MANINDRACHANDRA PAL and P. BHATTACHARYYA (*)

On sg-regular spaces (**)

1 - Introduction

In 1987, Bhattacharyya and Lahiri [1] introduced the semi-generalised closed (briefly sg-closed) set in a topological space and obtained its various properties. Since its introduction a large number of topologists like Dontchev, Maki [8], Caldas [4], Devi et al. [7], U. D. Tapi et al. [18] turned their attention to study different concepts of point set topology with the aid of sg-closed sets. Of these topologists, the contribution of Dontchev and Maki [8] deserves special mention. They have nicely solved two open problems left out by the second author and Lahiri [1]. The first one was: Whether the intersection of two sg-closed sets is sg-closed. The query has been elegantly met in [8] by proving that arbitrary intersection of sg-closed sets is sg-closed. This result, termed by us as Dontchev's Theorem, has been utilised in proving result (Theorem 5.5) in this paper.

The purpose of this paper is to introduce a new type of regular space termed sg-regular space with the help of sg-closed sets. In section 2 of this paper some known definitions and results necessary for the presentation of the subject are given. Section 3 deals with the definition and characterisation of sg-regular spaces. Section 4 is devoted to the investigation of subspaces and transformation of sg-regular spaces while the last section is concerned with some basic results of sg-regular spaces.

Throughout the paper (X, τ) and (Y, σ) (or simply X, Y) always denote the topological spaces. The closure (resp. interior) of the subset A is denoted by $Cl_X(A)$ (resp. Int_X(A)) or simply by Cl(A) (resp. Int(A))when there is no possibility of

^(*) Dept. of Maths., University of Kalyani, Kalyani 741235, West Bengal, India.

^(**) Received March 28, 2000. AMS classification 54 D 10, 54 D 99.

confusion. By A^{C} and (A, τ_{A}) we shall mean the complement of A and the subspace of the topological space (X, τ) respectively.

2 - Known definitions and results

Definition 2.1. In (X, τ) , $A \in X$ is called

(a) a semi-open (briefly s.o. [11]) set iff there exists $O \in \tau$ such that $O \subset A \subset Cl(O)$, equivalently, A is s.o. [11] iff $A \subset Cl$ (Int(A));

(b) a preopen (briefly p.o. [14]) set iff $A \subset Int(Cl(A))$;

(c) a semi-generalised closed (briefly sg-closed [1]) set if $scl(A) \subset O$ whenever $A \subset O$ and O is semi-open in X;

(d) a semi-generalised open (briefly sg-open [1]) set if A^c is sg-closed.

The family of all s.o. (resp. p.o., *sg*-closed) sets in *X* is denoted by SO(X) (resp. PO(X), SGC(X)). For each $x \in X$, the family of all s.o. (resp. p.o., *sg*-closed) sets containing *x* is denoted by SO(X, x) (resp. PO(X, x) SGC(X, x)). The family of all semi-closed (resp. preclosed, *sg*-open) sets in *X* is denoted by SC(X) (resp. PC(X), SGO(X)).

Definition 2.2. {[2], [5]}. For $A \subset X$, the semi-closure of A, denoted by scl(A), is defined by $scl(A) = \bigcap \{B : B \in SC(X) \text{ and } B \supset A\}$.

Definition 2.3. ([1]). A space (X, τ) is semi- $T_{\frac{1}{2}}$ if every sg-closed set is semi-closed.

Definition 2.4. ([12]). A space (X, τ) is semi- R_0 iff for each semi-open set O and $x \in O$, $scl(\{x\}) \subset O$.

Definition 2.5. ([10]). A space (X, τ) is semi-regular if for every semiclosed set F and every point $x \notin F$, there exist $U \in SO(X, x)$, $V \in SO(X)$ such that $x \in U, F \subset V$ and $U \cap V = \phi$.

Definition 2.6. ([18]). A space (X, τ) is extremally disconnected if closure of every open set in X is open.

Definition 2.7. ([19]). (X, τ) is semi-compact if every semi-open cover of X admits a finite subcover.

