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On certain structures in the tangent bundle (**)

Introduction

Almost contact and almost complex structures in the tangent bundle have
been studied by K. Yano and S. Ishihara [4]. GF-structure manifolds also play an
important role in the theory of structures on manifolds. In this paper we have stu-
died generalised contact structure and GF-structure in the tangent bundle. Some
interesting results related to Nijenhuis tensor and Lie-dervative have also been
obtained.

1 - Preliminaries

Let M be an n-dimensional differentiable manifold of class C* and let T, (M)
be the tangent space of M at a point p of M. Then set

M) = U T,M)
peM

is called the tangenet bundle over the manifold M. For any point p of T(M),
correspondence p—p determines the bundle projection = : T(M)— M, thus
a(p) = p, where 7 : T(M)— M defines the bundle projection of T(M) over M. The
set 7 1(p) is called the fibre over peM and M the base space.

Suppose that the base space M is covered by a system of coordinate neighbou-
rhoods {U; ach}, where (x”) is a system of local coordinates defined in the
neighbourhood U of M. The open set & ' (U)c T(M) is naturally differentiably
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homeomorphic to the direct product U X R", R" being the n-dimensional vector
space over the real field R, in such a way that a point peT),(M)(peU) is represen-
ted by an ordered pair (P, X) of the point peU, and a vector XeR" whose compo-
nents are given by the cartesian coordinates (y”) of p in the tangent space

)
Tp(M) with respect to the natural base {0, } where J), = ﬂ . Denoting by (x")
A

the coordinates of p=a(p) in U and establishing the correspondence
(", y")— pex ~1(U), we can introduce a system of local coordinates (x”, y") in
the open set 7 ~1(U) c T(M). Here we call (x”, y") the coordinates in 7 ~1(U) in-
duced from (") or simply, the induced coordinates in 7 ~*(U) [4].

We denote by 3, (M) the set of all tensor fields of class C* and of type (r, s)

in M. We now put I(M) = > I%(M), which is the set of all tensor fields in M.

r,s=0

Similarly, we denote by 3, (T(M)) and I(T(M)) respectively the corresponding
sets of tensor fields in the tangent bundle T(M).

Vertical lifts

If fis a function in M, we write f" for the function in 7(M) obtained by for-
ming the composition of 7 : T(M)—M and f: M— R, so that

fVZfo.T[ .

Thus, if a point pexr ~'(U) has induced coordinates (x”, y"*), then

Y@ =1V, y) =for) =f(p) =f(x).

Thus the value of £V (p) is constant along each fibre T,(M) and equal to the value
f(p). We call fV the vertical lift of the function f.
Let XeJ3(T(M)) be such that XfV = 0 for all fe3IJ(M). Then we say that X is

h -
a vertical vector field. Let §E> be components of X with respect to the induced

coordinates. Then X is vertical if and only if its components in z~'(U) satisfy

o) (e}

Suppose that XeJ{(M), so that X is a vector field in M. We define a vector field
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XV in T(M) by
X"(w) = (X)),

o being an arbitrary 1-form in M. We call XV the vertical lift of X.
Let @ eJ)(T(M)) be such that @(X") = 0 for all XeJ§(M). Then we say that @
is a vertical 1-form in T(M). We define the vertical lift " of the 1-form w by
0" = () (da)

in each open set ¥ ~!(U), where {U; x"} is a coordinate neighbourhood in M and
w is given by w = w;dx’ in U. The vertical lift " of w with local expression
o =w;dx’ has components of the form

w":(w, 0)

with respect to the induced coordinates in T(M).

Vertical lifts to a unique algebraic isomorphism of the tensor algebra J(M)
into the tensor algebra I(T(M)) with respect to constant coefficients by the
conditions

(PRQ)Y=P"®Q",(P+R)Y=P"+R"

P, @ and R being arbitrary elements of J(M). The vertical lifts FV of an element
Fe31(M) with local components F} has components of the form

0 0
FV. .
e ol

Complete lifts

If fis a function in M, we write f¢ for the function in 7(M) defined by
FC=udf)

and call £¢ the complete lift of the function f. The complete lift £ of a function f
has the local expression

fe=y'aif=9f

with respect to the induced coordinates in T(M), where 8f denotes ¥'3; f.
Suppose that XeJ§(M). We define a vector field X¢ in T(M) by

XCfC=@0°,
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fbeing an arbitrary function in M and call X¢ the complete lift of X in T(M). The
complete lift X¢ of X with components " in M has components

x()
axh
with respect to the induced coordinates in 7(M).
Suppose that we3{(M). Then a 1-form w® in T(M) defined by
0 (X%) = (@),

X being an arbitrary vector field in M. We call w® the complete lift of w. The
complete lift ¢ of w with components w; in M has componets of the form

0w’ Bw;, w;)

with respect to the induced coordinates in T(M).

