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Inequalities for real random variables connected

with Jensen’s inequality and applications (**)

1 - Introduction

Let (V , F, P) be a fixed probability space. For all real number rF1, we deno-
te L r (P) the usual (real) Lebesgue space endowed with its norm V . Vr , and for
each Z�L 1 (P), the expected value of Z is denoted by E[Z]. We recall (Jensen’s
inequality) that

f(E[Z] )G (F) E[f(Z) ] ,(1)

for all Z�L 1 (P) and all convex (concave) function f defined on an interval con-
taining the range of Z , such that f(Z)�L 1 (P). The purpose of this paper is to gi-
ve some inequalities related to this inequality for a wide class of sequences of real
integrable random variables on (V , F, P). This class contains the sequences of in-
dependent and identically distributed real random variables.

This paper is organized as follows. In the section 2, we state and prove our
main results. In the section 3, we give other results valid for the particular case of
independent and identically distributed real random variables. In the sections 4
and 5, we treat some examples and give some natural applications.

We notice that our results generalize and unify a great number of discrete ine-
qualities established by S. S. Dragomir in several articles and bring some comple-
ments to them.

(*) Département de Mathématiques, Faculté des Sciences-Semlalia, Université Cadi
Ayyad, Av. du prince My, Abdellah, B.P. 2390, Marrakech, Maroc.

(**) Received April 1, 1998 and in revised form June 6, 2000. AMS classification 60 E 15,
26 A 51, 26 D 99, 26 D 15, 39 B 72.
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2 - Main results

N o t a t i o n s 2.1. In all this paper, N* designates the set of nonzero integers,
and Pf (N*) designates the collection of all finite and nonvoid subsets of N*.
Let X »4 (Xn )n41

Q be a sequence of real integrable random variables on (V , F, P).

For each I� Pf (N*), we denote YI »4
1

NIN
!
i�I

Xi , where NIN is the cardinal of I .

When I4]1, 2 , R , n(, we use the notation Yn instead of YI . We suppose that
Xn (V)% I, for all integer nF1, where I is a fixed interval of R . We introduce the
set F X (I, R) (resp. L X (I, R) ) of all real convex (resp. concave) continuous
functions f defined on I, verifying the following properties:

(i) f i YI is integrable for all I� Pf (N*), and
(ii) E[f i YI ]4E[f i YJ ] for all I , J� Pf (N*) having the same cardinal.

We remark that if X is a sequence of independent and identically distributed
real random variables then F X (I, R) (resp. L X (I, R)) is nothing but the set of all
real convex (resp. concave) continuous functions defined on I.

One of the main results of this paper is the following

T h e o r e m 2.2. Let f�F X (I, R) (resp. f�L X (I, R) ). Then we have

E[f(Yn11 ) ]G (F) E[f(Yn ) ]G (F) E[f(X1 ) ] (n�N*.(2)

Moreover, if one has E[Xn ]4E[X1 ] for all n�N* then we have

f(E[X1 ] )G (F) E[f(Yn11 ) ]G (F) E[f(Yn ) ]G (F) E[f(X1 ) ] (n�N*.(3)

P r o o f . (a) Let f�F(I, R) and let n�N*. For each i�In11 »4]1, 2 , R ,
n11(, we set I(i) »4In11 0]i(. By using the convexity of f , we get for almost all
v�V ,

f i YIn11
(v)4f k 1

n11
!

i�In11

Xi (v)lGf k 1

n11
!

i�In11

1

n
k !

j�I(i)
Xj (v)ll

G
1

n11
!

i�In11

f k 1

n
!

j�I(i)
Xj (v)l4 1

n11
!

i�In11

f i YI(i) (v) .

By integrating all members of these inequalities and using (ii), we obtain
(2).

(b) Now, suppose that all elements of the sequence (Xn )n41
Q have the same
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expected value. Then by using Jensen’s inequality, we obtain for all integer
n�N*,

f(E[X1 ] )4f u �
V

X1 (v) dP(v)v4f u 1

n
!

i41

i4n

�
V

Xi (v) dP(v)v

4fu �
V

Yn (v) dP(v)vG�
V

f i Yn (v) dP(v)4E[f i Yn ]

G
1

n
!

i41

i4n

�
V

f i Xi dP(v)4E[f i X1 ] .