Definition 2.8. ([6]). $f: X \rightarrow Y$ is semi-homeomorphism in the sense of Crossley and Hildebrand (briefly s.h.C.H.) if f is bijective, irresolute and presemiopen.

Definition 2.9. ([6]). A property preserved under semi-homeomorphism is called a *semi-topological property*.

Definition 2.10. ([3]). A subset N of a topological space X is said to be a semineighbourhood of a point $x \in X$ if for some semi-open set A in X, $x \in A \subset N$.

Lemma 2.1 (Lemma 2 [16]). If $x \in X$ and $A \subset X$, then $x \in scl(A)$ iff

$$A \cap U \neq \phi \quad \forall U \in SO(X, x).$$

Theorem 2.1. ([17]). If $X_0 \subset X$ and $A \subset SO(X_0)$, then $A = B \cap X_0$ for some $B \in SO(X)$.

Theorem 2.2. ([11]). If $\{A_a : a \in A\}$ be a family of s.o. sets in X then $\bigcup_{\alpha \in A} A_\alpha \in SO(X)$.

Theorem 2.3. ([15]). Let $A \in Y \in X$ such that $Y \in SO(X)$. Then $A \in SO(X)$ iff $A \in SO(Y)$.

3 - Definition and characterisation of sg-regularity

Definition 3.1. A space X is termed sg-regular if for each $F \in SGC(X)$ and each point $x \notin F$, there exist U and $V \in SO(X)$ such that $x \in U$ and $F \subset V$ and $U \cap V = \phi$.

The families of all *sg*-regular spaces and semi-regular spaces are respectively denoted by *SGRS* and *SRS*.

For the existence of sg-regular space, we see the following example.

Example 3.1. Let $X = \{a, b, c\}$ be endowed with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $SO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $SGC(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. It is easy to check that $(X, \tau) \in SGRS$.

Theorem 3.1. $SGRS \subset SRS$.

Proof. Since $SC(X) \subset SGC(X)$, the proof follows from Definition 3.1 and Definition 2.1.

Remark 3.1. The converse of the above theorem is not, in general, true as shown by

Example 3.2. Let $X = \{a, b, c\}$ be endowed with the topology $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then (X, τ) is a regular space and hence a semi-regular space.

Also, $SGC(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. Now, $\{b\} \in SGC(X)$, $c \notin \{b\}$ but $\{c\}, \{b\}$ are not separated by s.o. sets. Hence, $(X, \tau) \in SRS$ but $(X, \tau) \notin SGRS$. The following theorems offers a characterisation of a *sg*-regular space.

Theorem 3.2. Let X be a topological space, then the following statements are equivalent:

(a) X is sg-regular.

(b) For each x and each $U \in SGO(X, x)$ there exists $V \in SO(X, x)$ such that $x \in V \subset scl(V) \subset U$.

(c) For each $A \in SGC(X)$, $A = \cap \{V : A \in V \text{ and } V \text{ is semi-closed semi-neighbourhood of } A\}$.

(d) For each A and $B \in SGO(X)$ with $A \cap B \neq \phi$, there exists $G \in SO(X)$ such that

(i) $A \cap G \neq \phi$, (ii) $scl(G) \in B$.

(e) For each $A(\neq \phi)$ and $B \in SGC(X)$ with $A \cap B = \phi$ there exist U, $V \in SO(X)$ with

 $U \cap V = \phi$ such that (i) $A \cap V \neq \phi$, (ii) $B \in U$.

Proof. (a) \Rightarrow (b). Let $U \in SGO(X, x)$. Then $U^c \in SGC(X)$ and $x \notin U^c$. By sgregularity of X there exist V, $W \in SO(X)$ such that $x \in V$, $U^c \subset W$ and $V \cap W = \phi$. Now the disjointness of V and W yields $V \subset W^c$ which, in its turn, implies that $scl(V) \subset W^c$. Thus, $V \subset scl(V) \subset W^c$. From this one infers that $x \in V \subset scl(V) \subset U$.

