Silvana Marchi (*)

## Existence of nontrivial solutions to a nonlinear Dirichlet problem for the $Q$-Laplacian relative to Hörmander vector fields (**)

## 1-Introduction

This paper deals with the existence of solutions of the problem

$$
\begin{align*}
u & \in W_{0}^{1, Q}(\Omega, X) \\
-\Delta_{Q} u & \equiv-\operatorname{div}\left(|X u|^{Q-2} X u\right)=f(x, u) \quad \text { in } \Omega \tag{1}
\end{align*}
$$

where $\Omega$ is an open, bounded, connected subset of $\boldsymbol{R}^{N} ; X_{j}$, for $j=1, \ldots, m$, are vector fields satisfying Hörmander's condition [11], [12]. $X u$ denotes the vector $\underset{\rightarrow}{\text { function }} X u:=\left(X_{1} u, \ldots, X_{m} u\right)$ whereas $\operatorname{div} \vec{w}:=\sum_{j=1}^{m} X_{j} w_{j}$ for any vector function $\vec{w}: \boldsymbol{R}^{N} \rightarrow \boldsymbol{R}^{m}$.

For any $p \geqslant 1, W_{0}^{1, p}(\Omega, X)$ denotes the closure of $C_{0}^{\infty}(\Omega)$ under the norm $\|u\|_{1, p}=\left(\|u\|_{p}^{p}+\sum_{j=1}^{m}\|X u\|_{p}^{p}\right)^{1 / p}$, where $\|\cdot\|_{p}$ denotes the $L^{p}(\Omega)$ norm. $Q \geqslant N$ is the homogeneous dimension associated to $\Omega$ and the vector fields [13].

We suppose that the nonlinearity $f(x, u)$ has a subcritical growth on $\Omega$, i.e.

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \frac{|f(x, u)|}{\exp \left(\alpha|u|^{Q^{\prime}}\right)}=0 \quad \text { uniformly on } x \in \Omega, \forall \alpha>0 \tag{2}
\end{equation*}
$$

where $Q^{\prime}=Q /(Q-1)$.

[^0]Other conditions we impose to $f$ are

$$
\begin{array}{ll}
\left(F_{1}\right) & f: \bar{\Omega} \times \boldsymbol{R} \rightarrow \boldsymbol{R} \text { is continuous }, f(x, 0)=0 \\
\left(F_{2}\right) \quad \exists R, M>0 \text { such that } \forall|u| \in \boldsymbol{R}, \forall x \in \Omega \\
& 0<F(x, u)=\int_{0}^{u} f(x, t) d t \leqslant M|f(x, t)| \\
\left(F_{3}\right) & 0<F(x, u) \leqslant \frac{1}{Q} f(x, u) u, \quad \forall|u| \in \boldsymbol{R} \backslash\{0\}, \quad \forall x \in \Omega \\
\left(F_{4}\right) \quad & \limsup _{|u| \rightarrow 0} \frac{Q F(x, u)}{|u|^{Q}}<\lambda_{1} \text { uniformly on } \Omega
\end{array}
$$

where $\lambda_{1}>0$ denotes the smallest eigenvalue of the problem $-\Delta_{Q} u=\lambda|u|^{Q-2} u$, $u \in W_{0}^{1, Q}(\Omega, X)$, which is variationally characterized as

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\int|X u|^{Q} d x \mid u \in W_{0}^{1, Q}(\Omega, X),\|u\|_{Q}=1\right\} \tag{3}
\end{equation*}
$$

We will prove the following result
Theorem 1. Assume that $f$ satisfies (2), $\left(F_{1}\right), \ldots,\left(F_{4}\right)$. Then the problem (1) has a nontrivial solution.

The interest of Theorem 1 rests in the fact that $f$ growth faster than any polynomial as $|u| \rightarrow+\infty$. In this case the «standard» methods for analyzing critical growth problems don't work. Recently Theorem 1 has been proved in the euclidean setting in [6] and [7] assuming $f$ in the critical or subcritical growth range and using the Mountain Pass Lemma whithout the Palais-Smale condition.