The complete lifts to a unique algebra isomorphism of the tensor algebra
(M) into the tensor algebra I(T(M)) with respect to constant coefficients, by
the conditions

(PRQF‘=P°®Q"+P"®Q‘,(P+R)’=P°+RC,

P, @ and R being arbitrary elements of JI(M).
The complete lifts F/¢ of an element F of J1(M) with local components F/ has

FC, ( Fih 0 )
\oF! Fl’

components of the form

Horizontal lifts

The horizontal lift £ of fIY(M) to the tangent bundle T(M) by

fr=fC=v,f
where
v, f=,(Vf).
Let Xe3)(M). Then the horizontal liftt X of X defined by
XH=XC-V X,

in T(M), where
V,X=,0X).
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The horizontal lift X* of X has the components

I
x

XH:( )

— Iyl

with respect to the induced coordinates in 7(M), where
ri=yirs.

Let weJY (M) with affine connection V. Then the horizontal lift ? of w is defi-

ned by
ol = - V,o

in T(M), where V, w =, (Vw). The horizontal lift o' of w has component of the
form

H.
w ~(F{z?wh’ (1)1')

with respect to the induced coordinates in 7(M).
Suppose there is given a tensor field

3 ) A
S=8; jin—®..0 — Qdr"Q...Qdw’
' O’ o™

in M with affine connection V, and in T(M) a tensor field V, S defined by
l iy 9 9 k i
V.S=Ww'ViSiH) — ®..0 — Qdr"®...®@dx’
9yt "

with respect to the induced coordinates (x”, y*) in & ~1(U).
The horizontal lift S of a tensor field S of arbitrary type in M to T(M) is defi-
ned by

SH=SC—VVS.
For any P, Qe3I(M). We have
V,,(P®Q)=(VyP)®QV+PV®(V,,Q) or (PR =PIRQV+P"®Q".

GF-structure

Let M an n-dimensional differentiable manifold of class C *. Suppose there
exists on M a tensor field F(#0) of type (1,1) satisfying

F?2=q%1
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where a(# 0) is a complex number and 1 denotes the unit tensor field. We say
that the manifold M endowed with GF-structure.

2 - Complete lifts of GF-structures and generalised contact structures in the tan-
gent bundle

Let M be an n-dimensional differentiable manifold of class C* and T(M) de-
notes the tangent bundle of M. Suppose that there is given in M, a tensor field F’
of type (1,1), a vector field U and a 1-form w satisfying

2.1) F?’=a’,+UQuw
and
@ FU=0
2.2) () woF=0
(i) o(U)= —aZ.
Then the manifold M satisfying conditions (2.1) and (2.2) will be said to pos-
sess a generalised contact manifold and the structure {F, U, w, a} is called ge-

neralised contact structure (g.c.s.) on M.
From (2.1) and (2.2) we have

2.3) FP=a’L,+U"Qu’+UQw"
and
G FCUV=0 FCUC=0
(2.4) () w"oF’=0, w’<F'=0,w'-F¢=0,
dii) oV (U")=0, o"(U% =-a?, 0o(U")=—-0a?, (U’ =0.
Let us define an element J of J1(T(M)) by

(2.5) J=F°+a*{U"Q0"+U’Qw"},
where

1
(2.6) a*=—.

a

Then in view of the equations (2.3), (2.4) and (2.5), we can easily show

2.7 J:=a?]I.

Thus J defines a GF-structure in T(M). Hence, we have
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Theorem 2.1. Let M be a differentiable manifold endowed with the genera-
lised contact structure {F, U, w, a). Let also J be as in 25). Then J is GF-
structure on T(M).

Now in view of the equation (2.5), we have
2.8) JXV=FX) +a*(wX)UC.

(2.9) JXC=(FX) +a*{(0X)U"+ (o(X))° U}

for any Xe3}(M). In particular, we have
(2.10) JXV=(Fx)V,JX¢=(FXV"

(2.11) JUV=—-aUC° JUC= -alU",

X being an arbitrary vector field in M such that w(X) =0.