(b) \Rightarrow (c). Assume $A \in SGC(X)$ and $x \notin A$. So, $A^c \in SGO(X)$. By (b), there exists $U \in SO(X, x)$ such that $x \in U \subset scl(V) \subset A^c$ whence $A \subset (scl(V))^c \subset U^c$. This shows that U^c is a semi-closed semi-neighbourhood of A which does not contain A. If we write $V = U^c$ then this implies that $A = \bigcap \{V : A \subset V \text{ and } V \text{ is semi-closed semi-neighbourhood of } A \}$.

(c) \Rightarrow (d). Let $A \cap B \neq \phi$ and $B \in SGO(X)$. Assume $x \in A \cap B$ then $B^c \in SGC(X)$ and $x \notin B^c$. Hence, by the argument applied in (c), there exists a semi-closed semi-neighbourhood V of B^c such that $x \notin V$ and $B^c \subset U \subset V$ where $U \in SO(X)$. Let G = X - V. Then $G \in SO(X, x)$ and $A \cap G \neq \phi$ which proves (i). Again $X - U \in SC(X)$. Consequently, $scl(G) \subset scl(X - V) \subset scl(X - U) = X - U \subset B$.

(d) \Rightarrow (e). Assume $A \cap B = \phi \Rightarrow A \cap (X - B) = A \neq \phi$ and $X - B \in SGO(X)$. Then by (d), there exists a $G \in SO(X)$ such that $A \cap G \neq \phi$ and $G \subset scl(G) \subset X - B$. If we take U = X - scl(G) then $B \subset U$. Also the construction of U gives $U \cap G = \phi$. Thus, there exist disjoint sets $U, G \in SO(X)$ with $A \cap G \neq \phi$ and $B \subset U$.

(e) \Rightarrow (a). Suppose (e) holds. Let $x \notin B$ where $B \in SGC(X)$. Then $(\{x\}) \cap B = \phi$. Hence by (e), there exist $U, V \in SO(X)$ with $U \cap V = \phi$ such that $U \cap (\{x\}) \neq \phi$, $B \subset V$. This implies $x \in U, B \subset V$ which assures the sg-regularity of X.

4 - Subspaces and transformations

Let us first consider the following example.

Example 4.1. Let $X = \{a, b, c\}$ be endowed with the topology $\tau = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$. It is now easy to check that (X, τ) is *sg*-regular but (A, τ_A) is not *sg*-regular where $A = \{a, c\}$. Thus, any subspace of a *sg*-regular space is not *sg*-regular. However, the following holds.

Theorem 4.1. If $A \in PO(X)$ and $A \in SGC(X)$ then (A, τ_A) is sg-regular if (X, τ) is so.

To prove this theorem the following lemmas which are intersting in their own right are required. So, we state and prove them first.

Lemma 4.1. If $A \in PO(X)$, $B \in SO(X)$ then $A \cap B \in SO(A)$.

Proof. Let $B \in SO(X)$. Then there exists G open in X such that $G \subset B \subset Cl_X(G)$. From this it follows that $A \cap G \subset A \cap B \subset Cl_X(G) \cap A$. Preopenness of A then gives $G \cap A \subset A \cap B \subset Cl_X(G) \cap \operatorname{Int}_X(Cl_X(A)) \subset Cl_X(G) \cap \operatorname{Int}_X(Cl_X(A))) \subset Cl_X(\operatorname{Int}_X(Cl_X(A))) \subset Cl_X(\operatorname{Int}_X(Cl_X(A \cap G))) \subset Cl_X(G \cap A)$. Now $G \cap A$ is open in A. We have, then $(G \cap A) \cap A \subset (A \cap B) \cap A \subset Cl_X(G \cap A) \cap A \Rightarrow G \cap A \subset (A \cap B) \subset Cl_A(G \cap A) = G \cap A \subset (A \cap B) \subset Cl_A(G \cap A)$.

Lemma 4.2. If $B \in Y \in X$ and $Y \in PO(X)$ then $scl_X(B) \cap Y = scl_Y(B)$.

