P. Matzeu and M. I. Munteanu (*)

Classification of almost contact structures

associated with a strongly pseudo-convex $C R$-structure (**)

1-Introduction

A $C R$-structure of hypersurface type on a $(2 n+1)$-dimensional manifold M is defined by a 1-codimensional subbundle $H(M)$ of the tangent bundle together with a complex structure J on $H(M)$ satisfying certain integrability conditions.

Many authors dedicated their attention to the study of almost contact structures associated with a pseudo-convex $C R$-structure. One of the main problems concerning these structures is to find the geometric properties belonging to all almost contact structures associated with the same $C R$-structure, i.e. invariant under gauge transformations (see for example [7], [10], [11], [12]).

On the other hand, in the case of 3-dimensional manifolds, F. Belgun recently obtained in [1] a complete classification of Sasakian structures associated with the same $C R$-structure while P. Gauduchon and L. Ornea found a condition such that the gauge transformations carry Sasakian structures into Sasakian structures [5].

The main purpose of this paper is to classify the almost contact metric structures associated with a strongly pseudo-convex $C R$-structure, in the light of the results of D. Chinea and C. Gonzales in [3], where a complete classification of almost contact metric structures in 12 different classes has been found. We remark

[^0]also that in [4] D. Chinea and J. C. Marrero studied this classification on the viewpoint of conformal geometry.

Applying this classification to the $C R$-manifolds, we analyse in particular the properties for the gauge transformations under which it is possible to obtain different types of almost contact metric structures associated with the same $C R$-structure. Some conditions for remarkable structures are given.

As interesting examples, we consider our results on the unit tangent bundle of a Riemannian manifold of constant sectional curvature and on the Heisenberg group H_{3}; in H_{3} we also construct the gauge transformations convenient to obtain different almost contact structures.

The outline of the paper is as follows. Sections 2 and 3 are devoted to general results on pseudo-convex $C R$-structures, gauge transformations and to the classification of almost contact stuctures respectively [3]. In section 4 we apply this classification to almost contact metric structures associated with a same strongly pseudo-convex $C R$-structure and finally in the last section we describe in detail the cited examples.

2-Preliminaries

Let M be an orientable C^{∞} m-dimensional manifold; a $C R$-structure ($M, H(M)$) on M, is defined by a complex vector subbundle $H(M)$ in the complexification $T^{c} M$ of the tangent bundle of M so that:
(a) $A(M) \cap H(M)=\{0\}$ where $A(M)=\overline{H(M)}$.
(b) $H(M)$ is complex involutive, i.e. for two $H(M)$-valued complex vector fields Z, W, the bracket [Z, W] is $H(M)$-valued too.

Denoted now by $H(M)$ also the decomplexification of the complex subbundle, let J be the operator on $H(M)$ corresponding to the multiplication by i; then the condition of complex involutivity can be expressed by:
(i) $[X, Y]-[J X, J Y] \in \Gamma(H(M))$
(ii) $N_{J}(X, Y)=[J X, J Y]-[X, Y]-J\{[J X, Y]+[X, J Y]\}=0$
for every X, Y belonging to $\Gamma(H(M)), \Gamma(H(M))$ being the $C^{\infty}(M)$-module of cross-sections on $H(M)$.

From now on, we shall suppose that $\operatorname{dim} M=2 n+1, \operatorname{codim} H(M)=1$ and that the Levi form of $(M, H(M))$ is nondegenerate, i.e. we shall consider only pseudo-convex $C R$-structures of hypersurface type. Then, if we denote by η the local 1-form having $H(M)$ as null bundle, the property of pseudoconvexity of
($M, H(M)$) assures that $\eta \wedge(d \eta)^{n} \neq 0$ and η is a contact form on M. Notice that, if we consider M globally oriented, then η is globally defined.

Then for a pseudo-convex structure we have $T M=\operatorname{span}[\xi] \oplus H(M)$, where ξ is the Reeb vector field defined by $\eta(\xi)=1, i_{\xi} d \eta=0$; moreover if ϕ is the (1,1)tensor field given by

$$
\begin{equation*}
\phi X=J(X-\eta(X) \xi), \quad \forall X \in \chi(M) \tag{2.2}
\end{equation*}
$$

the following relations hold

$$
\eta \circ \phi=0, \quad \phi \xi=0, \quad \phi^{2}=-I+\eta \otimes \xi ;
$$

hence (ϕ, ξ, η) defines an almost contact structure on M which is called associated with the pseudo-convex $C R$-structure ($M, H(M)$) (see [2], [11]).

Consider now the new 1-form $\tilde{\eta}=\varepsilon e^{\sigma} \eta$, where $\sigma \in C^{\infty}(M)$ and $\varepsilon= \pm 1$; it is trivial that $\tilde{\eta}$ defines the same distribution $H(M)$ as η. Examining the relations between the associated almost contact structures (ϕ, ξ, η) and $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta})$ respectively induced by η and $\tilde{\eta}$ the following proposition follows

Proposition 1 [10]. Two almost contact structures (ϕ, ξ, η), $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta})$ are subordinated to the same pseudoconvex $C R$-structure if and only if there exists a function $\sigma \in C^{\infty}(M)$ such that:

$$
\left\{\begin{array}{l}
\tilde{\eta}=\varepsilon e^{\sigma} \eta, \quad d \tilde{\eta}=\varepsilon e^{\sigma}(d \eta+d \sigma \wedge \eta) \tag{2.3}\\
\tilde{\xi}=\varepsilon e^{-\sigma}(\xi+\phi A), \quad \tilde{\phi}=\phi+\eta \otimes A
\end{array}\right.
$$

where, assuming $\varepsilon=1$ and denoting by h the projection operator on $H(M), A$ is a vector field defined by the conditions:

$$
\eta(A)=0, \quad d \eta(\phi A, X)=d \sigma(h X)=h X(\sigma) .
$$

It is an important geometric property that the complex involutivity is invariant under gauge transformations [7].

Remark 2. We shall consider from now on $\varepsilon=1$ only, the case where $\varepsilon=-1$ being completely similar.

