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On a number theoretical application

of Coxeter transformations (**)

1 - Introduction and Notation

Recall that a real algebraic integer aD1 is called PV (Pisot-Vijayaraghavan)
number if all its conjugates lie inside the unit circle and a is called a Salem num-
ber if it has all but one of its conjugates on the unit circle. The monic irreducible
polynomial over Q having a Salem number as a zero is called a Salem polyno-
mial.

Salem in [8] has shown that each PV-number is the limit of Salem numbers.
We show that the spectral radii of the Coxeter transformation of wild stars are
Salem numbers and their suitable limits are PV-numbers. The link between these

limits and PV-numbers is the polynomial F(x)4x k112 (s21)
x k1121

x21
. The

fact that the largest positive zero h of F is a PV-number follows from the theory
of the first derived set of PV-numbers given in Chapter 6 in [1]. We give an ele-
mentary proof of this result and also show how h can be located:

s2s 2kEhEs2s 2k21

where s11 is the number of all arms of the wild star and k is the length of the
arm that remains fixed during the limiting process.
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From this it follows that each integer is a limit of a sequence of PV-numbers
and the elements of this sequence (of PV-numbers) are limits of special Salem
numbers, namely spectral radii of wild stars.

Let D be a tree, i.e. a finite non-oriented connected graph without cycles (mul-
tiple edges are allowed); let ]1, 2 , R , n( be the set of its vertices (with fixed or-
der!). The adjacency matrix of D is the matrix A4A(D)4 (aij ) where aij is the
number of edges between the vertices i and j .

Denote the spectral radius of D (i.e. the largest eigenvalue of A) by r(D). The
transformation CD : CnKCn is called Coxeter transformation with respect to the
standard basis if it is defined by the matrix F42(I1A 1 )21 (I1A 1 )tr , where
A 1 is the upper triangular part of the adjacency matrix A and I is the identity
matrix. The characteristic polynomial of F is called the Coxeter polynomial of CD .
The spectrum Spec (CD ) is the set of all eigenvalues of F and the spectral radius
of CD is

r(CD )4max ]NlN : l�Spec (CD )( .

Generally, the definition of the Coxeter transformation of a graph depends on its
orientation. It is well-known (see [3]) that the characteristic polynomial of the Co-
xeter transformation is reciprocal and it does not depend on the orientation of the
tree – this allows us to speak about the Coxeter polynomial of a (non-oriented)
tree.

Let p4 (p1 , p2 , R , ps ), be an s-tuple (sF3) of positive integers pi (1G iGs)

and let n4 !
i41

s

pi11. A star is a tree with simple edges i.e. a star consists of

paths with one common endpoint. The star is called wild star if its adjacency ma-
trix has at most one eigenvalue greater than 2. Denote by D[p1 , p2 , R , ps ] the
wild star consisting of s paths of length p1 , p2 , Rps , and denote by r(C[p1 , p2 , R , ps ] )
the spectral radius of CD[p1 , p2 , R , ps ].

The following theorem is the core of the link between the Coxeter transforma-
tion and the Salem numbers.

C o r o l l a r y 1. The Coxeter polynomial of a wild star is a Salem polyno-
mial.

This is an immediate consequence of

T h e o r e m [5] . The Coxeter polynomial of a wild star has exactly two real
zeros and one irreducible non-cyclotomic factor.
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2 - Spectrum of Coxeter transformation and PV-numbers

The smallest known Salem number is the spectral radius r(C[1 , 2 , 6 ] )(A1.3241)
(of the wild star D[1 , 2 , 6 ] ). The lim

mKQ
r(C[1 , 2 , m] ) = the only real zero of the po-

lynomial x 32x21, which happens to be also the smallest PV-number.
Using Coxeter transformation we can construct new families of Salem and PV-

numbers. About the calculation of particular Coxeter polynomials and spectral ra-
dii we refer to [2] and to the Maple program for generating Coxeter polynomials
for a large class of oriented graphs developed by Boldt [2].

P r o p o s i t i o n . [9]. If the tree D is neither of Dynkin nor of Euclidean
type, then m 0Gr(CD ); where m 0 is the largest (real) zero of the polynomial

x 101x 92x 72x 62x 52x 42x 31x11 .