315

Proof. Let $y \in scl_Y(B)$ so that $y \in Y$. Let $V \in SO(X, y)$. Then, by Lemma 4.1, $V \cap Y \in SO(Y, y)$. Consequently, by Lemma 2.1, $V \cap Y \cap B \neq \phi \Rightarrow V \cap B \neq \phi$ $\Rightarrow y \in scl_X(B)$. Hence $scl_Y(B) \subset scl_X(B) \cap Y$. To prove the reverse inclusion, let $y \in scl_X(B) \cap Y \Rightarrow y \in scl_X(B), y \in Y$. Let $V_0 \in SO(Y, y)$. Then, by Theorem 2.1, there exists $U \in SO(X)$ such that $V_0 = Y \cap U$. Also $U \in SO(X, y)$. So, $y \in scl_X(B)$ $\Rightarrow U \cap B \neq \phi$. Therefore, $Y \cap U \cap B \neq \phi$. This indicates $V_0 \cap B \neq \phi \Rightarrow y$ $\in scl_Y(B)$. Consequently, $scl_X(B) \cap Y \subset scl_Y(B)$. Hence, $scl_X(B) \cap Y = scl_Y(B)$.

Remark 4.1. The Lemma 4.2 is an improvement of the Lemma of Maheswari et al. [13] as openness of Y in the Lemma has been replaced by its preopenness.

Lemma 4.3. If $B \subset A \subset X$, $A \in PO(X)$ and $A \in SGC(X)$ then $B \in SGC(A)$ iff $B \in SGC(X)$.

Proof. Necessity. Suppose $B \in SGC(A)$. Then $scl_A(B) \subset O$ whenever $B \subset O \in SO(A)$. Since $O \in SO(A)$, by Theorem 2.1, $O = U \cap A$ for some $O \in SO(X)$. So, $scl_A(B) \subset U \cap A$ where $B \subset U \cap A \subset U$. This yields, by Lemma 4.2, $scl_X(B) \cap A \subset U \cap A$. Hence, $([scl_X(B)]^c) \cap A) \cup [scl_X(B) \cap A] \subset ([scl_X(B)]^c \cap A) \cup (U \cap A)$. Consequently, $A \cap X \subset ([scl_X(B)]^c) \cup U \Rightarrow A \subset V$ where $V = ([scl_X(B)]^c) \cup U \in SO(X)$. The *sg*-closedness of A in X then assures that $scl_X(A) \subset V$. Thus $scl_X(B) \subset scl_X(A) \subset V$ where $B \subset A \subset V$. This indicates that $B \in SGC(X)$.

Sufficiency. Assume $B \in SGC(X)$. Let $B \subset U$ where $U \in SO(A)$. Again, by Theorem 2.1, there exists $V \in SO(X)$ such that $U = A \cap V$. From this, it follows that $B \subset V$. The sg-closedness of B then produces that $scl_X(B) \subset V$ whence, by Lemma 4.2, $scl_A(B) = scl_X(B) \cap A \subset U$. This shows that $B \in SGC(A)$.

Remark 4.2. The Lemma 4.3 is an improvement of the Theorem 3 of Bhattacharyya et al. [1] as openness of A in that theorem has been replaced by its preopenness.

Proof of the Theorem 4.1. Suppose (X, τ) is a *sg*- regular space. Let $p \in A$ and $p \notin B \in SGC(A)$. Now the conditions (i) $B \subset A \subset X$, (ii) $A \in SGC(X)$, $A \in PO(X)$ and (iii) $B \in SGC(A)$ together imply, by Lemma 4.3, that $B \in SGC(X)$.

Since $p \in A \subset X$ it follows from the *sg*-regularity of X that there exist U, $V \in SO(X)$, such that $p \in U$, $B \subset V$ and $U \cap V = \phi$. Now U, $V \in SO(X)$, $A \in PO(X) \Rightarrow U \cap A$, $V \cap A \in SO(A)$, by Lemma 4.1. Consequently, for $p \in A$ and $p \notin B \in SGC(A)$ there exist $U \cap A$, $V \cap A \in SO(A)$ such that $p \in U \cap A$, $B \subset V \cap A$ and $(U \cap A) \cap (V \cap A) = A \cap (U \cap V) = \phi$. This indicates *sg*-regularity of the subspace A.