If we suppose the $C R$-structure strongly pseudo-convex, then the metric g defined for all $X, Y \in \Gamma(H(M))$ by the equations

$$
g(X, Y)=d \eta(X, \phi Y), \quad g(X, \xi)=\eta(X)
$$

is positively defined and satisfies the following compatibility conditions with re-
spect to (ϕ, ξ, η)

$$
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

In the sequel, note that $d \eta(X, Y)=X(\eta(Y))-Y(\eta(X))-\eta[X, Y]$.
After a gauge transformation, imposing the compatibility conditions with respect to the new structure ($\tilde{\phi}, \tilde{\xi}, \tilde{\eta}$), we obtain from g a new Riemannian metric \tilde{g} on M which generally doesn't satisfy the equation $\tilde{g}(X, Y)=d \tilde{\eta}(X, \tilde{\phi} Y)$, with $X, Y \in \Gamma(H(M))$. But, if we require that the restrictions of g and \tilde{g} are related by a conformal transformation on $H(M)$, then we get the following relation between g and \tilde{g} (see also [12])

$$
\left\{\begin{array}{r}
\tilde{g}(X, Y)=e^{2 \sigma}\{g(X, Y)-\eta(X) g(\phi A, Y)-\eta(Y) g(\phi A, X) \tag{2.4}\\
+g(A, A) \eta(X) \eta(Y)\} \quad \forall X, Y \in \chi(M) ;
\end{array}\right.
$$

and the equality

$$
\tilde{g}(X, Y)=e^{\sigma} d \tilde{\eta}(X, \tilde{\phi} Y)
$$

holds for all $X, Y \in \Gamma(H(M))$.

3-The 12 classes

It is known that the existence of an almost contact metric structure on M is equivalent to the existence of a reduction of the structural group $\mathcal{O}(2 n+1)$ to $\mathcal{U}(n) \times 1$. If we denote by Φ the fundamental 2 -form of (M, ϕ, ξ, η, g) defined by $\Phi(X, Y)=g(X, \phi Y)$ and by ∇ the Riemannian connection of g, the covariant derivative $\nabla \Phi$ is a covariant tensor of degree 3 which has various symmetry proprieties.

Let V be a real vector space of dimension $2 n+1$ endowed with an almost contact structure (ϕ, ξ, η) and a compatible inner product \langle,$\rangle and \mathcal{C}(V)$ the vector space of 3 -forms on V having the same symmetries of $\nabla \Phi$, i.e.

$$
\begin{aligned}
\mathcal{C}(V)=\{\alpha \in & \otimes_{3}^{0} V \mid \alpha(x, y, z)=-\alpha(x, z, y)=-\alpha(x, \phi y, \phi z) \\
& +\eta(y) \alpha(x, \xi, z)+\eta(z) \alpha(x, y, \xi)\} .
\end{aligned}
$$

In [3] the authors have been obtained the following decomposition of $\mathcal{C}(V)$ into twelve components $\mathcal{C}_{i}(V)$ which are mutually orthogonal, irreducible and inva-
riant subspaces under the action of $\mathcal{U}(n) \times 1$:

$$
\begin{equation*}
\mathcal{C}(V)=\bigoplus_{i=1, \ldots, 12} \mathcal{C}_{i}(V) \tag{3.1}
\end{equation*}
$$

where
$\mathcal{C}_{1}(V)=\{\alpha \in \mathcal{C}(V) \mid \alpha(x, x, y)=\alpha(x, y, \xi)=0\}$,
$\mathcal{C}_{2}(V)=\left\{\alpha \in \mathcal{C}(V) \mid \underset{(x, y, z)}{\widetilde{S}^{(}} \alpha(x, y, z)=0, \alpha(x, y, \xi)=0\right\}$,
$\mathcal{C}_{3}(V)=\left\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)-\alpha(\phi x, \phi y, z)=0, c_{12} \alpha=0\right\}$,
$\mathcal{C}_{4}(V)=\left\{\alpha \in \mathcal{C}(V) \left\lvert\, \alpha(x, y, z)=\frac{1}{2(n-1)}\left[(\langle x, y\rangle-\eta(x) \eta(y)) c_{12} \alpha(z)-\right.\right.\right.$
$-(\langle x, z\rangle-\eta(x) \eta(z)) c_{12} \alpha(y)-\langle x, \phi y\rangle c_{12} \alpha(\phi z)+$
$\left.\left.+\langle x, \phi z\rangle c_{12} \alpha(\phi y)\right], c_{12} \alpha(\xi)=0\right\}$,
$\mathcal{C}_{5}(V)=\left\{\alpha \in \mathcal{C}(V) \left\lvert\, \alpha(x, y, z)=\frac{1}{2 n}\left[\langle x, \phi z\rangle \eta(y) \bar{c}_{12} \alpha(\xi)-\langle x, \phi y\rangle \eta(z) \bar{c}_{12} \alpha(\xi)\right]\right.\right\}$,
$\mathcal{C}_{6}(V)=\left\{\alpha \in \mathcal{C}(V) \left\lvert\, \alpha(x, y, z)=\frac{1}{2 n}\left[\langle x, y\rangle \eta(z) c_{12} \alpha(\xi)-\langle x, z\rangle \eta(y) c_{12} \alpha(\xi)\right]\right.\right\}$,
$\mathcal{C}_{7}(V)=\left\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=\eta(z) \alpha(y, x, \xi)-\eta(y) \alpha(\phi x, \phi z, \xi), \quad c_{12} \alpha(\xi)=0\right\}$,
$\mathcal{C}_{8}(V)=\left\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=-\eta(z) \alpha(y, x, \xi)-\eta(y) \alpha(\phi x, \phi z, \xi), \quad \bar{c}_{12} \alpha(\xi)=0\right\}$,
$\mathcal{C}_{9}(V)=\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=\eta(z) \alpha(y, x, \xi)+\eta(y) \alpha(\phi x, \phi z, \xi)\}$,
$\mathcal{C}_{10}(V)=\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=-\eta(z) \alpha(y, x, \xi)+\eta(y) \alpha(\phi x, \phi z, \xi)\}$,
$\mathcal{C}_{11}(V)=\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=-\eta(x) \alpha(\xi, \phi y, \phi z)\}$,
$\mathcal{C}_{12}(V)=\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=\eta(x) \eta(y) \alpha(\xi, \xi, z)+\eta(x) \eta(z) \alpha(\xi, y, \xi)\}$.

