
R i v . M a t . U n i v . P a r m a ( 6 ) 3 ( 2 0 0 0 ) , 2 4 5 - 2 5 8

C. CA L V I PA R I S E T T I and S. PA S Q U A L I (*)

Stability of a stochastic predator-prey system (**)

dedicated to the memory of Giulio di Cola

1 - Introduction

We consider the following Lotka-Volterra predator-prey model

.
/
´

dxt4 [rxt (12xt )2qxt yt ] dt

dyt4 [cqxt yt2uyt ] dt
(1)

where xt and yt are the normalized biomass size at time t of prey and predator re-
spectively; r , c , u are physiological parameters and q is a behavioural parameter.
A more general system, whose (1) is a special case, describing the local dynamics
of trophic interaction in an acarine predator-prey system has been studied in [1],
in order to analyze the dependence of the steady states stability on physiological
and behavioural model parameters. Parameters r , c , u are supposed known
(being estimated under special assumptions, using demographic models of single
species population), while the behavioural parameter q is considered as a control
parameter.

The steady state solutions to (1) are ([1]):

l a null state E04 (0 , 0 ) where prey and predator are extinguished, which is
unstable for any q;

l a non coexistence state E14 (1 , 0 ) where only predator is extinguished,

which is stable if qE
u

c
and unstable if qD

u

c
;
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ma, Italy.
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l a coexistence state E *4 g u

qc
,

r

q
g12 u

qc
hh , where predator and prey are

both present, which exists and is stable if and only if qD
u

c
.

It can be shown that for any initial value, if qE
u

c
, then the solutions conver-

ge to E1; if qD
u

c
, then they converge to E *; therefore E1 and E *, when stable,

are globally stable.
In the present work we suppose that the parameter q , due to his meaning of

predator search efficiency, depends on the time t , fluctuating in an erratic way
around an unknown mean value q0 . Assuming

dqt4q0 dt1sdwt(2)

where wt is a Wiener process and s is a positive constant, we transform (1) in the
following stochastic model ([6])

.
/
´

dxt4 [rxt (12xt )2q0 xt yt ] dt2sxt yt dwt

dyt4 [cq0 xt yt2uyt ] dt1csxt yt dwt .
(3)

The stability of the equilibrium solutions of (3) has been studied in [8] and [2],
making use of Lyapunov exponents methods without determining a stability thre-
shold for q0 . Here we determine stability conditions of the equilibrium solutions of
(3) by means of a Lyapunov function and study how much the hypothesis (2) af-
fects the qualitative character of the solutions as s is varying.

This paper is organized as follows. In section 2 we recall a few results, useful
in the sequel, on the stochastic stability of equilibrium solutions. In section 3, we
study the stability of equilibrium solutions of system (3) by means of a Lyapunov
function and observe that the degenerate solution E0 is still unstable for any posi-
tive value of q0 and s , while the other degenerate solution E1 is asymptotically
stable when q0 is less than a given threshold T1 and unstable when q0 is greater
than a value T2 ; T1 and T2 depend on s . In section 4 numerical simulations of tra-
jectories of the solutions of (3) confirm the analytical results obtained and con-
cluding remarks can be found.

2 - Stochastic stability

We briefly recall definitions for the stability of equilibrium states of a stocha-
stic differential equation and stochastic Lyapunov methods, introduced by Kha-
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sminskii ([5]). Consider an n-dimensional stochastic differential equation
system

dXt4 f (t , Xt ) dt1g(t , Xt ) dwt , tD t0 , Xt0
4x0�Rn(4)

where Xt�Rn , f and g are n vector valued functions for t� [t0 , T], and wt is a
Wiener process. If the assumptions for the existence and uniqueness of the
solution hold on every finite subinterval [t0 , T] of [t0 , Q), then equation (4), for
initial value Xt0

4x0�Rn , has a unique solution Xt (t0 , x0 ) on the entire interval
[t0 , Q), called global solution.

D e f i n i t i o n 1. The stochastic process XtfX is a stationary solution of sto-
chastic system (4) with initial condition Xt0

4X if

f (t , X)40 , g(t , X)40 .

Without loss of generality, X is taken to be zero and the stationary solution
Xtf0 is said the trivial solution.