Theorem 2.2. Let the tangent bundle T(M) of the manifold M admits the
GF-structure tensor defined by (2.5). Then for X, YeIy(M) such that o(Y) =0,
we have

() (L) Y'=0

(i) (Lyvd) YO = (LxF)Y)" = a*(Lyw) V)V U°
(i) (Lyvd) UV = —a(Ly U)
(V) (Lxvd) UC = ((LxF) U) + a* (Lxo)(U))Y UC

(2.12)

and

() (Lxe) YV'=((LxP) V)V - a*(Lx0) V)'UC
() (Lyed) YO=((LxF) V)°+a*{(Lxo)D) U+ (Lyo)¥)C U}
213) (i) (Lyxed) UV=((LxF) UV +a*(Lyo) D)) UC—a[X, UI°
(iv) (Lxe) UC=((Lx) U)°
+a* {(Lx) ) UV + (Lx) ) U} —alX, UY".

Proof. The proof follows from (2.4), (2.8), (2.9), (2.11), (2.12) and pages 20,
23 and 49 in [4].
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Let us define a tensor field S of type (1,2) by
(2.14) S(X, Y) =N, Y) + X(o(Y)) - Y(oX)) - (X, Y])) U
for any X, Ye}(M), M being the Nijenhuis tensor of F.

Theorem 23. If w(X) =0, w(Y) =0, then we have
i SX,Y)=[FX, FY]+a?[X, Y]-F[FX, Y]- F[X, FY]
2.15) (i) (S&X, U) =a?[X, U — (FIFX, U))
(i) (S(X, U)°=a®[X, UI° - (FIFX, U)".

Proof. The proof follows easily by virtute of equations (2.4), (2.7), (2.8), (2.9),
(2.10), (2.11) and pages 16 and 23 in [4].

Theorem 2.4. Let us define tensor fields S, Sy and S; by

1
@ $;X,Y) = Ew([FX, Y1+ [X, FY])

216) .
(i) S(X) =a{lU, FX] - F[U, X1}

(iii) S3(X) = —-wlU, X]
for any X, YeS{(M). Let H be the Nijenhuis tensor of J defined by (2.5). Then
for any X, YeJ§(M) such that o(X) =w(Y) =0, we have
@ Hx",Y") =0,
(i) HX", Y% =X, V) - (S:(X, Y)'U°
(i) H(XC, Y°) = (SX, V) = ($;(X, )" U" = (8;(X, )’ U*
(v) HXY, UY) = (S;(X))" = (S;(X)V U°
v) HX", U% = (SX, U))' - ($,(X, U)'U°
i) HXC, UY) = (S,(X)° + (SX, U)Y + (S3(X))V U - ((S,(X, U))”
—(S;(X))) U”
i) HXC, U = (SX, U)°+ (S:(X))Y = (S1(X, U)W UV (S,(X, U))F°
—(S;x)"H U

2.17)

i) H(UY, U%) =0.

Proof. The proof can be obtained from equations (2.4), (2.7), (2.8), (2.9),
(2.10), (2.11), (2.15) and pages 16, 20 and 23 in [4].



[9] ON CERTAIN STRUCTURES IN THE TANGENT BUNDLE 213
3 - Horizontal lifts of GF-structures in the tangent bundle

Let M be a manifold with an affine connection V. We define a tensor field F of
type (1,1) in T(M) by

3.1) FX"=aXV and FX'=aX"
for any Xe3$(M). Then we have
FPPX"=FFX")=FaX")=aFX") =a?X"
and
FPXV=FFX")=F(aX") =aF(X")=a?X"
which implies
3.2) F?=a?].

Hence we have

Theorem 3.1. Let M be a differentiable manifold with an affine connec-
tion V. Then there exists a GF-structure F in T(M) defined by the equation (3.1).
If N be the Nijenhuis tensor of F, we have

for any X, YeS§(T(M)). Then we have
O NXY,Y") =a*{TX, V" -, RX, )}
B4 () NXY, V) = -a®T(X, V)V +aF,R(X,Y)
i) N, vH) =a?{T(X, " - RX, )}

for any X, YeS§(M), where T is the torsion tensor of V and R the curvature ten-
sor of the affine connection V defined by (on page 88 in [4])

(3.5) Vi Y=V, X +[X, Y]
for any X, YeJ§(M).
Proof. (i) From (2.3), we have

NXV, Y =[FXV,FY"1+ F*[XV,Y"1-FI[FX", Y'1-FIX",FY"].
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Using (3.1) and (3.2), we get
NXY,Y")=a?[X", Y]+ a?[XV, Y] - aF[X", YV] - o F[X", Y]
=a?[X, Y1" - a?R(X,Y) - aFIX", YV - o FIX", Y"1,
(by pages 16 and 90 in [4])
=a?[X, YI" - a2R(X, Y) + aF1Y, X]" = a F(Vy X)" — a F1X, YI" + a F (V5 V).