Here, if $\left\{e_{i}\right\}, i=1,2, \ldots, 2 n+1$ denotes an arbitrary orthonormal basis we have

$$
\left\{\begin{array}{l}
c_{12} \alpha(x)=\sum \alpha\left(e_{i}, e_{i}, x\right) \tag{3.2}\\
\bar{c}_{12} \alpha(x)=\sum \alpha\left(e_{i}, \phi e_{i}, x\right), \quad \text { for all } x \in V .
\end{array}\right.
$$

Applying this algebraic decomposition to the geometry of almost contact structures, for each invariant subspace we obtain a different class of almost contact metric manifolds; more precisely, we shall say M of class $\mathcal{C}_{k}, k=1, \ldots, 12$, if, for every $p \in M$, the 3 -form $(\nabla \Phi)_{p}$ of the vector space ($T_{p} M, \phi_{p}, \xi_{p}, \eta_{p}, g_{p}$) belongs to $\mathcal{C}_{k}\left(T_{p} M\right)$.

For example, \mathcal{C}_{6} corresponds to the class of α-Sasakian manifolds, $\mathcal{C}_{2} \oplus \mathcal{C}_{9}$ to the class of almost cosymplectic manifolds, $\mathcal{C}_{3} \oplus \ldots \oplus \mathcal{C}_{8}$ to that one of normal manifolds (for an extensive study of these structures see [3]).

4-Classification of gauge transformations

Let M be an $(2 n+1)$-dimensional manifold endowed with an almost contact metric structure associated with a pseudo-convex $C R$-structure $(M, H(M)$) of hypersurface type.

Theorem 3. $\quad M$ is of class $\mathcal{C}_{6} \oplus \mathcal{C}_{9}$.
Proof. Following [3] we split the space $\mathcal{C}\left(T_{p} M\right), p \in M$, into the direct sum

$$
\begin{equation*}
\mathcal{C}\left(T_{p} M\right)=\mathscr{D}_{1} \oplus \mathscr{O}_{2} \oplus \mathscr{O}_{3}, \tag{4.1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\mathscr{O}_{1}=\{\alpha \in \mathcal{C}(V) \mid \alpha(\xi, x, y)=\alpha(x, \xi, y)=0\} \tag{4.2}\\
\mathscr{\partial}_{2}=\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=\eta(x) \alpha(\xi, y, z)+\eta(y) \alpha(x, \xi, z)+\eta(z) \alpha(x, y, \xi)\} \\
\mathscr{O}_{3}=\{\alpha \in \mathcal{C}(V) \mid \alpha(x, y, z)=\eta(x) \eta(y) \alpha(\xi, \xi, z)+\eta(x) \eta(z) \alpha(\xi, y, \xi)\}
\end{array}\right.
$$

obtaining

$$
\left\{\begin{array}{l}
\mathscr{O}_{1}=\mathfrak{C}_{1} \oplus \ldots \oplus \mathfrak{C}_{4} \tag{4.3}\\
\mathscr{O}_{2}=\mathfrak{C}_{5} \oplus \ldots \oplus \mathfrak{C}_{11} \\
\mathscr{\partial}_{3}=\mathfrak{C}_{12} .
\end{array}\right.
$$

As a consequence of (4.3) we can consider $(\nabla \Phi)_{p}$ as the sum of three compo-
nents $\alpha_{k} \in \mathscr{O}_{k}, k=1,2,3:$

$$
\begin{equation*}
(\nabla \Phi)_{p}=\alpha_{1}+\alpha_{2}+\alpha_{3} . \tag{4.4}
\end{equation*}
$$

On the other hand, a straightfoward computation proves that, for all X, Y, Z $\in \Gamma(H(M))$, the involutivity conditions (2.1) imply the equations:

$$
\left\{\begin{align*}
&\left(\nabla_{X} \Phi\right)(Y, Z)=\frac{1}{2} \eta([[\phi Z, \phi Y]-\phi[\phi Z, Y]-\phi[Z, \phi Y]-[Z, Y], X])= \tag{4.5}\\
&=\frac{1}{2} \eta\left(\left[N_{\phi}(Z, Y), X\right]\right)=0 \tag{4.6}\\
& \nabla_{\xi} \Phi=0
\end{align*}\right.
$$

(in the following, as in (4.5) and (4.6), to simplify the notations, we shall omit indicating the point p).

From (4.5) and (4.6) we deduce that $\nabla \Phi$ has not component in $\mathscr{O}_{1}=\mathcal{C}_{1} \oplus \ldots \oplus \mathcal{C}_{4}$ as well as in $\mathscr{\partial}_{3}=\mathcal{C}_{12}$; therefore $\nabla \Phi$ reduces to the only component $\alpha_{2} \in \mathscr{O}_{2}$.

Now comparing the equalities

$$
\left\{\begin{array}{l}
\bar{c}_{12}(\nabla \Phi)(\xi)=0, \tag{4.7}\\
c_{12}(\nabla \Phi)(\xi)=n,
\end{array}\right.
$$

with (3.1) we immediately obtain that $\nabla \Phi$ has not component in \mathcal{C}_{5} too, and that the component in \mathcal{C}_{6} is different from zero.

The non-existence of components for $\nabla \Phi$ in $\mathcal{C}_{7} \oplus \mathcal{C}_{8}$ follows from the relation

$$
\begin{equation*}
\left(\nabla_{X} \Phi\right)(\xi, Z)=-\left(\nabla_{\phi X} \Phi\right)(\xi, \phi Z)-g(X, Z) \tag{4.8}
\end{equation*}
$$

true for all $X, Z \in \Gamma(H(M))$.
Computing now directly from (3.1) the components of $\nabla \Phi$ in $\mathcal{C}_{9} \oplus \mathcal{C}_{10}$, applying (2.1), we find that $\nabla \Phi$ has a component different from zero in \mathcal{C}_{9}; for X, $Z \in \Gamma(H(M))$ and $Y=\xi$ its expression is: $\frac{1}{2} g\left(\left(\mathscr{L}_{\xi} \phi\right) Z, X\right)$, where $\mathfrak{L}_{\xi} \phi$ is the Lie derivative of ϕ with respect to ξ.