D e f i n i t i o n 2. The trivial solution Xtf0 is said to be

1. stable in probability if for every eD0 and sF t0

lim
xK0

P g sup
t� [s , Q)

NXt (s , x)NFeh40 .(5)

The stability is said to be uniform if the limit in (5) is uniform in s .
If condition (5) does not hold, then the trivial solution is said to be

unstable;

2. asymptotically stable if it is stable in probability and moreover

lim
xK0

P g lim
tK1Q

NXt (s , x)N40h41 sD t0(6)

3. asymptotically stable in the large (or globally) if it is asymptotically stable
and moreover, for all x�Rn

P g lim
tK1Q

NXt (s , x)N40h41 .(7)

The following theorem gives conditions for stability of stochastic systems in
terms of Lyapunov functions.
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T h e o r e m 1. Assume that there exists a function V(t , j)�C 1, 2 , tD0 and
j�Rn , such that, for all NjNGk with k positive constant,

a(NjN)GV(t , j)Gb(NjN)(8)

where a and b are continuous, positive definite functions on R1 , and let

LV(t , j)4Vt (t , j)1Vj (t , j) f (t , j)1
1

2
trace [ g T (t , j) Vjj (t , j) g(t , j) ] .(9)

We have ([3], [5])

1. if

LV(t , j)G0(10)

for all 0ENjNGk , then the trivial solution Xtf0 is (uniformly) stable in
probability;

2. if

LV(t , j)G2c(NjN)

where c is a continuous, positive definite function on R1 , then the trivial solu-
tion Xtf0 is asymptotically stable;

3. if (10) holds and

lim
rK1Q

a(r)4Q(12)

then Xtf0 is asymptotically stable in the large.

R e m a r k 1. These results also hold if g is a n3m matrix valued function
and wt a m-dimensional Wiener process ([5]).

Many problems concerning the stability of the equilibrium states of a non-
linear stochastic system can be reduced to problems concerning stability of
solutions of the linear system obtained from the original system by dropping ter-
ms of higher than first order in j . Let Xtf0 be a trivial solution of the n dimen-
sional stochastic differential Ito equation (4). The linear generalized form of (4) is
defined as follows

dXt4F(t) Xt dt1G(t) Xt dwt(13)
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where F and G are square n dimensional matrices, whose elements are

Fi , j (t , Xt )4
¯fi

¯xj

(t , Xt ) , Gi , j (t , Xt )4
¯gi

¯xj

(t , Xt )

i , j41, R , n . Whenever Xtc0 is a stationary solution of (4), Xt in equation (13)
has to be replaced by Xt2Xt .

T h e o r e m 2. We have the following stability results ([5]).

1. If the trivial solution Xtf0 is asymptotically stable for the linear system
(13) with constant coefficients (i.e. F(t)4F and G(t)4G) and the coefficients of
the system (4) satisfy the following inequality

Nf (t , j)2FjN1Ng(t , j)2GjNEgNjN(14)

in a sufficiently small neighborhood of the position j40, with a sufficiently
small constant g , then the trivial solution of (4) is asymptotically stable.

2. If for any xc0 the solutions of the linear system (13) satisfy the
identity

lim
TK1Q

sup
sD0

P g inf
tDs1T

NXt (s , x)NEdh40(15)

for any dD0, and the elements of the matrices F , G are bounded, then the sol-
ution Xtf0 is unstable in probability for all systems (4), whose coefficients sati-
sfy condition (14), with sufficiently small g .

3. If the system (13) has constant coefficients, the assertion in 2. remains
valid if assumption (15) is replaced by the requirement that for all xc0

P g lim
tK1Q

NXt (s , x)N41Qh41 .(16)

3 - The case study

We consider the stochastic differential equation system (3) which can be writ-
ten as in (4) where

Xt4
C
`
D

xt

yt

E
`
F

, f (t , Xt )4
C
`
D

rxt (12xt )2q0 xt yt

cq0 xt yt2uyt

E
`
F

, g(t , Xt )4
C
`
D

2sxt yt

csxt yt

E
`
F
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with r , c and u positive constants. It can be shown that the existence and unique-
ness conditions of the solution hold.

From Definition 1, stationary solutions of (4) are, as for the deterministic case
(1), the degenerate solutions E04 (0 , 0 ) and E14 (1 , 0 ). In order to study the
stability of these stationary solutions, we consider the linear generalized form of
(4) in (x, y) as defined in (13), where

F(x, y)4
C
`
D

r (122 x )2q0 y

cq0 y

2q0 x

cq0 x2u

E
`
F

, G(x, y )4
C
`
D

2sy

csy

2sx

csx

E
`
F

.

T h e o r e m 3. The stationary solution E0 is always unstable for the system (4).

P r o o f . The linearized problem in E0 is the following deterministic dynamical
system

.
/
´

dxt4rxt dt

dyt42uyt dt .
(17)

The instability of (17) follows immediately because the drift matrix F(0 , 0 ) has a
positive eigenvalue rD0. The solution of (17) corresponding to initial conditions
x0c0, y0c0 at time t40, namely

.
/
´

xt4x0 e rt

yt4y0 e 2ut

is such that

lim
tK1Q

NXt N4 lim
tK1Q

(Nxt N1Nyt N)41Q a.s.