Using (3.1) we get the result ().
(i) From (3.1), (3.2) and (3.3), we have

NXY, YY) =a?[X", Y]+ a?[X", Y] - aF[X", Y] - aF[XV, Y]
=a?[X, Y1+ a*(Vy X)V + ¢*[X, Y1 - a*(Vx V)" — o FIX, Y1 + aF ,R(X, Y)
(by pages 16 and 90 in [4]).
Again using (3.1), we get
NXY, v = —a?TX, V) +aF,RX, V).

(iii) In a similar way from (3.1), (3.2) and (3.3) and pages 16 and 90 in [4], we
get the result.
Hence we have

Theorem 3.2. The GF-structure F defined by (3.1) is integrable ie. N =0,
if and only if R =0 and T = 0, where T is the torsion tensor of V and R the cur-
vature tensor of the affine connection v defined by (3.5).

Theorem 3.3. We have

() (LyvF) X7 = a(V, V)
(i) (LyvF) XV = —a(VyY)V

(3.6)

6 @) (LyaF) X" =a{(VxY)"+ F,R(Y, X)}
' (i) (LyrF)X"= —a{(Vy + R(Y, X)}

for any X, YeJL(M).
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Proof. Operating £yv on both sides of (3.1), we get
Lyv(FXH) = £yv(aX")
= (P X"+ FepwX"?=aLywX"=0, (by page 49 in [4])

= (L) X" = -F[YV,X"]1= - F(—(VxY)"), (by page 90 in [4]).

Using (3.1), we get the result (3.6) (i). Similarly we can prove the other
results.
Thus from (3.6) and (3.7) we have

Theorem 3.4. Let Y =3Y(M). Then YV is an almost analytic vector field
with respect to F defined by (3.1), i.e., LyvF =0, if and only 2'f§Y: 0,V being
defined by (3.5). The horizontal lift Y is almost analytic with respect to F if and
only if VY =0, R(X, Y) =0, X being an arbitrary element of Jy(M), where B is
the curvature tensor of V.

4 - Horizontal lifts of generalised contact structure

Let {F, U, w, a} be a generalised contact structure in M with an affine con-
nection V. Then from (1.1) and (1.2) we have

(FAI2 = (a?I+UQuw)?
41 = Fi?=a’I+UQo)
= FiIY?=0’I+UQo"+U"Qw’, (by page 94 in [4])
and with the help of page 93 and 96 in [4], we get
G FEUf=0, FHEU"=0
42 () oT(UV) =0, o?U")=-a? 0" (U")=-a?
(i) w? o FA=0, oV FI=0.

Let us define a tensor field J* of type (1,1) in T(M) by

(4.3) J*=Fl+a*{U"Qw" "+ U"Q@w}, where a*=1/a.

Then we can easily show that

*

4.4) J?=0a%1
that is J* is a GF-structure in T(M). Thus we have
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Theorem 4.1. Let {F, U, w, a} be a generalised contact structure in M
with an affine connection V. Then there exists GF-structure J* defined by (4.3)
m T(M).

From (1.4), (4.2), (4.3) and the help of pages 91, 93 and 96 in [4], we
have

Theorem 4.2. For any XeJ§(M)
@ J*X"=(FX)" +a* (X)) U
w5 (i) J*XV=FX) +a* (X)) U
(i) J*XC=FX)"+FL1(V,X)+a* (X)W U"+a*0V,X) U
(iv) J*XC=(FX" +FO(V,X) +a*(0X)U"+a*w(V,X) U

In particular, if X being an arbitrary vector field in M such that w(X) =0,
then

() J*Xx"=FX"
(4.6) ) J*XV=FX)  and
i) J*XC=EFX!+FI(V,X)+a*w(V,X) U,
Also
G J*U" = —aUV
4.7 i) J*U"=—aU” and
(i) J*UC=F*(V,U)—aU"+a*w%V,U) U".
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Summary

The present paper entitled «On certain structures in the tangent bundle» has been di-
vided into four sections. First section contains the basic definition of tangent bundle and
its lifts i a differentiable manifold. In section two, we have considered a generalised con-
tact structure {F, U, w, a} in M and then defined GF-structure in T(M). Some re-
sults over this structure are also established in the same section. In section three, we have
considered a manifold with an affine connection and then defined a GF-structure in
T(M). Some results related to Nijenhuis tensor have been established over this structure.
Horizontal lifts of generalised contact structure {F, U, w, a} have been considered in
section four and also some more results have been established.