Finally, a simple computation proves that the component in \mathcal{C}_{11} vanishes.
This completes the proof.
According to [3] we obtain

Corollary 4. M is of class \mathcal{C}_{6} if and only if the almost contact structure (ϕ, ξ, η) is normal.

Proof. From the previous theorem we have that the component in \mathcal{C}_{9} is zero iff $\mathfrak{L}_{\xi} \phi=0$, and this relation is always satisfied when the almost contact structure is normal, i.e. when the (1,2)-tensor field N given by

$$
N=N_{\phi}+d \eta \otimes \xi
$$

vanishes.
On the other hand, in [7] it has been also proved that if $(M, H(M))$ satisfies the involutivity conditions and $\mathfrak{L}_{\xi} \phi=0$, then the almost contact structure (ϕ, ξ, η) is normal.

Let ($\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g}$) be now the new almost contact metric structure on M obtained from (ϕ, ξ, η, g) by a gauge transformation (2.3) and (2.4); this means that both almost contact structures are associated to the same strongly pseudo-convex structure $C R$-structure ($M, H(M)$) of M.

If $\tilde{\nabla}$ and $\widetilde{\Phi}$ denote the Levi-Civita connection and the fundamental 2-form of ($\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g}$) respectively, taking into account (2.3) and (2.4), an easy computation gives

$$
\begin{equation*}
\widetilde{\Phi}(X, Y)=e^{2 \sigma}\{\Phi(X, Y)-\eta(X) g(A, Y)+\eta(Y) g(A, X)\} \quad \text { for all } X, Y \in \chi(M) \tag{4.9}
\end{equation*}
$$

furthermore it will be useful for us to remark that the following formula holds:

$$
\begin{align*}
& \mathfrak{L}_{\tilde{\xi}} \tilde{\phi}(X)=e^{-\sigma}\left\{\mathfrak{L}_{\xi} \phi(X)+(\phi X(\sigma)+\eta(X) A(\sigma))(\xi+\phi A)+[\phi A, \phi X]\right. \tag{4.10}\\
&-\phi[\phi A, X]+h X(\sigma) A+\eta(X)[\xi+\phi A, A]\} .
\end{align*}
$$

Theorem 5. If dimension of M is $2 n+1, n \geqslant 2,(M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is of class $\mathcal{C}_{4} \oplus \mathcal{C}_{5} \oplus \mathcal{C}_{6} \oplus \mathcal{C}_{9}$. When $n=1$ then M has dimension 3 and $(M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is of class $\mathcal{C}_{5} \oplus \mathcal{C}_{6} \oplus \mathcal{C}_{9}$.

Proof. Taking into account previous formulas and definitions, after lengthy straightforward computation, it is possible to prove the following relations bet-
ween $\tilde{\nabla} \widetilde{\Phi}$ and $\nabla \Phi$

$$
\begin{align*}
& \left(\tilde{\nabla}_{X} \widetilde{\Phi}\right)(Y, Z)=e^{2 \sigma}\left(\nabla_{X} \Phi\right)(Y, Z)+ \\
& +\frac{e^{2 \sigma}}{2}\{Z(\sigma) g(X, \varphi Y)-Y(\sigma) g(X, \varphi Z)+\varphi Z(\sigma) g(X, Y)-\varphi Y(\sigma) g(X, Z)\}, \tag{4.11}
\end{align*}
$$

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \widetilde{\Phi}\right)(\tilde{\xi}, Z) & =e^{\sigma}\left(\nabla_{X} \Phi\right)(\xi, Z)-\frac{e^{\sigma}}{2}\{\xi(\sigma) g(X, \varphi Z)-\varphi Z(\sigma) g(\varphi A, X) \tag{4.12}\\
& -g([\varphi A, \varphi Z), X)-g([\varphi A, Z], \varphi X)-Z(\sigma) g(A, X)\}
\end{align*}
$$

Suppose $n \geqslant 2$ and, as above, consider $\tilde{\nabla} \widetilde{\Phi}$ as the sum of three components $\alpha_{k} \in \mathscr{O}_{k}, k=1,2,3$:

$$
\begin{equation*}
\tilde{\nabla} \widetilde{\Phi}=\alpha_{1}+\alpha_{2}+\alpha_{3} . \tag{4.14}
\end{equation*}
$$

The vanishing of α_{3} follows easily from the equations (4.6) and (4.13); as a consequence $\widetilde{\nabla} \widetilde{\Phi}$ has no component in \mathcal{C}_{12}.

With regard to α_{2}, Theorem 3, (4.10) and (4.12) imply that we have only three components different from zero in $\mathcal{C}_{5}, \mathfrak{C}_{6}$ and \mathcal{C}_{9} given respectively by

$$
\begin{equation*}
-\frac{1}{2} e^{\sigma} \xi(\sigma) g(X, \phi Z), \quad-\frac{1}{2} e^{\sigma} g(X, Z), \quad \frac{1}{2} \tilde{g}\left(\left(\mathscr{L}_{\tilde{\xi}} \tilde{\phi}\right) Z, X\right) \tag{4.15}
\end{equation*}
$$

for every $X, Z \in \Gamma(H(M))$ and $Y=\xi$.
Supposing at the end $X, Y, Z \in \Gamma(H(M))$ we can compute the component in \circlearrowleft_{1}. As the restriction to $H(M)$ of our structure reduces to an almost Hermitian structure, applying [6] and comparing with (4.5) and (4.11) we find for $\left(\widetilde{\nabla}_{X} \widetilde{\Phi}\right)(Y, Z)$ the only following component in \mathcal{C}_{4} :

$$
\left\{\begin{array}{l}
\frac{1}{2} e^{\sigma}(Z(\sigma) g(X, \phi Y)-Y(\sigma) g(X, \phi Z))+ \tag{4.16}\\
+\frac{1}{2} e^{\sigma}((\phi Z)(\sigma) g(X, \phi Y)-(\phi Y)(\sigma) g(X, \phi Z))
\end{array}\right.
$$

The case $n=1$ directly follows from [3] and the above considerations.