In this paper we extend these new methods to the Hörmander vector field's setting for $f$ in the subcritical growth range. On this object in Section 2 we state the existence of positive structural constants $C$ and $\alpha_{Q}$ such that

$$
\begin{equation*}
\int_{\Omega} \exp \left(\alpha|u|^{Q^{\prime}}\right) \leqslant C \tag{4}
\end{equation*}
$$

for all $u \in W_{0}^{1, Q}(\Omega, X),\|u\|_{1, Q}$ for every $\alpha \leqslant \alpha_{Q}$.
This result is well known in the euclidean setting, where $\mathrm{Q}=\mathrm{N}$, as the Trudin-ger-Moser inequality [14], [18]. A sharp version for higher order derivatives is due to D. R. Adams [2].

In these papers the largest positive real number $\alpha$ for which (4) holds, let it be $\alpha_{N}$, is precisely calculated. Here we are able to determine the constant $\alpha_{Q}$ in ter-
ms of the other structural constants. Moreover this value is the best possible being equal to $\alpha_{N}$ in the euclidean case. We underline the interest of (4) not only in order to prove Theorem 1 but also as it permits us to extends to a larger setting many other important applications of the Trudinger-Moser inequality. In Section 2 we prove also a compact imbedding result.

In Section 3 we give a variational formulation of the problem and in Section 4 we prove Theorem 1.

## 2 - Preliminary results

Let $\Sigma$ be an open connected subset of $\boldsymbol{R}^{N}$. Let us suppose that the rank of the Lie algebra generated by the vector fields $X_{j}, j=1, \ldots, m$, equals N at each point of a neighbourhood $\Sigma_{0}$ of $\bar{\Sigma}$.

Let $\varrho(x, y), x, y \in \Sigma$, be the metric associated to the vector fields $X_{j}$ and let $B(x, r):=\{y \in \Sigma \mid \varrho(x, y)<r\}, x \in \Sigma, r>0$ be the corresponding balls [15]. Let $K_{0}$ be an arbitrary compact subset of $\Sigma$. By the results of [15] there exist positive constants $r_{0}, c_{0}=r_{0}, c_{0}\left(K_{0}\right)$ such that

$$
\begin{equation*}
|B(x, 2 r)| \leqslant c_{0}|B(x, r)|, \quad \text { for any } 0<r<r_{0}, x \in K_{0} \tag{5}
\end{equation*}
$$

where $|E|$ denotes the Lebesgue measure of a measurable set $E \subset \boldsymbol{R}^{N}$. Moreover (see also [9]) there exist positive constants $c_{1}, c_{2}=c_{1}, c_{2}\left(K_{0}\right)$ such that

$$
\begin{equation*}
c_{1}\left(\frac{r}{s}\right)^{\alpha} \leqslant \frac{|B(x, r)|}{|B(x, s)|} \leqslant c_{2}\left(\frac{r}{s}\right)^{\beta} \tag{6}
\end{equation*}
$$

for any $0<s<r<r_{0}, x \in K_{0}$, for suitable $\alpha=\alpha(x)$ and $\beta=\beta(x)$ with $N \leqslant \alpha \leqslant \beta$ $\leqslant Q$. By the results of [13] a Sobolev-Poincaré inequality holds: there exist a positive contant $c_{3}=c_{3}\left(K_{0}\right)$ such that, for any $0<r<r_{0}, x \in K_{0}$ and for any $f$ $\in C_{0}{ }^{\infty}(B(x, r))$
(7) $\quad\left(\frac{1}{|B(x, r)|} \int_{B(x, r)}\left|f(y)-f_{B}\right|^{q} d y\right)^{1 / q} \leqslant c_{3} r\left(\frac{1}{|B(x, r)|_{B(x, r)}} \int_{j=1}\left|\sum_{j}^{m} X_{j} f(y)\right|^{p} d y\right)^{1 / p}$
provided $1 \leqslant q<\frac{p Q}{Q-p}$, where $f_{B}=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y$. By the results of [17], [15] (see also [13], [8]) the following estimate involving the Riesz potentials
related to the vector fields holds:

$$
\begin{equation*}
|f(z)| \leqslant c_{4} \int|X f(y)| \frac{\varrho(z, y)}{|B(z, \varrho(z, y))|} d y \tag{8}
\end{equation*}
$$

for any $0<r<r_{0}, x \in K_{0}$ and for any $f \in C_{0}^{\infty}(B(x, r))$, for a suitable positive constant $c_{4}=c_{4}\left(K_{0}\right)$.