Moreover, the left hand side of (14) becomes

kx 2 (2rx2q0 y)21c 2 q0
2 x 2 y 21kx 2 y 2 s 2 (c 211)

which, in a small neighborhood of (0 , 0 ), say ]2e , e[3]2e , e[ , is less than
gN(x , y)N where g is a constant going to zero as e goes to zero. Therefore, being r
and u constants, due to Theorem 2, the null solution is unstable for the original
system (4). r
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L e m m a 1. If

0Eq0E
u

c
2

cs 2

2
fT1(18)

then the stationary solution E1 is an asymptotically stable solution of the linea-
rized system

.
/
´

dxt4 (2r(xt21)2q0 yt ) dt2syt dwt

dyt4 (cq02u) yt dt1csyt dwt .
(19)

P r o o f . Consider the function

V(x , y)4 (x21)21
q0

212rs 2

2r (2u22cq02c 2 s 2 )
y 2 .(20)

Under condition (18), V(x , y) is a Lyapunov function and

LV422 gkr (x21)1
q0

2kr
yh2

E0

for all (x , y)c (1 , 0 ). Moreover, taking

a(N(x21, y)N)4min g1,
q0

212rs 2

2r (2u22cq02c 2 s 2 )
hN(x21, y)N

b(N(x21, y)N)4max g1,
q0

212rs 2

2r (2u22cq02c 2 s 2 )
hN(x21, y)N

the assumptions of Theorem 1 are verified, so the stationary solution E1 is asym-
ptotically stable in the large. r

The stability of the stationary solution E1 for the non-linear system (4) follows
by Theorem 2. In fact we have

T h e o r e m 4. If condition (18) is verified, then the stationary solution E1 is
asymptotically stable for the non-linear system (4).
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P r o o f . It suffices to prove condition (14) and then applying Theorem 2 and
Lemma 1 we immediately obtain the thesis. The left hand side of (14) becomes

k(12x)2 [2r(12x)1q0 y]21c 2 q0
2 y 2 (12x)21ks 2 y 2 (12x)21c 2 s 2 y 2 (12x)2

and this quantity in ]12e , 11e[3]2e , e[ (a small neighborhood of (1 , 0 )) is
less than gN(x21, y)N with g4max (Nq02rNe , cq0 e , se , cse). r

We proved, by means of sufficient Lyapunov conditions, that the stationary
solution E1 is asymptotically stable for (19) if condition (18) is verified. In order to
study the instability for E1 and find the related condition, we state

L e m m a 2. The solution of system (19), for an initial condition (x0 , y0 ) at
time t40, takes the form

Xt4
C
`
D

11a11 (t)(x021)1y0 a12 (t)

y0 a22 (t)

E
`
F

(21)

where

a11 (t)4e 2rt

a22 (t)4e tgcq02u2 1

2
c 2 s21cs

wt
t
h

a12 (t)4
g2q01

1

2
cs 22s

wt

t
h ge tgcq02u2 1

2
c 2 s21cs

wt

t
h2e 2rth

gcq02u2
1

2
c 2 s 21cs

wt

t
1rh .

P r o o f . For an initial condition (x0 , y0 ) at time t40, the solution to system
(19) is ([7])

Xt4
C
`
D

1

0

E
`
F
1exp ]Q(t)(

C
`
D

x021

y0

E
`
F

(22)
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where

Q(t)4

C
`
D

2rt

0

g2q01
1

2
cs 2h t2swt

gcq02u2
1

2
c 2 s 2h t1cswt

E
`
F

.

By the definition of exponential of operators ([4]):

exp ]Q(t)(4 !
n40

Q 1

n!
[Q(t) ]n

4

C
`
D

!
n40

Q 1

n!
(2rt)n

0

kg2q01
1

2
cs 2h t2swtl D(t)

!
n40

Q 1

n!
kgcq02u2

1

2
c 2 s 2h t1cswtln

E
`
F

where

D(t)f !
n40

Q 1

n!
!

k40

n21

(2rt)kkgcq02u2
1

2
c 2 s 2h t1cswtln212k

.

Direct calculation leads to

D(t)4
e gcq02u2 1

2
c 2 s2h t1cswt2e 2rt

gcq02u2
1

2
c 2 s 21rh t1cswt

.

Then, it follows that

exp ]Q(t)(4
C
`
D

a11 (t)

0

a12 (t)

a22 (t)

E
`
F

and from (22) we immediately obtain (21). r
The availability of the solution of (19) allows us to determine instability condi-

tions of the stationary solution E1 by studying its asymptotical behaviour. In fact,
it holds
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T h e o r e m 5. If

q0D
u

c
1

1

2
cs 2

fT2(23)

then the stationary solution E1 is unstable for the original system (4).