This proves (3). The case where f is concave is treated in a similar man-
ner. r

Some improvements to Theorem 2.2 are given by the following

T h e o r e m 2.3. We suppose that E[Xn ]4E[X1 ] for all n�N* and let f

�F X (I, R). Then for all integer n�N*, the following inequalities hold:

E[f(X1 ) ]2f(E[X1 ] )FE[f(X1 ) ]2E[f i Yn ]

FN 1

n
E kN !

i41

n

f i XiNl2E[Nf i Yn N] NF0 .
(4)

P r o o f . The first inequality of (4) is true. We have only to prove the second
inequality. By using the convexity of f , we obtain for all n�N* and almost all
v�V ,

1

n
!

i41

n

f i Xi (v)2f i Yn (v)4N 1

n
!

i41

n

f i Xi (v)2f i Yn (v) N
FNN 1

n
!

i41

n

f i Xi (v) N2Nf i Yn (v)NNF0 .
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By integrating all members of these inequalities, we get

E[f(X1 ) ]2E[f i Yn ]FE kN 1

n
!

i41

n

f i Xi2f i YnNl
FN 1

n
E kN !

i41

n

f i XiNl2E[Nf i YnN] NF0 .

This achieves the proof of Theorem 2.3. r

R e m a r k 2.4. The inequalities obtained in the previous theorems may be ge-
neralized. Indeed, let (qn )n41

Q be a sequence of positive real numbers such that

Qn »4 !
i41

n

qiD0 for all n�N*, and set

Zn »4
1

Qn

!
i41

n

qi Xi (n�N*.

Then, with these notations, we have the following

T h e o r e m 2.5. We suppose that E[Xn ]4E[X1 ] for all n�N*. Let f

�F X (I, R) (resp. f�L X (I, R) ). Then we have

f(E[X1 ] )G (F) E[f(Zn ) ]G (F) E[f(X1 ) ] (n�N*.(5)

P r o o f . (a) Let f�F X (I, R). Then, by using Jensen’s inequality, we obtain
for all integer n�N*,

f(E[X1 ] )4f u �
V

X1 (v) dP(v)v4f u 1

Qn

!
i41

n

�
V

qi Xi (v) dP(v)v

4f u �
V

Zn (v) dP(v)vG�
V

f i Zn (v) dP(v)4E[f i Zn ]

G
1

Qn

!
i41

n

qi E[f i Xi ]4E[f i X1 ] .

(b) In a similar manner we treat the case where f�L X (I, R). Thus our theorem
is proved. r

Some improvements to Theorem 2.5 are given by the following

T h e o r e m 2.6. We suppose that E[Xn ]4E[X1 ] for all n�N*, and let f
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�F X (I, R). Then for all integer n�N*, the following inequalitites hold:

E[f(X1 ) ]2f(E[X1 ] )FE[f(X1 ) ]2E[f i Zn ]

FN 1

Qn

E kN !
i41

n

qi f i XiNl2E[Nf i Zn N] NF0 .
(6)

This theorem is proved by arguments analogous to those used in the proof of
Theorem 2.3.

3 - The case of i.i.d. real random variables

This section deals with the particular case of independent and identically di-
stributed real random variables.

T h e o r e m 3.1. Let (Xn )n41
Q be a sequence of independent and identically di-

stributed real integrable r.v.s on (V , F, P). Let I be an interval of R containing
X1 (V), and let f be any arbitrary convex (resp. concave) continuous function on
I. Then the following inequalities hold:

f(E[X1 ] )G (F) E[f(Yn ) ]G (F) E[f(Zn ) ]G (F) E[f(X1 ) ] (n�N*.(7)

P r o o f . We need to prove only the second inequality in (7). To this end,
for all integer n�N*, we introduce the following random variables defined on
V by

U1 »4
1

Qn

(q1 X11q2 X21R1qn21 Xn211qn Xn )

U2 »4
1

Qn

(qn X11q1 X21R1qn22 Xn211qn21 Xn )