Let $x_{0}$ be an arbitrary point of $K_{0}$. We will suppose $x_{0}=0$ for sake of simplicity and we will denote $\alpha_{0}=\alpha(0), \beta_{0}=\beta(0)$ the constants appearing in (6). Let $\Omega \subset B\left(0, r_{1} / 2\right)$ for $0<r_{1}<\frac{r_{0}\left(K_{0}\right)}{2}$, where $r_{0}\left(K_{0}\right)$ is the constant appearing in (5). In the following $C$ will denote a positive structural constant not necessarily the same at each occurrence.

Lemma 2.1 ([2], Lemma 1). Let $1<p<+\infty$. Let $a(s, t)$ be a nonnegative measurable function on $(-\infty,+\infty) \times[0,+\infty)$ such that a.e. $a(s, t) \leqslant 1$ when $0<s<t$ and $\sup _{t>0}\left(\int_{-\infty}^{0}+\int_{t}^{+\infty} a(s, t)^{p^{\prime}} d s\right)^{1 / p^{\prime}}=b<+\infty$. Then there is a constant $\bar{C}=\bar{C}(p, b)$ such that, for any $\varphi \geqslant 0$ satisfying $\int_{+\infty}^{+\infty} \varphi(s)^{p} d s \leqslant 1$, we have $\int_{0}^{+\infty} e^{-F(t)} d t \leqslant \bar{C}$ if $F(t)=t-\left(\int_{-\infty}^{+\infty} a(s, t) \varphi(s) d s\right)^{p^{\prime}}$.

Proposition 2.2. There is a constant $C_{5}=C_{5}\left(Q, K_{0}, \Omega\right)$ such that, for all $f \in L^{Q}\left(\boldsymbol{R}^{N}\right)$ with support contained in $\Omega, f \geqslant 0$,

$$
\begin{equation*}
\int_{\Omega} \exp \left(\Gamma\left|\frac{I_{1} \star f(x)}{\|f\|_{Q}}\right|^{Q^{\prime}}\right) d x \leqslant C_{5} \tag{9}
\end{equation*}
$$

where $\quad I_{1} \star f(x)=\int \frac{\varrho(x, y) f(y)}{|B(x, \varrho(x, y))|} d y \quad$ and $\quad \Gamma=\frac{c_{1} r_{1}^{\alpha_{0}}}{\left|B_{r_{1}}\right|} c_{2}^{-\frac{\alpha_{0}^{2}}{\beta_{0}\left(\alpha_{0}-1\right)}} \quad$ if $\quad B_{r_{1}}$
$=B\left(0, r_{1}\right)$.
Let's observe that, in the euclidean setting where $c_{1}=c_{2}=1, \alpha_{0}=\beta_{0}=N,\left|B_{r_{1}}\right|$ $=r_{1}^{N} \frac{\omega_{N-1}}{N}$, it results $\Gamma=\frac{N}{\omega_{N-1}}$, which is proved to be an upper bound for (9), [2].

Proof. Let $f \in L^{Q}\left(\boldsymbol{R}^{N}\right)$ with support contained in $\Omega$, $f \geqslant 0,\|f\|_{\alpha_{0}} \leqslant 1$. For any $s>0$, let $\lambda_{f}(s)=|\{x \in \Omega \mid f(x)>s\}|$, and for any $t>0$ let $f^{*}(t)$ $=\inf \left\{s>0 \mid \lambda_{f}(s) \leqslant t\right\}$ and $f^{* *}(t)=t^{-1} \int_{0}^{1} f^{*}(s) d s$.