Take now a sequence of wild stars with s11 arms sF2 of lengths
k , p1 (t), p2 (t), R , ps (t) (t�N) where k is fixed. Then we have

T h e o r e m 1. If ]D[k , p1 (t), p2 (t), R , ps (t) ]Nt�N( is a sequence of wild
stars with lim

tKQ
pi (t)4Q (i41, 2 , R , s ; sF2), then for the limit

h»4 lim
tKQ

r(C[k , p1 (t), p2 (t), R , ps (t) ] )

we have

s21GhEs ;(1)

further, h is the largest positive real zero of the polynomial

F(x)4x k112 (s21) x k2R2 (s21) x2 (s21) .(2)

P r o o f . First we remark that the limit in (1) exists, since the spectral radius
of the Coxeter transformation of a proper subgraph of a graph is not greater than
that of the graph.

The statement concerning the upper bound in (1) and the second statement
follows from Prop. 2.7 of [6] (with s21 replaced by s). The lower bound in (1) is a
consequence of Theorem 2.2 of [5] with s21 replaced by s and setting p14k ,
p24p1 (t), Rps114ps (t) and taking the limit tKQ . r

Theorem 1 relates the polynomial F to the limit of the spectral radii of Coxeter
transformation of wild stars. But this polynomial also turned up in number theory.
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The fact that the largest positive zero of F(x) is a PV-number follows from the ba-
sic theory of the first derived set of PV-numbers given in Chapter 6 in [1].

In the next theorem, which is our main result, we give a new elementary proof
of this result and also show how h can be quite precisely located by help of the
number of all arms s11 of the wild star and of the length k of the arm that re-
mains fixed during the limiting process.

T h e o r e m 2. If ]D[k, p1(t), p2(t),R, ps (t)]Nt�N( is a sequence of wild stars
with lim

tKQ
pi (t)4Q (i41, 2 , R , s ; sF2, ) then h4 lim

tKQ
r(C[k , p1 (t), p2 (t), R , ps (t) ] )

is a PV-number and

s2s 2kEhEs2s 2k21 .

P r o o f . By Theorem 1 h is the largest real zero of the polynomial F . Let
F(x)4 (x2h) f (x) and f (x)4x k1a k21 x k211R1a 1 x1a 0 . Comparing the
coefficients we get

2ha 0

a 02ha 1

a k222ha k21

a k212h

42 (s21) ,

42 (s21),

QQ
Q

42 (s21),

42(s21) .

Hence

a 0

a k22

a k21

4
s21

h
, a 14

(s21)(h11)

h 2
, R ,

4
(s21)(h k221h k211R1h11)

h k21
,

4
(s21)(h k211h k221R1h11)

h k
4h2 (s21) .

Let

b j4
.
/
´

a j /a j11 ,

a j ,

if 0G jGk22

if j4k21 .
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Then we have

b k22Db k23DR b 1Db 0 ,(4)

since
x

x11
is an increasing function of x for xD0 and

b j4
h j111h j1R1h

h j111h j1R1h11
(0G jGk22) .

Case 1: sF3.

By (1) we have hFs21F2 and we show that

b k21Db k22 .(5)

Using the definition of b j this is equivalent to

a k21D
a k22

a k21

or, using the expressions of a k21 , a k22 by help of h we can rewrite this as

s21

h k

h k21

h21
D

h k211h k221R1h

h k211h k221R1h11
4

h k2h

h k21

or

s21D
(h21)(h 2k2h k11 )

(h k21)2
.

This is true since by hF2 we have

(h k21)22 (h 2k2h k11 )4h k1122h k114h k (h22)11D0 ,

therefore (using (1) too)

s21Dh21D
(h21)(h 2k2h k11 )

(h k21)2
.

Let x4a k21 y and g(y)4 f (a k21 y). Then we have

g(y)4a k21
k y k1a k21

k y k211a k22 a k21
k22 y k221R1a 1 a k21 y1a 0 .
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From (4) and (5) we have

a k21
k Da k22 a k21

k22 DRDa 1 a k21Da 0D0 .(6)

To continue the proof we need the following result of Eneström and Kakeya
(see [7]).

