,TIxT
u(0, x) = uy(x) =0 in Q=QuUr

where Ah(t, x) depends on the type of problem (see section 3 and 4) and
satisfies

2) 0 < hpyin < I, X) < Ay,

A(x) is the eddy diffusivity matrix, assumed diagonal with diag A(x) = (a;(x),
vy Gg(x)) and a;(x) >0, b(t, x) = (b(t, x), ..., by(t, x)) is the large scale mean
velocity field, with b-n =0 on I', b* (¢, x) is a parameter regulating the flux of
the tracer between the basin and the open sea. Here n denotes the outward unit
normal vector on the boundary I

In the following we will consider dispersion processes in two different hydro-
dynamics scenarios: basins with unidirectional flows, for which the sign of b-n on
I';is time independent, and flows forced by the tidal motion, for which the the si-
gn of b-n on a part of I'; is periodical in time. Let I'y=TI,_ UTI;, where:

(@) I'y_ is the inflow part of I'y, b-n <0 on I';_;
(i) I'y, is the outflow part of I'y, b-n>0 on I';,, for unidirectional
flows;
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(iii) I'y, is the inflow-outflow part of I'; for flows forced by tidal mo-
tion.

The boundary condition in (1) is illustrated in [2], [3]; here we assume
3) b*(t,x)=0 on I'yUT',_, b*(,x)=max(0, b(t,x)n) on I'y,.

Some basic assumptions are necessary to assure the existence, uniqueness,
positivity, boundedness and regularity of the solution of (1). We assume that,
for ae(0,1), I' is of class CZ"% wuy(x)e C® 4(Q), a;e C1T4(Q), h(t,x)
e@1+a/2,2+a([0,T]X§), bi(t,x)€@1/2+a/2,1+a([o’ T]Xg), b*e@1/2+a/2,1+a([0’ﬂ
X Q). Moreover we must assume that the compatibility condition holds: (—AVau,
+ bug)-n =b*u, for t =0 and x € 9Q. Under these assumptions, we can state
that problem (1) has a unique solution, in the sense that « has continuous partial
derivatives u;, u,, and (O and satisfies equation (1) for every (¢, x) € Q. The
boundary and initial conditions are also satisfied in the pointwise sense. Hence the
solution necessarily lies in S = @' *¥%2+%([0, T]x Q) ([10]). More smooth pro-
perties of the solution can be obtained by assuming additional conditions on the
coefficients of the differential operator and the given data. Since M = maxu,(x)
> (0 and 0 are ordered upper and lower solutions for (1), the solution % igerfositive
and bounded, in particular holds: M =u =0 (for more details see [9]).

2 - Global balance equations

For any solution u(t, x) e S let we define

£i(t) = jhuidg, i=1,2,
Q

@) g(t) = j h(—AVu + bu)-ndr,
r

g5 (t) =2 jh(Aw-w) o +2 jhu(—AVm %bu)-ndr.
Q r

Taking into account the boundary conditions in (1) and the second equation in (3)
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we obtain

g,(t) = jhb*udr,

Ty

)
go(t) =2 jh(Awa) dQ +2 jfmz(b*— %b-n) dar.
Q Ty

From (2), (3) and the positivity of u it follows that g¢;(¢) = 0.
By integrating the balance equation in (1) we obtain

dfy
6 — +¢9,=0.
(6) i 451

By integrating the balance equation in (1) multiplied by % we obtain

dfy
0] — +9,+q=0,
( d 92T q
where
oh
€)] q(t) = fuz( — + V-hb) aQ .
E ot

For the velocity fields considered in this paper, see sections 3 and 4, we have that
q(t) = 0. In these sections we obtain a lower bound for g,(t) in terms of f;(t); thus
we are able to obtain upper bounds for f; (t) and f;(t). We recall that the residence

o

time of the tracer in the basin is defined by j fidt ([2], [3]). Thus, an upper bound

0
of fi(t) can be used to estimate an upper bound of the residence time.

3 - Unidirectional flows at the fluid boundaries

In the three dimensional case, d = 3, we use the rigid lid approximation for the
air-sea interface ([5], p. 7); thus, this surface is included in the boundary I",. In
this section the flow is characterized by the following properties:

— the sign of b-n on I';is time independent;
— the field b is divergence free,

9 V-b=0 in Q
so that fb'ndl“=0.

rf
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In the case of unidirectional flows, when (9) holds true, the function % is con-
stant; therefore, from (8), (9) it follows q¢(t) = 0.