Let $g(x)=\frac{\varrho(0, x)}{r_{1}^{\alpha_{0}}}\left(\frac{\left|B_{r_{1}}\right|}{|B(0, \varrho(0, x))|}\right)^{\frac{\alpha_{0}}{\beta_{0}}}, x \in \Omega$. By (6) we have $g(x)$
$\leqslant \frac{c_{2} \frac{\alpha_{0}}{\beta_{0}}}{\varrho(0, x)^{\alpha_{0}-1}}$. Then $\lambda_{g}(s) \leqslant\left|\left\{x \in \Omega \left\lvert\, \varrho(0, x) \leqslant\left(\frac{c_{2}{ }^{\frac{\alpha_{0}}{\beta_{0}}}}{s}\right)^{\frac{1}{\alpha_{0}-1}}\right.\right\}\right|$. If

$$
\begin{equation*}
\left(\frac{c_{2} \frac{\alpha}{0}_{\beta_{0}}^{s}}{s}\right)^{\frac{1}{\alpha_{0}-1}} \leqslant r_{1} \tag{10}
\end{equation*}
$$

then, from (10) and (6) we obtain

$$
\begin{equation*}
\lambda_{g}(s) \leqslant \frac{\left|B_{r_{1}}\right|}{c_{1} r_{1}^{\alpha_{0}}} c_{2} \frac{\alpha_{0}^{2}}{\beta_{0}\left(\alpha_{0}-1\right)} s^{-\frac{\alpha_{0}}{\alpha_{0}-1}}=\Gamma^{-1} s^{-\frac{\alpha_{0}}{\alpha_{0}-1}} . \tag{11}
\end{equation*}
$$

If (10) is not satisfied then, by (6),

$$
\Gamma^{-1} s^{-\frac{\alpha_{0}}{\alpha_{0}-1}} \geqslant \frac{\left|B_{r_{1}}\right|}{c_{1}} \geqslant \frac{\left|B_{r_{1}}\right|}{c_{1} 2^{\alpha_{0}}} \geqslant\left|B_{r_{1} / 2}\right| \geqslant|\Omega| \lambda_{g}(s) .
$$

So (11) holds in any case. It follows from (11) that $t \leqslant \frac{\Gamma^{-1}}{g^{*}(t)^{\alpha_{0}^{\prime}}}$, where $\alpha_{0}^{\prime}=\frac{\alpha_{0}}{\alpha_{0}-1}$ and then

$$
\begin{equation*}
g^{*}(t) \leqslant(t \Gamma)^{-\frac{1}{\alpha_{0}^{\prime}}} \tag{12}
\end{equation*}
$$

If $v(x)=\left(I_{1} \star f\right)(x)$, then by (12) and O'Neil's Lemma [16], Lemma 1.5, we have

$$
v^{*}(t) \leqslant v^{* *}(t) \leqslant t f^{* *} g^{* *}(t)+\int_{t}^{+\infty} f^{*}(s) g^{*}(s) d s
$$

$$
\begin{equation*}
\leqslant \Gamma^{-\frac{1}{\alpha_{0}^{\prime}}}\left(\frac{\alpha_{0}}{t \frac{1}{\alpha_{0}^{\prime}}} \int_{0}^{t} f^{*}(s) d s+\int_{t}^{r_{1}} \frac{f^{*}(s)}{s^{\frac{1}{\alpha_{0}^{\prime}}}} d s\right) \equiv \Gamma^{-\frac{1}{\alpha_{0}^{\prime}}} \gamma(t) \tag{13}
\end{equation*}
$$

Let

$$
a(s, t)= \begin{cases}1 & \text { for } 0<s<\log \frac{|\Omega|}{t}  \tag{14}\\ \alpha_{0} t^{-\frac{1}{\alpha_{0}^{\prime}}} e^{-\frac{s}{\alpha_{0}}}|\Omega|^{\frac{1}{\alpha_{0}^{\prime}}} & \text { for } \log \frac{|\Omega|}{t}<s<+\infty \\ 0 & \text { for }-\infty<s \leqslant 0\end{cases}
$$

$$
\begin{equation*}
\varphi(s)=|\Omega|^{\frac{1}{\alpha_{0}}} f^{*}\left(|\Omega| e^{-s}\right) e^{-\frac{s}{\alpha_{0}}} \tag{15}
\end{equation*}
$$