Theorem 4.2. The semi-homeomorphic image (s.h.C.H.) of a sg-regular space is sg-regular.

Proof. Let $f: X \to Y$ be a semi-homeomorphism (s.h.C.H.). Let $F \in SGC(Y)$ with $y \notin F$. Since $F \in SGC(Y)$, $scl(F) \subset O$ whenever $F \subset O \in SO(Y)$. The bijectiveness of f gives the existence of a $x \in X$ such that $x = f^{-1}(y)$. Also $f^{-1}[scl(F)] \subset f^{-1}[O]$ whenever $f^{-1}[F] \subset f^{-1}[O]$. This implies $scl(f^{-1}[F]) \subset f^{-1}[O]$. Since f is a semi-homeomorphism, $f^{-1}[O] \in SO(X)$. Thus $f^{-1}[F]$ is sg-closed in X. Since X is sg-regular, for every sg-closed set $f^{-1}[F]$ in $X, x \notin f^{-1}[F]$, there exist two disjoint s.o. sets O_1, O_2 in X such that $x \in O_1$ and $f^{-1}[F] \subset O_2$, i.e. $F \subset f[O_2]$. Also, $O_1 \cap O_2 = \phi$. Now, $f[O_1] \cap f[O_2] = f[O_1 \cap O_2] = f[\phi] = \phi$. The presemiopenness of f yields that $f[O_1], f[O_2] \in SO(Y)$. Thus $y \in f[O_1], F \subset f[O_2]$ and $f[O_1] \cap f[O_2] = \phi$. This ensures that Y is sg-regular.

Corollary 4.1. sg-regularity is a topological property.

Proof. Since every semi-topological property is a topological property, the result follows from the Theorem 4.2.

5 - Some basic results of sg-regular spaces

We begin this subsection with the following remark and example.

Remark 5.1. A semi-regular space is not, in general, semi- T_{\perp} as shown by

Example 5.1. The space (X, τ) in Example 3.2 is not semi- $T_{\frac{1}{2}}$. However, we have the following

Theorem 5.1. A semi-regular space which is also semi- $T_{\frac{1}{2}}$ is sg-regular.

Proof. Let $F \in SC(X)$ with $x \notin F$. Since X is semi-regular there exist U, $V \in SO(X)$ such that $x \in U$, $F \subset V$ and $U \cap V = \phi$. Since X is semi- $T_{\frac{1}{2}}$, SC(X) = SGC(X). Consequently, $F \in SGC(X)$. Hence X is sg-regular.

Theorem 5.2. If $x \in X \in SGRS$ with $x \notin A \in SGC(X)$ then there exist U, $V \in SO(X)$ such that $x \in U$, $A \in V$ and $(scl(U)) \cap (scl(V)) = \phi$.

Proof. Since $A \in SGC(X)$ and $x \notin A$, the *sg*-regularity of *x* gives the existence of two sets W, $U \in SO(X)$ such that $x \in W$, $A \subset U$ and $W \cap U = \phi$. This disjointness of *W* and *U* indicates $W \cap (scl(U)) = \phi$. By Theorem 3.1, $SGRS \subset SRS$. Hence, by the semi-regularity of *X* together with the semi-openness of *W* there

exists $V \in SO(X, x)$ such that $x \in V \subset scl(V) \subset W$. From this it, then, follows that $(scl(U)) \cap (scl(V)) = \phi$.

To continue the study of *sg*-regular space further, the following definition and lemma are required.

Definition 5.1. A topological space (X, τ) is termed semi-generalised normal (briefly *sg*-normal) if for every pair of disjoint sets $A, B \in SGC(X)$ there exist $U, V \in SO(X)$ such that $A \subset U, B \subset V$ and $U \cap V = \phi$.

Lemma 5.1. A space (X, τ) is semi- R_0 iff $\{x\} \in SGC(X)$ for every $x \in X$.