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

Un21 »4
1

Qn

(q3 X11q4 X21R1q1 Xn211q2 Xn )

Un »4
1

Qn

(q2 X11q3 X21R1qn Xn211q1 Xn ) .
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A simple computation will give the equality

U11U21R1Un211Un

n
4

X11X21R1Xn211Xn

n
,

from which we derive the following inequality,

f g U11U21R1Un

n
hG (F)

1

n
(f(U1 )1f(U2 )1R1f(Un ) ) ,

which implies

f g X11X21R1Xn211Xn

n
hG (F)

1

n
f g 1

Qn

(q1 X11q2 X21R1qn21 Xn211qn Xn )h1R

R1
1

n
f g 1

Qn

(q2 X11q3 X21R1qn Xn211q1 Xn )h .

By integrating the members of the last inequality we obtain E[f(Yn ) ]
G (F)E[f(Zn ) ]. r

In the next theorem, we discuss the convergence of the sequence
(E[f(Yn ) ] )nF1.

T h e o r e m 3.2. Let (Xn )n41
Q be a sequence of independent and identically

distributed real integrable r.v.s on (V , F, P). We suppose that Xn (V)% I for
all n�N*, where I is a bounded interval of R . Let f be a any arbitrary convex
(concave) continuous function on I. Then the following holds:

f(E[X1 ] )4 lim
nKQ

E[f(Yn ) ]4 inf
n�N*

E[f(Yn ) ] gresp sup
n�N*

E[f( Yn ) ]h .(8)

P r o o f . The strong law of large numbers and the continuity of f , ensure
pointwise convergence of the sequence of functions (f(Yn ) )n to f(E[X1 ] ) on V .
We apply then Lebesgue’s dominated convergence in order to get the first equali-
ty in (8). The remainder is a consequence of Theorem 2.2. Thus our result is
proved. r

In the next proposition, we prove the convergence of the sequence
(E[f(Yn ) ] )nF1 in a more general setting. Indeed, here the variables Xn , (nF1)
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need not to be identically distributed and the function f needs not to be convex
(resp. concave). More precisely, we have

P r o p o s i t i o n 3.3. Let (Xn )n41
Q be a sequence of independent real integrable

r.v.s on (V , F, P). We suppose that: E(Xn )4E(X1 ), and Xn (V)% I for all n�N*,
where I is an interval of R . We suppose also that E(Xn

4 ) is bounded. Let f be a
continuous function on I such that sup

n , v
Nf i Yn (v)NEQ . Then the following

holds:

f(E[X1 ] )4 lim
nKQ

E[f(Yn ) ] .(9)

P r o o f . Cantelli’s theorem ensures that YnKE(X1 ) with probability one. The
continuity of f and Lebesgue’s dominated convergence theorem will imply the re-
sult we want. r

4 - Applications and examples

Let rF1. In this section, (Xn )n41
Q designates a sequence of independent and

identically distributed real integrable r.v.s on (V , F, P), and I denotes an interval
of R containing X1 (V).

4.1 - We assume here that I »4R , and we let f : ROR , to be given by f(t) »
4NtNr . Then an application of the results of the sections 2 and 3, gives (for all
n�N*) the following inequalities:

VXVrF V

X11X21R1Xn

n V
r
F V

X11X21R1Xn11

n11 V
r
FNE[X]N .(4.1.1)

Moreover, one has the following:

lim
nOQ

V

X11X21R1Xn

n V
r
4NE[X]N .(4.1.2)

4.2 - We assume here that I »4l0,
1

2
l, and we let f : l0,

1

2
lO [0 , 1Q[, to

be given by f(t) »4 k t

12 t
lr , where rF1. Then, f is convex on l0,

1

2
l and also
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logarithmically concave on this interval. Now, by application of the results of sec-
tion two and three, we obtain (for all n�N*) the following inequalities:

V

X

12X V
r
F V

X11X21R1Xn

n2X12X22R2Xn
V

r

F V

X11X21R1Xn11

n112X12X22R2Xn11
V

r

F
E[X]

12E[X]

Fexp gE klog g X11X21R1Xn11

n112X12X22R2Xn11
hlh

Fexp gE klog g X11X21R1Xn

n2X12X22R2Xn
hlh

Fexp gE klog g X

12X
hlh .