Theorem 1. Assume
1
(10) §|b(t,x)‘n| =px)=0 on T,

where =0 on I'; and >0 on I'y. Then, for any solution u(t, x) to (1) there
exist positive constants A, ¢;, u;, 1 =1, 2, such that the following inequalities
hold:

(11) 92() = 2 fo(1),

(12) fit) <cie ™', i=1,2.

Proof. Let us define the functional

p(v) = jAVv-Vde+jﬁv2dr, ve H(Q).
o r

We have that

13) p(v) axojvzdg

Q

where A,>0 is the minimum eigenvalue of the selfadjoint problem:

—V-(AVv)=Av in
(14) {

(-AVv)-n=pBv on .

From (3) and (10)

1 1
15 b*— —bn=—|bn|=p.
15 Sbn=|bn| >

Since for any fixed ¢ any solution u(t, x) to (1) belongs to C2**(2) c H(R), from
(5), (15) we have that
92(t) = 2p(u(t, ).

Thus, by the monotonicity principle ([11], p. 62) it follows (11).
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From (6), (7), (11) and taking into account that

) < \/[fz(t) Jac]
Q

we obtain (12) with

¢, = \/JdQJu&dQ,
Q Q

Co = J'u(?d.Q, u1=">=o, uz=24%,.
Q

(16)

4 - Flows forced by the tidal motion

The analysis of this situation is performed by assuming the shallow water ap-
proximation, thus d = 2 ([4]). Here (¢, x) represents the total depth of the basin
and it is defined by h(t, x) = hy(x) + n(t, x) where z = — hy(x) represents the
bottom surface and z = 5(¢, x) defines the sea surface with respect to the same
horizontal reference level. We assume that |5(t, x) | <<hy(x); thus, the inequali-
ties (2) hold. In the shallow water approximation the velocity field b represents
averaged values over the depth of the basin (-7, #) and / satisfies the continui-
ty equation ([8], p. 45)

% +V-hb=0 1in Q.
ot

Thus, from (8) it follows q(t) = 0.

In this section we consider a basin where the flow is mainly forced by the tidal
motion through I'y, and by a possible inflow (e.g. a river) through I';_. The ve-
locity field at Iy, is periodic in time with period 6, and we assume that the tracer
leaves the basin under the action of advection during the outflow periods
(t2j+1, t2j), and its flux is zero during the inflow periods (%5;, t5;+ 1), Where t; =t

+3 2, J=0,1,2,.... Thus, the boundary conditions on I';, are written as
2
(bu — AVu)-n =0 when b-n<0, te(ly, ty:1);
—AVu-n =0 when b-n>0, tE(t2j+1,t2j+2).

Problem (1) is solved in each internal (i, ¢;, ) with the appropriate boundary
conditions and assuming the continuity of u(¢, x) at times ¢;. Note that, owing to
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this rule of changing the boundary condition on I'y, the time derivative of u(¢, x)
is discontinuous at times ¢.

Theorem 2. Assume that the velocity field can be written as
b(t, x) =bx)+b'(t, x)

where b(x) is the contribution of the stationary forcings and b’ (t, x) is the field
mduced by the tide, which is periodic of period 0.
Then,

(1) the average u(t, x) of u(t, x) over a period 6,

t+0

1
ult, x) = — w(t', x)dt’,
(t, %) HJ( )

satisfies a problem of type (1) with an effective eddy diffusivity A [6], the velo-
city field b(x) and a bi(x) on I ¢ given by

1
bk(x) = 5 average of b*(t, x) over the tide semiperiod of outflow ;

(ii) u(t, x) satisfies the inequality

an ) <cretrle it

Proof. For the proof of part (i) see [4], [6].

Part (ii). From theorem 1 and part (i) it follows that %(¢, x) satisfies inequali-
ties (12) with c;, u,; given by (16), where 1, is now the minimum eigenvalue of (14)
with 8 =0 on I.

Taking into account that %

- <0, we have that

t+6

1
ce = [ut, v d@= o [ fu)dt 2f+0),
Q t

and then the inequality (17).
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Abstract

We consider the dispersion process of a tracer istantaneously released in a semi-en-
closed water basin. It is assumed that the space and time distribution of the tracer is sol-
ution to an advection-diffusion problem. We derive some inequalities for this distribu-
tion, which allow to prove that the residence time of the tracer in the basin has a finite
value.



