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PiroskA LAKATOS (¥)

On a number theoretical application

of Coxeter transformations (**)

1 - Introduction and Notation

Recall that a real algebraic integer a > 1 is called PV (Pisot-Vijayaraghavan)
number if all its conjugates lie inside the unit circle and « is called a Salem num-
ber if it has all but one of its conjugates on the unit circle. The monic irreducible
polynomial over @ having a Salem number as a zero is called a Salem polyno-
maal.

Salem in [8] has shown that each PV-number is the limit of Salem numbers.
We show that the spectral radii of the Coxeter transformation of wild stars are

Salem numbers and their suitable limits are PV-numbers. The link between these

k+1
-1
limits and PV-numbers is the polynomial F(x) =a*"!1— (s—1) x—l . The
xr—
fact that the largest positive zero » of F' is a PV-number follows from the theory

of the first derived set of PV-numbers given in Chapter 6 in [1]. We give an ele-
mentary proof of this result and also show how # can be located:

s—s F<p<s—g k1
where s + 1 is the number of all arms of the wild star and k is the length of the
arm that remains fixed during the limiting process.
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From this it follows that each integer is a limit of a sequence of PV-numbers
and the elements of this sequence (of PV-numbers) are limits of special Salem
numbers, namely spectral radii of wild stars.

Let 4 be a tree, i.e. a finite non-oriented connected graph without cycles (mul-
tiple edges are allowed); let {1, 2, ..., n} be the set of its vertices (with fixed or-
der!). The adjacency matrix of A is the matrix A = A(4) = (a;) where a;; is the
number of edges between the vertices ¢ and j.

Denote the spectral radius of A4 (i.e. the largest eigenvalue of A) by o(4). The
transformation C,: C"— C" is called Coxeter transformation with respect to the
standard basis if it is defined by the matrix ® = —(I +A )" '(I + A "), where
A ™ is the upper triangular part of the adjacency matrix A and I is the identity
matrix. The characteristic polynomial of @ is called the Coxeter polynomial of C .
The spectrum Spec (C,) is the set of all eigenvalues of @ and the spectral radius
of G, is

0(Cy) =max { |A|: 1€ Spec(Cy)}.

Generally, the definition of the Coxeter transformation of a graph depends on its
orientation. It is well-known (see [3]) that the characteristic polynomial of the Co-
xeter transformation is reciprocal and it does not depend on the orientation of the
tree — this allows us to speak about the Coxeter polynomial of a (non-oriented)
tree.

Letp= (pl, P2, ..., Ds), be an s-tuple (s = 3) of positive integers p; (1 <i<s)

and let n = 2 p;+ 1. A star is a tree with simple edges i.e. a star consists of

paths with one common endpoint. The star is called wild star if its adjacency ma-
trix has at most one eigenvalue greater than 2. Denote by A[p;, ps, ..., ps] the
wild star consisting of s paths of length p;, ps, ...p;, and denote by o(C,,,, 1y, .., p.1)
the spectral radius of Cupp, 1, . pote
The following theorem is the core of the link between the Coxeter transforma-

tion and the Salem numbers.

Corollary 1. The Coxeter polynomial of a wild star is a Salem polyno-
mial.

This is an immediate consequence of

Theorem [5]. The Coxeter polynomial of a wild star has exactly two real
zeros and one trreducible mon-cyclotomic factor.
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2 - Spectrum of Coxeter transformation and PV-numbers

The smallest known Salem number is the spectral radius o(C;, 2, ¢))(~ 1.3241)
(of the wild star 4[1, 2, 6]). The W}i_r)noc 0(C1, 2, m)) = the only real zero of the po-
lynomial 2® —a — 1, which happens to be also the smallest PV-number.

Using Coxeter transformation we can construct new families of Salem and PV-
numbers. About the calculation of particular Coxeter polynomials and spectral ra-
dii we refer to [2] and to the Maple program for generating Coxeter polynomials
for a large class of oriented graphs developed by Boldt [2].

Proposition. [9]. If the tree A is neither of Dynkin nor of Euclidean
type, then u,< o0(Cy); where u, is the largest (veal) zero of the polynomial

204+ p? — " -l - -t -2+ +1.