Proof. Follows from the definitions of the sg-closed set and the semi- R_0 space.

Theorem 5.3. If a space X is sg-normal and semi- R_0 , then $X \in SGRS$.

Proof. Let $A \in SGC(X)$ and $x \notin A$. This implies $x \in X - A \in SGO(X)$. Semi- R_0 -ness of X assumes that $\{x\} \in SGC(X)$. So, A and $\{x\}$ are two disjoint sg-closed sets. From the sg-normality of X, one can, then, infer that there exist U, $V \in SO(X)$ such that $scl(\{x\}) \subset U$, $A \subset V$ and $U \cap V = \phi$. This means $x \in U$, $A \subset V$ and $U \cap V = \phi$. So, X is sg-regular. Hence, the theorem.

Lemma 5.2. A space (X, τ) is extremally disconnected and $A, B \in SO(X)$ then $A \cap B \in SO(X)$.

Proof. Semi-opennes of *A* and *B* yields $A \cap B \subset (Cl(\operatorname{Int}(A)) \cap Cl(\operatorname{Int}(B)))$. Extremally disconnectedness of *X* implies openness of $Cl(\operatorname{Int}(B))$. Hence $A \cap B \subset (Cl(\operatorname{Int}(A)) \cap (Cl(\operatorname{Int}(B))) \subset Cl(Cl(\operatorname{Int}(B) \cap \operatorname{Int}(A))) = Cl(\operatorname{Int}(A \cap B))$. So, $A \cap B \in SO(X)$.

Remark 5.2. The intersection of any finite family of s.o. sets in an extremally disconnected space is a s.o. set.

Theorem 5.4. If (X, τ) is sg-regular and extremally disconnected then for every pair of disjoint sets A, B where A is semi-compact and $B \in SGC(X)$, there exist U, $V \in SO(X)$ such that $A \subset U$, $B \subset U$ and $U \cap V = \phi$.

Proof. Let $x \in A$. Then $A \cap B = \phi \implies x \notin B \in SGC(X)$. From the *sg*-regularity of *X*, then, it follows that there exist U_x , $V_x \in SO(X)$ such that $x \in U_x$, $B \subset V_x$ and $U_x \cap V_x = \phi$. The family $\{U_x : X \in A\}$ is clearly a cover of *A* by s.o. sets. The semi-

compactness of A then assures the existence of a finite number of points $x_1, x_2, x_3, \ldots, x_n$ in A such that $A \subset \bigcup_{i=1}^n U_{x_i}$. Let $U = \bigcup_{i=1}^n U_{x_i}$. Then, by Theorem 2.2, $U \in SO(X)$. Now consider the corresponding $V_{x_i} \in SO(X)$ such that $B \subset V_{x_i}$ where $i = 1, 2, 3, \ldots, n$. Extremally disconnectness of X guarantees, by Remark 5.2, that $V = \bigcap_{i=1}^n V_{x_i} \in SO(X)$ with $B \subset V$. Thus, we obtain, $U, V \in SO(X)$ such that $A \subset U, B \subset V$ and $U \cap V = \phi$.

Theorem 5.5. Let $\{X_a, \tau_a\}$: $a \in \Lambda$ be a family of spaces where $\{X_a: a \in \Lambda\}$ is a family of pairwise disjoint sets. Let (X, τ) be the topological sum of $\{(X_a, \tau_a): a \in \Lambda\}$. Then (X, τ) is sg-regular if (X_a, τ_a) is sg-regular for each $a \in \Lambda$.