$$
F(t)=t-\left(\int_{-\infty}^{+\infty} a(s, t) \varphi(s) d s\right)^{\alpha_{0}^{\prime}}
$$

for $(s, t) \in(-\infty,+\infty) \times[0,+\infty)$. Then

$$
\begin{equation*}
\int_{\Omega} f(x)^{\alpha_{0}} d x=\int_{0}^{|\Omega|} f^{*}(t)^{\alpha_{0}} d t=\int_{0}^{+\infty} \varphi(s)^{\alpha_{0}} d s \tag{17}
\end{equation*}
$$

Moreover $F(t)=t-\gamma(t)^{\alpha_{0}^{\prime}}, t \in[0,+\infty)$, and then, for any $\delta>0$,

$$
\begin{equation*}
\int_{\Omega} e^{\delta v(x)^{\alpha_{j}}} d x=\int_{0}^{|\Omega|} e^{\delta v^{*}(t)^{\alpha_{0}}} d t \leqslant \int_{0}^{|\Omega|} e^{\delta \Gamma^{-1} \gamma(t)^{\alpha_{j}}} d t=\int_{0}^{|\Omega|} e^{\delta \Gamma^{-1}(t-F(t))} d t \tag{18}
\end{equation*}
$$

From (17) we have $\int_{0}^{+\infty} \varphi(s)^{\alpha_{0}} d s \leqslant 1$. By Lemma 2.1, $\int_{0}^{+\infty} e^{-F(t)} d t \leqslant \bar{c}$, and then, by (18), for $\delta \leqslant \Gamma, \int e^{\delta v(x)^{\alpha^{j}}} \leqslant C$, where $C$ is a positive constant independent of $f$. Hence (9) follows. ${ }^{\Omega}$

Proposition 2.3. There exists a positive constant $c_{6}=c_{6}\left(Q, K_{0}, \Omega\right)$ such that, for all $u \in C_{0}^{\infty}(\Omega),\|X u\|_{Q} \leqslant 1$,

$$
\begin{equation*}
\int_{\Omega} e^{\alpha|u(x)|^{Q^{\prime}}} d x \leqslant c_{6}, \quad \text { for all } \alpha \leqslant \alpha_{Q}=\frac{\Gamma}{c_{4}^{Q^{\prime}}} . \tag{19}
\end{equation*}
$$

Proof. By (8) we have $|u(x)|^{Q^{\prime}} \leqslant c_{4}^{Q^{\prime}}\left|I_{1} \star\right| X u|(x)|^{Q^{\prime}}$. Now just apply Proposition 2.2.

Proposition 2.4. Let $q<Q$ and let $B_{r_{1} / 2}=B\left(0, r_{1} / 2\right)$. Every sequence $\left(f_{n}\right)$ bounded in $W^{1, q}\left(B_{r_{1} / 2}, X\right)$ is relatively compact in $L^{q}\left(B_{r_{1} / 2}\right)$.

Proof. By a method of M. Biroli and S. Tersian [4] we will prove that ( $f_{n}$ ) admits a subsequence convergent in $L^{q}\left(B_{r_{1} / 2}\right)$. On account of [5], the ball $B_{r_{1} / 2}$ can be covered by a finite number of balls $B\left(x_{j}, r\right), r \leqslant r_{1} / 8, j=1, \ldots, v$, such that $d\left(x_{i}, x_{j}\right) \geqslant r, \forall i, j=1, \ldots, v$, where $v$ depends on $r, r_{1}$. It follows from the doubling property that every point $x$ in $B_{r_{1} / 2}$ belongs at most to $M$ balls, where $M$ does not depend on $r$. In fact for every such $j$ we have $B\left(x_{j}, r / 2\right) \subseteq B(x, 2 r)$ $\subseteq B\left(x_{j}, 4 r\right)$, and then $\left|B\left(x_{j}, r / 2\right)\right| \geqslant 2^{-(3 Q+1)}|B(x, 2 r)|$. Therefore, taking into account that $M$ is also the number of points $x_{j}$ in $B(x, r)$ we have

$$
M 2^{-(3 Q+1)}|B(x, 2 r)| \leqslant M \min _{x_{j} \in B(x, r)}\left|B\left(x_{j}, r / 2\right)\right| \leqslant\left|\bigcup_{x_{j} \in B(x, r)} B\left(x_{j}, r / 2\right)\right| \leqslant|B(x, 2 r)|
$$