Take now a sequence of wild stars with s+1 arms s=2 of lengths
k, p1(t), pa(t), ..., p(t) (teN) where k is fixed. Then we have

Theorem 1. If {A[k, p;(?), p2(D), ..., ps(D)]|teN} is a sequence of wild
stars with 25lirn pit)y =0 (1=1,2,...,s; s=2), then for the limit

n:= Hm o(Cie, o), poio, .., puco1)

we have
1) s—1<ny<s;
Sfurther, n is the largest positive real zero of the polynomial

Q) Fa)=x""1—(G-1Daf—...—(s—Dx—-(s—1).

Proof. First we remark that the limit in (1) exists, since the spectral radius
of the Coxeter transformation of a proper subgraph of a graph is not greater than
that of the graph.

The statement concerning the upper bound in (1) and the second statement
follows from Prop. 2.7 of [6] (with s — 1 replaced by s). The lower bound in (1) is a
consequence of Theorem 2.2 of [5] with s — 1 replaced by s and setting p, =k,
P2 =p1(t), ...ps+1=ps(t) and taking the limit {—> . =

Theorem 1 relates the polynomial F' to the limit of the spectral radii of Coxeter
transformation of wild stars. But this polynomial also turned up in number theory.



296 PIROSKA LAKATOS [4]

The fact that the largest positive zero of F(x) is a PV-number follows from the ba-
sic theory of the first derived set of PV-numbers given in Chapter 6 in [1].

In the next theorem, which is our main result, we give a new elementary proof
of this result and also show how # can be quite precisely located by help of the
number of all arms s + 1 of the wild star and of the length & of the arm that re-
mains fixed during the limiting process.

Theorem 2. If {A[k,pi(®), pD), ..., ps(D]|teN} is a sequence of wild stars
with }LH; pi(t)=o (1=1,2,...,8; s=2,) then n= tli{{}o O(Clte, py 1), pot), ..., pu(t)

s a PV-number and

s—s F<p<s—sh I,

Proof. By Theorem 1 % is the largest real zero of the polynomial F'. Let
F(x)=(x—n) f(x) and f(x) =a*+a,_ ;2" '+...+a;2+ a, Comparing the
coefficients we get

—nay,=—(s—1),
Qog—na;= _(8_1)7
Ap_z—MNar_1=—(s—1),

ap_1—n=—(s—1).

Hence
s—1 (s—1)(n+1)
Aog= y 1= s
n n
(=@ 249" 1+ . +y+1)
ak*2: k-1 )
n
(s=DnFt+pk24+ . +5+1)
Ap_1= - =n-(s—1).
n
Let

j_{aj, ifj=k—1.
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Then we have
4) Br-2>Br-s>...8:1>Po,

since is an increasing function of a for >0 and

x+1

LR LR

4 - 0<sj<sk-2).
EREE S N B | J

Bj=

Case 1: s=3.

By (1) we have n=s—1=2 and we show that
®) Br-1>Pr-2-

Using the definition of f; this is equivalent to

)

ak,1>
-1

or, using the expressions of a,_i, a,_» by help of # we can rewrite this as

s—1 77’“—1> AR Lt N B A
nk n—1 77’“’1+77k’2+...+77+1 r]k—l

or

(7 — D) —nk*h
(n*—1)>

s—1>

This is true since by n =2 we have
=12 =* =" D =y =29" +1=p"(p-2)+1>0,
therefore (using (1) too)

(= D)™ = ")

s—1>np—-1>
7 172

Let x=0a;,_,1y and g(y) =f(a,_1y). Then we have

gy =ak y+ak y T v a pai Ty R+ L arak oyt ay.
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From (4) and (5) we have
(6) ak 1 >ap_ak 3> >aja,_1>0,>0.

To continue the proof we need the following result of Enestrom and Kakeya
(see [T]).

Proposition [7]. Let
fw)=bjx'+b,_qx' " 1+...+ba+b

be a polynomial whose coefficients satisfy the imequalities b;=b; = ...=b;
=0b0y>0. Then no zero of f has absolute value greater than 1.