Corollary 6. Supposing M of dimension $2 n+1 \geqslant 5$, we have:
(i) $(M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is of class $\mathcal{C}_{4} \oplus \mathcal{C}_{6} \oplus \mathcal{C}_{9}$ iff $\xi(\sigma)=0$;
(ii) $(M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is of class $\mathcal{C}_{5} \oplus \mathcal{C}_{6} \oplus \mathcal{C}_{9}$ iff $X(\sigma)=0, \forall X \in \Gamma(H(M))$;
(iii) $(M, \widetilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is of class $\mathcal{C}_{4} \oplus \mathcal{C}_{5} \oplus \mathcal{C}_{6}$ iff $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta})$ is normal, i.e. iff (4.14) holds.

Remark 7. From Corollary 4 and Corollary 6, (iii), we deduce that the normality of the structure is preserved iff

$$
[\phi A, \phi X]-\phi[\phi A, X]=-\phi X(\sigma)(\xi+\phi A)+h X(\sigma) A
$$

Then we can state
Corollary 8. If (M, ϕ, ξ, η, g) is Sasakian and $\operatorname{dim} M=3$ then ($M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g}$) obtained by (2.3) with σ not constant is Sasakian iff
(a) $\xi(\sigma)=0$;
(b) $[\phi A, A]=-A(\sigma)(\xi+\phi A)$.

5 - Examples

The unit tangent bundle

Let (M, g) be an $(n+1)$-dimensional Riemannian manifold, $n \geqslant 2$; we denote by $T M$ the tangent bundle of the manifold M and by $\bar{\pi}: T M \rightarrow M$ the canonical projection. If $\left(x^{1}, \ldots, x^{n+1}\right)$ are local coordinates on M, then $\left(x^{1}, \ldots, x^{n+1}\right)$ and the fibre coordinates $\left(y^{1}, \ldots, y^{n+1}\right)$ define together a system of local coordinates on $T M$. The Levi-Civita connection D of g determines a decomposition of $T T M$ in the direct sum of the vertical distribution $V T M$ and the horizontal distribution $H T M$, i.e. $T T M=V T M \oplus H T M$. Then the well known almost complex structure on $T M$ is defined by:

$$
\begin{equation*}
J X^{H}=X^{V}, \quad J X^{V}=-X^{H} \quad X \in \chi(M) \tag{5.1}
\end{equation*}
$$

where X^{H}, X^{V} are the horizontal and vertical lifts of X with respect to D respectively. Furthermore the Sasaki metric \dot{g} on $T M$ is given by
$\dot{g}\left(X^{V}, Y^{V}\right)=g(X, Y), \quad \dot{g}\left(X^{H}, Y^{H}\right)=g(X, Y), \quad \dot{g}\left(X^{V}, Y^{H}\right)=0 \quad X, Y \in \chi(M)$.
Let $T_{1} M$ be the unit tangent bundle of M; then, we have $v \in T_{1} M$ iff $v \in T M$ and $g(v, v)=1$. If $v=y^{i} \frac{\partial}{\partial x^{i}}$, we conclude that the unit tangent bundle
$\pi: T_{1} M \rightarrow M$ is a hypersurface in $T M$, given in the local coordinates by the equation:

$$
\begin{equation*}
g_{i j}(x) y^{i} y^{j}-1=0 \tag{5.2}
\end{equation*}
$$

It is possible to prove that, as hypersurface of the almost Kaehlerian manifold $(T M, J, \dot{g}), T_{1} M$ has a natural almost contact metric structure which defines a pseudo-convex $C R$-structure ($T_{1} M, H\left(T_{1} M\right)$) iff the base manifold M has constant sectional curvature c (see [8], [9], [13]).

Moreover, if we consider a generator system for $H\left(T_{1} M\right)$) given by the following vector fields: $Y_{i}=\left(\delta_{i}^{j}-g_{i 0} y^{j}\right) \frac{\partial}{\partial y^{j}}$ and $X_{i}=\left(\delta_{i}^{j}-g_{i 0} y^{j}\right) \frac{\delta}{\delta x^{j}}$, where $g_{i 0}=g_{i k} y^{k}$, and we still denote by \dot{g} the metric induced from $T M$ on $T_{1} M$, the almost contact structure $(\phi, \xi, \eta, \dot{g})$ associated with the $C R$-structure ($T_{1} M, H\left(T_{1} M\right)$) satisfies the following relations:

$$
\left\{\begin{array}{l}
\eta=g_{i 0} d x^{i}, \quad \xi=y^{i} \frac{\delta}{\delta x^{i}} \tag{5.3}\\
\phi X_{i}=Y_{i}, \quad \phi Y_{i}=-X_{i}, \quad \phi \xi=0 \quad i, j=1, \ldots, n+1,
\end{array}\right.
$$

where $\frac{\delta}{\delta x^{i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{H}=\frac{\partial}{\partial x^{i}}-\Gamma_{i 0}^{j} \frac{\partial}{\partial y^{j}}, \Gamma_{i 0}^{j}=y^{k} \Gamma_{i k}^{j}$, where $\Gamma_{i k}^{j}$ are the Christoffel symbols corresponding to the connection D.