Let $w_{n, m}=f_{n}-f_{m}$ and $\left(w_{n, m}\right)_{j}$ the average of $w_{n, m}$ on $B\left(x_{j}, r\right)$. We have

$$
\begin{aligned}
& \int_{B_{r_{1} / 2}}\left|w_{n, m}\right|^{q} \leqslant 2^{q} \sum_{j=1}^{v} \int_{B\left(x_{j}, r\right)}\left|w_{n, m}-\left(w_{n, m}\right)_{j}\right|^{q}+v 2^{q} \sup _{j} \frac{1}{\left|B\left(x_{j}, r\right)\right|^{q-1}} \int_{B\left(x_{j}, r\right)}\left|w_{n, m}\right|^{q} \\
& \quad \leqslant 2^{q} r^{q} c_{3} \sum_{j=1}^{v} \int_{B\left(x_{j}, r\right)}\left|X w_{n, m}\right|^{q}+v 2^{q}\left[\frac{c_{2}}{\left|B_{r_{1} / 2}\right|}\left(\frac{r_{1}}{r}\right)^{\beta}\right]^{q-1} \sup _{j} \int_{B\left(x_{j}, r\right)}\left|w_{n, m}\right|^{q}
\end{aligned}
$$

on account of (7), $B\left(x_{j}, r_{1}\right) \supseteq B_{r_{1} / 2} \supseteq B\left(x_{j}, r\right)$, and the doubling property. For small $\varepsilon>0$ we choose $r=r_{\varepsilon}=\frac{1}{2}\left(\frac{\varepsilon}{2 c_{3} C}\right)^{1 / q}$, where $\int_{B_{r 1 / 2}}\left|X w_{n, m}\right| \leqslant C$ for any $n, m$. Taking into account that $\left(f_{n}\right)$ is weakly convergent in $L^{q}\left(B_{r_{1} / 2}\right)$, we can choose $n_{\varepsilon}$ such that, for $n, m>n_{\varepsilon}$,

$$
\sup _{j} \int_{B\left(x_{j}, r\right)}\left|w_{n, m}\right|^{q} \leqslant \frac{\varepsilon}{v 2^{q+1}}\left[\frac{\left|B_{r_{1} / 2}\right|}{c_{2}}\left(\frac{r}{r_{1}}\right)^{\beta}\right]^{q-1} .
$$

Then for $n, m>n_{\varepsilon}$ we have $\int_{B r_{1} / 2}\left|w_{n, m}\right|^{q} \leqslant \varepsilon$, i.e. $\left(f_{n}\right)$ is a Cauchy sequence in $L^{q}\left(B_{r_{1} / 2}\right)$; then $\left(f_{n}\right)$ converges strongly in $L^{q}\left(B_{r_{1} / 2}\right)$.

Corollary 2.5. Let $1 \leqslant q<Q$. The imbedding of $W_{0}^{1, q}(\Omega, X)$ in $L^{q}(\Omega)$ is compact.

Proposition 2.6. Let $1 \leqslant q<Q$ and $1 \leqslant p<\frac{q Q}{Q-q}$. The imbedding of $W_{0}^{1, q}(\Omega, X)$ in $L^{p}(\Omega)$ is compact.

Proof (see [10], Theorem 7.22). If $p \leqslant q$ the proof follows from Corollary 2.5. If $q<p<\frac{q Q}{Q-q}$, then let $r$ be such that $q<p<r<\frac{q Q}{Q-q}$. From Hölder's inequality we have $\|u\|_{p} \leqslant\|u\|_{q}^{\lambda}\|u\|_{r}^{1-\lambda}$ where $\lambda \in(0,1), \frac{1}{p}=\frac{\lambda}{q}+\frac{1-\lambda}{r}$ and then, by (7), $\|u\|_{p} \leqslant\|u\|_{q}^{\lambda}\|X u\|_{q}^{1-\lambda}$. Consequently a bounded set in $W_{0}^{1, q}(\Omega, X)$ must be precompact in $L^{p}(\Omega)$ for $p>1$, and Proposition 2.6 is proved.