(4.2.1)

Moreover, one has the following:

lim
nOQ

V

X11X21R1Xn

n2X12X22R2Xn
V

r
4

E[X]

12E[X]
.(4.2.2)

R e m a r k 4.3. The relations written in (4.2.1) provide also refinements of
C.-L. Wang’s inequality (see [Wa]) and the well-known result of Ky Fan (see [Be,
Be]). We invite the reader to see also the papers of S. S. Dragomir and their refe-
rences for other applications given in case of discrete Jensen’s inequality.

R e m a r k 4.4. We suppose that I 4 [a , b], and that the variables Xn , (nF1)

have the same distribution law with density given by
1

b2a
x [a , b] (x) dx , where x

is the characteristic function of the interval [a , b]. Then one has the following re-
sult which may be considered as a refinement of the well-known Jensen-Hada-
mard inequality:

T h e o r e m 4.4.1. Let f : I OR be a continuous convex (concave) function
on the interval I and let a , b�I (aEb), n�N*. Then one has the following
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inequalities:

f g a1b

2
hG (F)

1

(b2a)n11
�

a

b

R �
a

b

f g 1

n11
!

i41

n11

xih dx1 R dxn11

G (F)
1

(b2a)n
�

a

b

R �
a

b

f g 1

n
!

i41

n

xih dx1 R dxn

G (F)
1

(b2a)2
�

a

b

�
a

b

f g x11x2

2
h dx1 dx2

G (F)
1

(b2a)
�

a

b

f(x) dxG (F)
f(a)1f(b)

2
.

Moreover one has the following:

lim
nO1Q

1

(b2a)n
�

a

b

R�
a

b

f g 1

n
!

i41

n

xih dx1 R dxn4f g a1b

2
h .(4.4.1.1.)

R e m a r k s 4.4.2. The first part of this result was proved in the paper [Dr,
Pe, Sá]. For an application of the second part of this result, we take c(t)
»4 (log G(t) )8 , where G and c are the Euler gamma function and digamma
functions, respectively. It is well known that c is concave on ]0 , Q[. Clearly, we
have for all 0EaEbEQ and all n�N*,

�
a

b

c g x11R1xn1xn11

n11
h dxn114 (n11) log y G g b1x11R1xn

n11
h

G g a1x11R1xn

n11
h z ,

so the equality (4.4.1.1) may be written in the form

lim
nO1Q

n11

(b2a)n11
�

a

b

R�
a

b

log y G g b1x11R1xn

n11
h

G g a1x11R1xn

n11
h z dx1R dxn4c g a1b

2
h .(4.4.2.1)

Our results can be applied to prove the following generalization of Theorem 4.4.1.
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T h e o r e m 4.4.3. Let m be a probability measure on R having a support con-
tained in the segment [a , b]. Let I be an open interval containing this segment
and let f : I OR be a continuous function. We set for all integer n�N*,

un »4�
R

R�
R

f g 1

n
!

i41

n

xih dm(x1 ) R dm(xn ) .

Then, the sequence (un )n converges and one has the following:

lim
nK1Q

un4f g �
R

xdm(x)h .

Moreover, if the function f is convex (resp. concave) on I then the sequence
(un )n41

Q is decreasing (resp. increasing), and one has the following inequali-
ties:

f g �
R

xdm(x)hG (F) un11G (F) unG (F)�
R

f(x) dm(x) (n�N*.(4.4.3.1)

5 - A result of approximation

We end this paper by deriving a result of approximation connected to Bern-
stein’s Theorem. Before stating the result, let us introduce some notations.