Computing now the Levi-Civita connection $\dot{\nabla}$ of the metric \dot{g} on the vector fields Y_{i}, X_{i}, ξ we find:

$$
\left\{\begin{array}{l}
\dot{\nabla}_{Y_{i}} Y_{j}=-g_{j 0} Y_{i}, \quad \dot{\nabla}_{X_{i}} Y_{j}=\left(\Gamma_{i j}^{k}-g_{i 0} \Gamma_{j 0}^{k}\right) Y_{k}+\frac{c}{2} h_{i j} \xi \tag{5.4}\\
\dot{\nabla}_{Y_{i}} X_{j}=-g_{j 0} X_{i}+\frac{c-2}{2} h_{i j} \xi, \quad \dot{\nabla}_{X_{i}} X_{j}=\left(\Gamma_{i j}^{k}-g_{i 0} \Gamma_{j 0}^{k}\right) X_{k} \\
\dot{\nabla}_{Y_{i}} \xi=-\frac{c-2}{2} X_{i}, \quad \dot{\nabla}_{X_{i}} \xi=-\frac{c}{2} Y_{i}, \quad \dot{\nabla}_{\xi} \xi=0 \\
\dot{\nabla}_{\xi} Y_{i}=\Gamma_{i 0}^{k} Y_{k}-\frac{c}{2} X_{i}, \quad \dot{\nabla}_{\xi} X_{i}=\Gamma_{i 0}^{k} X_{k}+\frac{c}{2} Y_{i}, \quad i, j, k=1, \ldots, n+1,
\end{array}\right.
$$

where

$$
\begin{equation*}
h_{i j}=g_{i j}-g_{i 0} g_{j 0} . \tag{5.5}
\end{equation*}
$$

Then we easily can write the expressions of the following Lie brackets:

$$
\left\{\begin{array}{l}
{\left[Y_{i}, Y_{j}\right]=g_{i 0} Y_{j}-g_{j 0} Y_{i}, \quad\left[X_{i}, X_{j}\right]=\left(g_{j 0} \Gamma_{i 0}^{k}-g_{i 0} \Gamma_{j 0}^{k}\right) X_{k}} \tag{5.6}\\
{\left[Y_{i}, X_{j}\right]=-g_{j 0} X_{i}-\left(\Gamma_{i j}^{k}-g_{j 0} \Gamma_{i 0}^{k}\right) Y_{k}-h_{i j} \xi} \\
{\left[Y_{i}, \xi\right]=X_{i}-\Gamma_{i 0}^{k} Y_{k}, \quad\left[X_{i}, \xi\right]=-c Y_{i}-\Gamma_{i 0}^{k} X_{k} .}
\end{array}\right.
$$

From the previous formulas, we obtain that the covariant derivative $\dot{\nabla} \Phi$ of the fundamental 2-form $\Phi(X, Y)=\dot{g}(X, \phi Y)=-d \eta(X, Y)$ of $(\phi, \xi, \eta, \dot{g})$ is not vanishing only in the following cases

$$
\left\{\begin{array}{l}
\left(\dot{\nabla}_{Y_{i}} \Phi\right)\left(Y_{j}, \xi\right)=-\left(\dot{\nabla}_{Y_{i}} \Phi\right)\left(\xi, Y_{j}\right)=\frac{c-2}{2} h_{i j} \tag{5.7}\\
\left(\dot{\nabla}_{X_{i}} \Phi\right)\left(X_{j}, \xi\right)=-\left(\dot{\nabla}_{X_{i}} \Phi\right)\left(\xi, X_{j}\right)=-\frac{c}{2} h_{i j}
\end{array}\right.
$$

and finally, from formulas (5.6), we have that the following equations hold

$$
\begin{equation*}
\left(\mathscr{L}_{\xi} \phi\right) X_{i}=(c-1) X_{i}, \quad\left(\mathscr{L}_{\xi} \phi\right) Y_{i}=(1-c) Y_{i} \quad i=1, \ldots, n+1 \tag{5.8}
\end{equation*}
$$

As a consequence, taking into account Theorem 3 and Corollary 4, we can state

Proposition 9. ($\left.T_{1} M, \phi, \xi, \eta, \dot{g}\right)$ is of class $\mathcal{C}_{6} \oplus \mathcal{C}_{9}$. In particular, ($T_{1} M, \phi, \xi, \eta, \dot{g}$) belongs to \mathcal{C}_{6} iff $c=1$.

Apply now the gauge transformation (2.3) to (ϕ, ξ, η), obtaining $\tilde{\eta}=e^{\sigma} g_{i 0} d x^{i}$; furthermore the vector field $A \in H(M)$ can be expressed by means of $\left\{Y_{i}, X_{i}\right\}$ as

$$
\begin{equation*}
A=\lambda^{i} Y_{i}+\mu^{i} X_{i}, \quad \text { where } \lambda^{i}, \mu^{i} \in C^{\infty}\left(T_{1} M\right) . \tag{5.9}
\end{equation*}
$$

Moreover, taking into account (2.4), we obtain for the new metric \tilde{g} the relations:

$$
\left\{\begin{array}{lll}
\tilde{g}\left(Y_{i}, Y_{j}\right)=\tilde{g}\left(X_{i}, X_{j}\right)=e^{2 \sigma} h_{i j}, & \tilde{g}\left(X_{i}, Y_{j}\right)=0 \tag{5.10}\\
\tilde{g}\left(X_{i}, \xi\right)=e^{2 \sigma} Y_{i}(\sigma), & \tilde{g}\left(Y_{i}, \xi\right)=-e^{2 \sigma} X_{i}(\sigma) & \\
\tilde{g}(\xi, \xi)=e^{2 \sigma}\left(1+\|A\|^{2}\right), & \tilde{g}(\tilde{\xi}, \tilde{\xi})=1, & \tilde{g}(\xi, \tilde{\xi})=e^{\sigma},
\end{array}\right.
$$

where $\|A\|^{2}=\lambda^{i} Y_{i}(\sigma)+\mu^{i} X_{i}(\sigma)$.
Then, considering the covariant derivative $\tilde{\nabla} \widetilde{\Phi}$ of the fundamental 2-form
$\widetilde{\Phi}(X, Y)=\tilde{g}(X, \tilde{\phi} Y)$ of the new structure, we obtain:

$$
\left\{\begin{array}{c}
\left(\tilde{\nabla}_{Y_{i}} \widetilde{\Phi}\right)\left(Y_{j}, Y_{k}\right)=-\left(\tilde{\nabla}_{Y_{i}} \widetilde{\Phi}^{\prime}\right)\left(X_{j}, X_{k}\right)= \\
=\left(\tilde{\nabla}_{X_{i}} \widetilde{\Phi}\right)\left(Y_{j}, X_{k}\right)=\frac{e^{2 \sigma}}{2}\left(X_{j}(\sigma) h_{i k}-X_{k}(\sigma) h_{i j}\right) \\
\left(\tilde{\nabla}_{X_{i}} \widetilde{\Phi}\right)\left(Y_{j}, Y_{k}\right)=-\left(\tilde{\nabla}_{X_{i}} \widetilde{\Phi}\right)\left(X_{j}, X_{k}\right)= \\
=-\left(\widetilde{\nabla}_{Y_{i}} \widetilde{\Phi}\right)\left(Y_{j}, X_{k}\right)=\frac{e^{2 \sigma}}{2}\left(Y_{j}(\sigma) h_{i k}-Y_{k}(\sigma) h_{i j}\right) \\
\\
\left(\tilde{\nabla}_{Y_{i}} \widetilde{\Phi}\right)\left(Y_{j}, \tilde{\xi}\right)=\frac{e^{\sigma}}{2}(c-2) h_{i j}-\frac{e^{\sigma}}{2} g_{k 0} \lambda^{k} h_{i j}-\frac{e^{\sigma}}{2} \mu^{k}\left(\Gamma_{j k}^{l}-g_{j 0} \Gamma_{k 0}^{l}\right) h_{l i}+ \\
\quad+\frac{e^{\sigma}}{2}\left(X_{i}(\sigma) X_{j}(\sigma)-Y_{i}(\sigma) Y_{j}(\sigma)\right)+\frac{e^{\sigma}}{2}\left(Y_{i}\left(\lambda^{k}\right) h_{j k}-X_{j}\left(\mu^{k}\right) h_{i k}\right) \tag{5.11}\\
\left(\tilde{\nabla}_{Y_{i}} \widetilde{\Phi}\right)\left(X_{j}, \tilde{\xi}_{\xi}\right)=e^{\sigma} \xi(\sigma) h_{i j}-e^{\sigma} g_{k 0} \mu^{k} h_{i j}- \\
\quad-\frac{e^{\sigma}}{2}\left(X_{i}(\sigma) Y_{j}(\sigma)+Y_{i}(\sigma) X_{j}(\sigma)\right)+\frac{e^{\sigma}}{2}\left(Y_{i}\left(\mu^{k}\right) h_{j k}+Y_{j}\left(\mu^{k}\right) h_{i k}\right) \\
\left(\tilde{\nabla}_{X_{i}} \widetilde{\Phi}\right)\left(Y_{j}, \tilde{\xi}\right)=-e^{\sigma} \xi(\sigma) h_{i j}+\frac{e^{\sigma}}{2} \lambda^{k} \frac{\partial}{\partial x^{k}}\left(h_{i j}\right)- \\
\quad-\frac{e^{\sigma}}{2}\left(X_{i}(\sigma) Y_{j}(\sigma)+Y_{i}(\sigma) X_{j}(\sigma)\right)+\frac{e^{\sigma}}{2}\left(X_{i}\left(\lambda^{k}\right) h_{j k}+X_{j}\left(\lambda^{k}\right) h_{i k}\right) \\
\left(\tilde{\nabla}_{X_{i}} \widetilde{\Phi}\right)\left(X_{j}, \tilde{\xi}\right)=-\frac{e^{\sigma}}{2} c h_{i j}+\frac{e^{\sigma}}{2} g_{k 0} \lambda^{k} h_{i j}+\frac{e^{\sigma}}{2} \mu^{k}\left(\Gamma_{i k}^{l}-g_{i 0} \Gamma_{k 0}^{l}\right) h_{l j}+ \\
\quad+\frac{e^{\sigma}}{2}\left(Y_{i}(\sigma) Y_{j}(\sigma)-X_{i}(\sigma) X_{j}(\sigma)\right)+\frac{e^{\sigma}}{2}\left(X_{i}\left(\mu^{k}\right) h_{j k}-Y_{j}\left(\lambda^{k}\right) h_{i k}\right)
\end{array}\right.
$$

and, as in the general case, $\tilde{\nabla}_{\tilde{\xi}} \widetilde{\Phi}=0$.
Finally, after a straightforward computation, we find that the new structure $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta})$ is not normal and Theorem 5 and Corollary 6 imply that ($\left.T_{1} M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g}\right)$ belongs to $\mathcal{C}_{4} \oplus \mathcal{C}_{5} \oplus \mathcal{C}_{6} \oplus \mathcal{C}_{9}$.

Every component of ($T_{1} M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g}$) with respect to the basis $\left\{X_{i}, Y_{i}, \xi\right\}$ can be explicitely written by means of (5.11).

The Heisenberg group

As it is well known (see for example [14]), the Heisenberg Lie group H_{3} is the
subgroup of $G L(3, \mathbb{R})$ given by

$$
H_{3}=\left\{\left(\begin{array}{lll}
1 & x & y \tag{5.12}\\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) ; x, y, z \in \mathbb{R}\right\}
$$

with the usual matrix multiplication.
Then it is easy to see that

$$
\begin{equation*}
d s^{2}=d x^{2}+d z^{2}+(d y-x d z)^{2} \tag{5.13}
\end{equation*}
$$

is a left invariant metric on H_{3} as well as the following vector fields:

$$
\begin{equation*}
X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=x \frac{\partial}{\partial y}+\frac{\partial}{\partial z}, \quad X_{3}=\frac{\partial}{\partial y} \tag{5.14}
\end{equation*}
$$