Proof. Suppose $F \in SGC(X)$ and $x \notin F$. Since X is a topological sum, each X_a is closed in X and hence $X_a \in SGC(X)$ for each $a \in A$. It is clear from Dontchev's Theorem that $F_a \in SGC(X)$ where $F_a = F \cap X_a$. Again the openness (hence preopennes) of X_a in X together with the fact that $F_a \subset X_a \subset X$ yields, by Lemma 4.3, that $F_a \in SGC(X_a)$. Also $x \notin F_a$. By sg-regularity of X_a there exist $U_a, V_a \in SO(X_a)$ such that $x \in U_a$, $F_a \subset V_a$ and $U_a \cap V_a = \phi$. For $a \neq \lambda$, let $V = \bigcup_{a \neq \lambda} V_\lambda$ where $V_\lambda = X_\lambda$. By Theorem 2.2, $V \in SO(X)$. On the other hand, $U_a \in SO(X_a)$, $X_a \in SO(X)$ and $U_a \subset X_a \subset X$ together give, by Theorem 2.3, $U_a \in SO(X)$. Obviously, $F \subset V \cup X_a$ so that $F = F \cap (V \cup X_a) \subset V \cup F_a \subset V \cup V_a = \widehat{V}_a$, say. Again from the mutual disjointness of X_a 's one infers that $U_a \cap V = \phi$ whence $U_a \cap \widehat{V}_a = U_a \cap (V \cup V_a) = \phi$. Thus, for $x \notin F \in SGC(X)$ there exist U_a , $\widehat{V}_a \in SO(X)$ such that $x \in U_a$, $F \subset \widehat{V}_a$ and $U_a \cap \widehat{V}_a = \phi$. This guarantees the sg-regularity of X. Hence the theorem.

References

- P. BHATTACHARYYA and B. K. LAHIRI, Semi-generalised closed sets in topology, Indian J. Math 29 (1987), 375-382.
- [2] N. BISWAS, On characterisations of semi-continuous functions, Atti Accad. Naz. Lincei Rend. 48 (1970), 399-402.
- [3] E. BOHN and LEE JONG, Semi-topological groups, Amer. Math. Monthly 72 (1965), 996-998.
- [4] M. C. CALDAS, Semi-generalised continuous maps in topological spaces, Portugal Math. 52 (1995), 399-407.

- [5] S. G. CROSSLEY and S. K. HILDEBRAND, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [6] S. G. CROSSLEY and S. K. HILDEBRAND, Semi-topological properties, Fund. Math. 74 (1972), 233-245.
- [7] R. DEVI, K. BALACHANDRAN and H. MAKI, Semi-generalised homeomorphisms and generalised semi-homeomorphisms in topological spaces, Indian J. Pure Appl. Math. 26 (1995), 271-284.
- [8] J. DONTCHEV and H. MAKI, On sg-closed sets and semi-λ-closed sets, Questions Answers Gen. Topology 15 (1997), to appear.
- C. DORSETT, Semi-convergence and semi-compactness, Indian J. Mech. Math. 19 (1982), 11-17.
- [10] C. DORSETT, Semi-regular spaces, Soochow J. Math. 8 (1982), 45-53.
- [11] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [12] S. N. MAHESWARI and R. PRASAD, On $(R_0)_s$ -spaces, Portugal Math. 34 (1975), 213-217.
- [13] S. N. MAHESWARI and R. PRASAD, On s-regular spaces, Glas. Mat. Ser. III 10 (1975), 347-350.
- [14] A. S. MASHHOUR, M. E. ABD EL-MONSEF and S. N. EL-DEEB, On precontinuous and weak precontinuous mapping, Proc. Math. Phys Soc. Egypt 51 (1982), 47-53.
- [15] T. NOIRI, On semi-continuous mappings, Atti Accad. Naz. Lincei Rend. (8) 54 (1973), 132-136.
- [16] T. NOIRI, A Note on s-regular space, Glas. Mat. Ser. III 13 (1978), 107-110.
- [17] V. PIPITONE e G. RUSSO, Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo (2) 24 (1975), 273-285.
- [18] U. D. TAPI, S. S. THAKUR and ALOKE SONWALKAR, sg-compact spaces, J. Indian Acad. Math. 13 (1996), 255-258.
- [19] S. WILLARD, General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1970.

Abstract

In this paper a new separation axiom termed sg-regularity has been introduced, characterised and its basic properties have been obtained. sg-regularity of topological sum has also been studied. Besides this, it exhibits the role of sg-closed sets in topology.

* * *

320