P r o p o s i t i o n [7] . Let

f (x)4bi x i1bi21 x i211R1b1 x1b0

be a polynomial whose coefficients satisfy the inequalities biFbi21FRFb1

Fb0D0. Then no zero of f has absolute value greater than 1.

Equation (6) shows that the above result is applicable for g(y), thus the abso-
lute values of the zeros of g(y) are all less than or equal to one. Hence the absolu-
te values of zeros of f (x) are all Ga k214h2 (s21)E1 . This implies that h is a
PV-number.

Case 2: s42.

In this case f satisfies the conditions of Proposition [7] since

1Fa k21Fa k22FRFa 0D0

holds. The first of these inequalities 1Fa k214h21 is a consequence of s42
FhF1. The other inequalities

h k2 i1121

h21

1

h k2 i11
4a k2 iFa k2 i214

h k2 i21

h21

1

h k2 i
(k21F iF2)

also easily follow from hF1. Hence all the zeros of f have absolute value G1.
Next we show that f has no zero on the unit circle. This, together with the pre-

vious statement shows that h is a PV-number.
Suppose, on the contrary, that e iW (0GWE2p) is a zero of f . Then it is also

a zero of F . But F(1)412 (k11)42kc0, therefore WD0. The equation
F(e iW )40 can be rewritten as

e i(k11) W4
e i(k11) W21

e iW21
.

Multiplying by e iW21 and separating the real and imaginary parts we get

cos (k12)W4cos (k11) W21, sin (k12)W4sin (k11) W .
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Adding the squares of these equations we conclude that cos (k11) W41, thus
also cos (k12) W422141. From this

04cos (k12) W2cos (k11) W422 sin
2k13

2
W sin

W

2
.

sin
W

2
c0 since

W

2
� (0 , p). Therefore sin

2k13

2
W40,

2k13

2
W4np where n

is an integer with 0EnE2k13. But then we have

cos (k11) W4cos gnp2
np

2k13
h4 (21)n cos

np

2k13
.

The conditions for k imply that Ncos
np

2k13
NE1, thus Ncos (k11) WNE1 which

is a contradiction.
Therefore in Case 2 the number h is a PV-number too.
Let

Q(x)4 (x21) F(x)4x k122sx k111 (s21) .

We claim that

Q(s2s 2k )E0(7)

and

Q(s2s 2k21 )D0 .(8)

We have

Q(s2s 2k )4s212s(12s 2k21 )k11Es212s(12 (k11)s 2k21 )

4 (k11)s 2k21

since by Bernoulli’s inequality

(12s 2k21 )k11D12 (k11) s 2k21 .

Let G(z , s)4 (z11) s 2z21 (zF1, sF2) then

¯

¯z
G(z , s)4s 2z1 (z11) s 2z (21) ln s

4s 2z (12 (z11) ln s)Gs 2z (122 ln 2)E0 ,
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therefore

G(z , s)GG(1 , s)4
2

s
21G0 for zF1, sF2

and we can complete the proof of (7) by

Q(s2s 2k )E (k11) s 2k214G(k , s)G0 .

(8) follows from

Q(s2s 2k21 )4s212 (12s 2k22 )k11Ds21D0

since 0E (12s 2k22 )k11E1. The inequalities (7) and (8) imply that F(x) has a
zero j between s2s 2k and s2s 2k21 . We have proved that all zeros of F(x) but
h have absolute value less than 1. Therefore j4h and the proof of (3) and that of
Theorem 2 is complete. r

R e m a r k 1. From (3) if k tends to infinity then h4h k , s tends to sF2 which
is an integer. Thus every integer F2 can be obtained as an element of the second
derived set of spectral radii of Coxeter transformations.
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A b s t r a c t

We show that the spectral radii of the Coxeter transformation of wild stars are Salem
numbers and their suitable limits are PV-numbers. The link between these limits and

PV-numbers is the polynomial F(x)4x k112 (s21)
x k1121

x21
. The fact that the largest

positive zero h of F is a PV-number follows from the theory of the first derived set of PV-

numbers given in Chapter 6 in [1]. We give an elementary proof of this result and also

show how h can be located:

s2s 2kEhEs2s 2k21

where s11 is the number of all arms of the wild star and k is the length of the arm that

remains fixed during the limiting process.

* * *