Equation (6) shows that the above result is applicable for g(y), thus the abso-
Iute values of the zeros of g(y) are all less than or equal to one. Hence the absolu-
te values of zeros of f(x) are all <a,_;=7n— (s —1) <1. This implies that » is a
PV-number.

Case 2: s=2.
In this case f satisfies the conditions of Proposition [7] since
lzak,12ak,22...2a0>0

holds. The first of these inequalities 1 = a,_; =7 —1 is a consequence of s =2
=5 =1. The other inequalities

77k—H—l_l 1 - 7716—1_1 1
hoiv1 | Gk-iZ Gk-io1 T ki

n—1 n n—=1 g

(k—1=21=22)

also easily follow from n=1. Hence all the zeros of f have absolute value <1.
Next we show that f has no zero on the unit circle. This, together with the pre-
vious statement shows that » is a PV-number.
Suppose, on the contrary, that e (0 < ¢ <2x) is a zero of f. Then it is also
a zero of F'. But F(1)=1—-(k+1)= —k =0, therefore ¢ >0. The equation
F(e) =0 can be rewritten as

ei(kJrl)(p_ 1

ik g _
e —1

Multiplying by ¢ —1 and separating the real and imaginary parts we get

cos(k+2)p=cos(k+1)p—1, sin(k+2)p=sin(k+1) ¢.
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Adding the squares of these equations we conclude that cos(k +1) ¢ =1, thus
also cos(k+2)p=2—-1=1. From this

@
sin — .
4 2

2k+3
0=cos(k+2)p—cos(k+1)p=—2sin

2k +3 2k +3
sin% # (0 since % € (0, x). Therefore sin 5 =0, 5 @ = na where n

is an integer with 0 <n <2k + 3. But then we have

cos(k+1)g0=cos(nn— e " .
2k +3 2k +3

) =(—1)"cos

The conditions for k¥ imply that
is a contradiction.
Therefore in Case 2 the number # is a PV-number too.
Let

cos e ‘<1,thus|cos(k+1)<p|<1which
2k +3

Q) =(x—1) Flx) =a* 2 —spf* 1+ (s—1).

We claim that

(") Qis—s <0
and

®) Qs—s*"1)>0.
We have

Qs—s M =s—1-s(1—-s F Htlag—1-51—-(k+1)s % 1)
=(k+1)s k-1
since by Bernoulli’s inequality
(1—s F 1l —(k+1)s 1,

Let G(z,s)=(z+1)s =1 (=1, s=2) then
o _ _
a—G(z,s)=s +(z+1)s *(—1) Ins
2

=s*(1—-(z+1)Ins)<s*(1-21n2)<0,



300

therefore

PIROSKA LAKATOS [8]

2
Giz,9)<G(1l,s)=——-1<0 forz=1,s=2
s

and we can complete the proof of (7) by

Qs—s H<(k+1)s  —1=Gk,s) <0.

(8) follows from

Qis—s " H=s-1-1-s " 2*>5-1>0

since 0 < (1 —s *#72)f*1 <1, The inequalities (7) and (8) imply that F(x) has a
zero £ between s —s ~F and s —s ~*~1. We have proved that all zeros of F(x) but

7 have absolute value less than 1. Therefore & = 5 and the proof of (3) and that of
Theorem 2 is complete. =

Remark 1. From (3) if ¥ tends to infinity then # =, , tends to s = 2 which
is an integer. Thus every integer = 2 can be obtained as an element of the second
derived set of spectral radii of Coxeter transformations.
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Abstract

We show that the spectral radii of the Coxeter transformation of wild stars are Salem

numbers and their suitable limits are PV-numbers. The link between these limits and
k+1 _

PV-numbers is the polynomial F(x) = x*+*1— (s — 1) x—l . The fact that the largest
X

positive zero n of F is a PV-number follows from the theory of the first derived set of PV-
numbers given in Chapter 6 in [1]. We give an elementary proof of this result and also
show how n can be located:

s—sF<y<s—gh-1

where s + 1 is the number of all arms of the wild star and k is the length of the arm that
remains fixed during the limiting process.