If we consider $H\left(H_{3}\right)$ generated by X_{1} and X_{2}, we have that $\left(H_{3}, H\left(H_{3}\right)\right)$ is a pseudo-convex $C R$-structure on the Heisenberg group with associated almost contact metric structure defined by the formulas:

$$
\begin{cases}\eta=x d z-d y & \xi=-X_{3} \tag{5.15}\\ \phi X_{1}=X_{2}, & \phi X_{2}=-X_{1}, \quad \phi \xi=0\end{cases}
$$

while the equation (5.13) gives the associated metric g.
Let ∇ be the Levi-Civita connection of g and Φ the fundamental 2-form defined as usual. Then, the only cases where the covariant derivative is different from zero are the following:

$$
\left(\nabla_{X_{1}} \Phi\right)\left(X_{1}, \xi\right)=\left(\nabla_{X_{2}} \Phi\right)\left(X_{2}, \xi\right)=\frac{1}{2}
$$

and $\left(H_{3}, \phi, \eta, \xi, g\right) \in \mathcal{C}_{6}$.
Put now $A=\mu X_{1}+\lambda X_{2}, \lambda, \mu \in C^{\infty}\left(H_{3}\right)$; after the gauge transformation we have

$$
\mu=-X_{1}(\sigma), \quad \lambda=-X_{2}(\sigma)
$$

and the components of the new covariant derivative are:

$$
\left\{\begin{array}{l}
\left(\tilde{\nabla}_{X_{1}} \widetilde{\Phi}\right)\left(X_{1}, \tilde{\xi}\right)=\frac{e^{\sigma}}{2}\left(X_{1}(\mu)-X_{2}(\lambda)-\lambda^{2}+\mu^{2}+1\right) \tag{5.16}\\
\left(\tilde{\nabla}_{X_{2}} \widetilde{\Phi}\right)\left(X_{2}, \tilde{\xi}\right)=\frac{e^{\sigma}}{2}\left(X_{2}(\lambda)-X_{1}(\mu)-\mu^{2}+\lambda^{2}+1\right) \\
\left(\tilde{\nabla}_{X_{1}} \widetilde{\Phi}\right)\left(X_{2}, \tilde{\xi}\right)=e^{\sigma}\left(-\xi(\sigma)+X_{1}(\lambda)+\mu \lambda\right) \\
\left(\tilde{\nabla}_{X_{2}} \widetilde{\Phi}\right)\left(X_{1}, \tilde{\xi}\right)=e^{\sigma}\left(\xi(\sigma)+X_{2}(\mu)+\mu \lambda\right)
\end{array}\right.
$$

Formulas (5.16) and Theorem 5 imply that $\left(H_{3}, \tilde{\phi}, \tilde{\eta}, \tilde{\xi}, \tilde{g}\right) \in \mathcal{C}_{5} \oplus \mathcal{C}_{6} \oplus \mathcal{C}_{9}$. In particular taking into account Corollary 8, after a straightforward computation, we can state

Proposition 10. ($\left.H_{3}, \tilde{\phi}, \tilde{\eta}, \tilde{\xi}, \tilde{g}\right)$ is of class \mathcal{C}_{6} iff

$$
\sigma(x, y, z)=-\ln \left((x-\alpha)^{2}+(z-\beta)^{2}+\gamma\right)+\varepsilon
$$

with $\alpha, \beta, \gamma, \varepsilon \in \mathbb{R}$ and $\gamma>0$.
Remark 11. We remark that, from Corollary 8, for every $\sigma=\sigma(y)$ a not constant function one obtains an almost contact metric structure associated with ($H_{3}, H\left(H_{3}\right)$) belonging to $\mathcal{C}_{5} \oplus \mathcal{C}_{6} \oplus \mathcal{C}_{9}$. We have also for

$$
\sigma(x, y, z)=-\ln \left((x-\alpha)^{2}+\alpha(z-\beta)^{2}+\gamma\right)+\varepsilon
$$

with $\alpha, \beta, \gamma, \varepsilon, a \in \mathbb{R}$ and $\gamma, a>0, a \neq 1$ an almost contact metric structure belonging to $\mathcal{C}_{6} \oplus \mathcal{C}_{9}$.

References

[1] F. Belgun, Géométrie conforme et géométrie CR en dimension 3 et 4, Thèse de Doctorat, École polytechnique, Palaiseau, Paris 1999.
[2] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, New York 1976.
[3] D. Chinea and C. Gonzales, A Classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
[4] D. Chinea and J. C. Marrero, Conformal changes of almost contact metric structures, Riv. Mat. Univ. Parma (5) 1 (1992), 19-31.
[5] P. Gauduchon and L. Ornea, Locally conformally Kaehler metrics on Hopf surfaces, Ann. Inst. Fourier, Grenoble 48 (1998), 1107-1127.
[6] A. Gray and L. M. Hervella, The sixteen classes of almost hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
[7] P. Matzeu and V. Oproiu, The Bochner type curvature tensor of pseudoconvex $C R$-structures, SUT J. Math. 31 (1995), 1-16.
[8] G. Mitric, CR-structures on the Unit Sphere Bundle in the tangent bundle of a Riemannian manifold, preprint 32 Faculty of Mathematics, University of Timisoara 1991.
[9] M. I. Munteanu, CR-structures on the unit co-tangent bundle and Bochner type tensor, An. Univ. Al. I. Cuza Ia si. Mat. (N.S.) 44 (1998), 125-136.
[10] K. Sakamoto and Y. Takemura, On almost contact structures belonging to a CRstructure, Kodai Math. J. 3 (1980), 144-161.
[11] N. Tanaka, A differential geometric study on strongly pseudoconvex manifolds, Lectures in Math., Kyoto University 9, Kyoto 1975.
[12] S. Tanno, The Bochner type curvature tensor of contact Riemannian structure, Hokkaido Math. J. 19 (1990), 55-66.
[13] S. Tanno, The standard CR-structure on the unit tangent bundle, Tôhoku Math. J. 44 (1992), 535-543.
[14] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, Cambridge 1983.

Abstract

In this paper gauge transformations of almost contact metric structures associated with strongly pseudo-convex CR-structures are studied from an algebraic point of view and some examples are given.

[^0]: (*) P. Matzeu: Dipartimento di Matematica, Università Studi di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy, e-mail: matzeu@vaxca1.unica.it - Member of GNSAGA; M. I. MUNTEANU: University «Al.I.Cuza» of Iaşi, Faculty of Mathematics, Bd. Carol I, nr. 11, 6600-Iaşi, Romania, e-mail: munteanu@uaic.ro - Beneficiary of a Ph.D. Fellowship of Socrates Erasmus Program at the Department of Mathematics of University of Cagliari, Italy.
 ${ }^{(* *)}$ Received February 1, 2000 and in revised form May 8, 2000. AMS classification 53 C 15, 53 C 25.