P r o o f . We note that

NC`
D

xt21
yt

E
`
F
N4k[a11 (t)(x021)1y0 a12 (t) ]21y0

2 a22
2 (t)

and

lim
tK1Q

a11 (t)40 .

Moreover, under condition (23),

lim
tK1Q

a22
2 (t)41Q lim

tK1Q
a12

2 (t)41Q .

It follows that the assumptions of Theorem 2 are verified (condition (14) holds -
see the proof of Theorem 4) and the stationary solution E1 is unstable for the
system (4), under condition (23). r

R e m a r k 2. We have obtained that the stationary solution E0 is always
unstable while the stationary solution E1 is asymptotically stable when condi-
tion (18) holds and unstable under condition (23). For T1Eq0ET2 we have not
obtained a stability result for E1 ; however, from numerical simulations, it ap-
pears that it is still stable.

4 - Numerical simulations and concluding remarks

Previous results about the stability of E1 under condition (18) and the instabili-
ty under condition (23) are confirmed by numerical simulations (Figure 1).

We have assumed ([1])

r40.1971 u40.1913 c40.1991 .

In such a case the threshold value in (23) for s41 is T241.0602 while the value
T1 in (18) is T140.8611.

If condition (23) is verified E1 is unstable and the solution of system (4) fluc-
tuates around the deterministic equilibrium E * (Figure 2). This suggests that, in
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Figure 1 - Deterministic and stochastic trajectories of prey and predator for initial
conditions x040.5, y040.5. Time is in days.
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Figure 2 - Deterministic and stochastic trajectories of prey and predator for initial
conditions x040.5, y040.5 for different values of s . Time is in days.
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Figure 3 - Histogram for the distribution of the solution of the system (2.6) for T=200
days.

the stochastic case, there is a solution whose distribution is the stochastic
analogous of the deterministic stationary solution E *.

We observe that associated to the states E04 (0 , 0 ) and E14 (1 , 0 ) there are
Dirac delta distributions and we can ask if there exists a further invariant
distribution.

The density of such a distribution is an equilibrium solution of the
Fokker-Plank equation

¯

¯x
[ (rx(12x)2q0 xy) p(x , y) ]1

¯

¯y
[ (cq0 xy2uy) p(x , y) ]

4
1

2
{ ¯ 2

¯x 2
[s 2x 2y 2p(x,y)]12

¯ 2

¯x ¯y
[2cs 2x 2y 2p(x,y)]1

¯ 2

¯y 2
[c 2s 2x 2y 2p(x,y)]}

(24)

for (x, y)�D where D is an open set in R2 containing the support of p(x, y).
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This equation is not simple to solve. To see if there is a further invariant
distribution, solution of (24), besides the Dirac distributions, we simulated 1000
trajectories of the solution of system (4) for q042. Then we plotted histograms
for 1000 values (xt , yt ) with t4200 (Figure 3).

As we can see, the simulated values (x200 , y200 ) are distributed around the
deterministic equilibrium E *4 (0.4803, 0.0512) and, as s decreases, the values of
(x200 , y200 ) approach E *.

In this work we propose only numerical results of equation (24) which is still
in study, but previous histograms suggest the existence of an invariant
distribution corresponding to a process which could be the stochastic analogous of
the deterministic equilibrium E *.

From the biological point of view, the introduction of a noise in the
deterministic differential equation (1) modifies the deterministic stability

threshold
u

c
of the equilibrium solution E1 giving rise to new thresholds. If the

variability of predator search efficiency q0 is large, the stability threshold can be
seriously modified in respect to the deterministic one. The results show that there
are two thresholds T1 and T2 for q0 , depending on s: T1 under which E1 is
asymptotically stable and T2 over which E1 is unstable, but numerical simulations
show that the stability threshold could be equal to T2 . In fact stability for E1 ,
when q0ET1 , was proved by means of a sufficient Lyapunov condition. A direct
prove will probably need to verify if the equilibrium solution E1 satisfies
Definition 2 when condition (23) holds.

A further problem is to show the existence of an invariant distribution and
determine its density as solution of the Fokker-Plank equation. The study of such
problems is still in progress together with that one of estimating q0 in (3) starting
from samples from the two populations.

Aknowledgment. Authors recall with gratitude Prof. Giulio Di Cola who
inspired this work.
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A b s t r a c t

In this paper we study the stability of equilibrium solutions of a stochastic differen-
tial equation derived by a Lotka-Volterra predator-prey model by introducing a noise on
a parameter.

* * *