5.1 - Let m be a fixed nonzero integer and let Tm4]x� [0 , 1 ]m : x11x21R

1xmG1( be a simplex in Rm . We denote by C(Tm ) the Banach space of real
continuous functions defined on Tm equiped with the norm V f VC(Tm )

»4sup ]N f (x)N : x�Tm(. Let a .N. b be the usual inner product of Rm , defined for all
x4 (x1 , Rxm ) and all y4 (y1 , Rym ) by setting axNyb4x1 y11x2 y21R1xm ym ,
and denote N . Nm the associated norm. Let C( [0 , 1 ] ) be the Banach space of real
continuous functions defined on the real segment [0 , 1 ] equipped with its usual
norm V . VC([0,1]). To all z� [0 , 1 ]m and all f�C( [0 , 1 ] ), we associate the function
Az f defined on Tm by

Az f(x) »4f(axNzb) (x�Tm ,
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and a sequence (Az
n (f) )nFm of functions defined for all x4 (x1 , Rxm )�Tm

by

Az
n (f)(x)

»4 !
a�Nm

n!

(n2NaN) ! a 1 ! a 2 !Ra m !
(12 axNub)n2NaN x1

a 1 x2
a 2
R xm

a m f g 1

n
aaNzbh ,

where Nm »4]a4 (a 1 , a 2 , R , a m )�Nm : NaN»4a 11a 21R1a mGn(, and
u is the vector (1 , 1 , R , 1 ). We remark that if m42 and z4 (0 , 1 ) then for all
x� [0 , 1 ] we have Az f(0 , x)4f(x) and the expressions Az

n (f)(0 , x) for all inte-
ger nF2 are reduced to be

Az
n (f)(0 , x) »4 !

a40

n n!

(n2a) ! a!
f g a

n
h x a (12x)n2a ,

which are nothing but the usual Bernstein’s polynomials associated to the function
f , and we know that these sequence of polynomials approximate uniformly the
function f on the segment [0 , 1 ]. In the next theorem, we prove the uniform con-
vergence of the sequence (Az

n (f) )nFm to the function Az f on the simplex Tm .

T h e o r e m 5.2. Let f be a convex (concave) continuous function on the seg-
ment [0 , 1 ] and let z4 (z1 , z2 , R , zm ) be a fixed element in [0 , 1 ]m having di-
stinct coordinates such that 0EMin (z1 , z2 , R , zm ). Then (Az

n (f) )nFm is a de-
creasing (resp. increasing) sequence of continuous functions on the compact Tm ,
converging uniformly to the function Az f on the simplex Tm .

P r o o f . Let nFm and let x4 (x1 , Rxm )�Tm. We know (see for example
[Bi]) that there exists at least a sequence (Xk )k41

Q of independent and identically
distributed random variables on a some probability space (V , F, P), such that
Xn (V)4]0, z1 , z2 , R , zm(, and verifying:

P(Xk40)412 !
j41

m

xj , P(Xk4zj )4xj , (j : 1G jGm , and (k�N*.

We see that each random variable Xk is discrete and the expected value of Xk is
given by E[Xk ]4 axNzb.
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Now, we put Yn »4
1

n
!

i41

n

Xi . Then a short calculation will give

P gYn4
1

n
aaNzbh4 n!

(n2NaN) ! a 1 ! a 2 !Ra m !
(12 axNub)n2NaN x1

a 1 x2
a 2
R xm

a m .

Therefore, the expected value of the random variable f i Yn is given by the follo-
wing formula:

E[f i Yn ]4Az
n (f)(x) .

The strong law of large numbers and the continuity of f ensure pointwise conver-
gence of (Az

n (f) )nFm to Az f on Tm . Since Tm is a compact subset of Rm and since
the sequence (Az

n (f) )nFm is decreasing (increasing) then Dini’s Theorem will en-
sure the uniform convergence of the sequence (Az

n (f) )nFm to Az f on
Tm . r

R e m a r k s 5.3. Theorem 5.2 is valid for all continuous function f on the seg-
ment [0 , 1 ], and for all z4 (z1 , z2 , R , zm )� [0 , 1 ]m without any condition on the
coordinates.
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A b s t r a c t

We establish some inequalities, connected to the well known Jensen’s integral inequa-
lity, for a class of sequences of integrable real random variables on a probability space.
These inequalities are valid for independent and identically distributed real random va-
riables. The results obtained here are generalizations of those obtained by S. S. Dragomir
in the discrete case. We bring also some complements to Dragomir’s work. We treat exam-
ples and give some natural applications.
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