## 3-The variational formulation

By (2) and $\left(F_{1}\right)$ there exists a constant $C>0$ such that

$$
\begin{equation*}
|f(x, u)| \leqslant C \exp \left(\alpha|u|^{Q^{\prime}}\right), \quad \forall(x, u) \in \Omega, \quad \forall \alpha>0 . \tag{20}
\end{equation*}
$$

By (20) and (4), $f(x, u(x)) \in L^{q}(\Omega)$ for all $q>1$ when $u \in W_{0}^{1, Q}(\Omega, X)$. In fact

$$
\int_{\Omega}|f(x, u(x))|^{q} \leqslant C \int_{\Omega} \exp \left(\alpha q|u(x)|^{Q^{\prime}}\right) \leqslant C \int_{\Omega} \exp \left(\alpha q\|u\|_{1, Q}^{Q^{\prime}}\right)\left(\frac{|u(x)|}{\|u\|_{1, Q}}\right)^{Q^{\prime}} \leqslant C
$$

if $\alpha q\|u\|_{1^{\prime},{ }_{Q}}^{Q^{\prime}} \leqslant \alpha_{Q}$. The relation

$$
\begin{equation*}
I(u)=\frac{1}{Q} \int|X u|^{Q}-\int F(x, u) \tag{21}
\end{equation*}
$$

defines a $C^{1}$ functional $I: W_{0}^{1, Q}(\Omega, X) \rightarrow \boldsymbol{R}$ such that

$$
\begin{equation*}
\left\langle I^{\prime}(u), v\right\rangle=\int|X u|^{Q-2} X u X v-\int f(x, u) v, \quad \forall v \in W_{0}^{1, Q}(\Omega, X) \tag{22}
\end{equation*}
$$

where $<\cdot, \cdot>$ denotes the duality between $W_{0}^{1, Q}(\Omega, X)$ and its dual space. It follows from $\left(F_{1}\right),\left(F_{2}\right),\left(F_{3}\right)$ that

$$
\begin{equation*}
\exists C>0 \text { such that } \forall|u| \geqslant R, \forall x \in \Omega, F(x, u) \geqslant C \exp \left(\frac{|u|}{M}\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\exists R_{0}>0, \theta>Q \text { such that } \forall|u| \geqslant R_{0}, \forall x \in \Omega, \theta F(x, u) \leqslant u f(x, u) \tag{24}
\end{equation*}
$$

Lemma 3.1. Assume $\left(F_{1}\right),\left(F_{2}\right)$ and $\left(F_{3}\right)$. Then $I(t u) \rightarrow-\infty$ as $t \rightarrow+\infty$, for all $u \in W_{0}^{1, Q}(\Omega, X) \backslash\{0\}$.

Proof. Let $u \in W_{0}^{1, Q}(\Omega, X) \backslash\{0\}$, and let $p>Q$. By (20) and (23), there exists a positive constant $C$ such that $\forall x \in \Omega$

$$
\begin{equation*}
F(x, u) \geqslant|u|^{p}-C \tag{25}
\end{equation*}
$$

and then $I(t u) \leqslant \frac{t^{Q}}{Q} \int|X u|^{Q}-C t^{Q} \int|u|^{p}+C$. Since $p>Q$, we obtain $I(t u) \rightarrow-\infty$ as $t \rightarrow+\infty$.

Lemma 3.2. Assume $\left(F_{1}\right),\left(F_{2}\right),\left(F_{3}\right)$. Then there exist $\delta$, $\varrho>0$ such that

$$
\begin{equation*}
I(u) \geqslant \delta, \quad \text { if }\|u\|_{1, Q}=\varrho \tag{26}
\end{equation*}
$$

Proof. Using $\left(F_{1}\right),\left(F_{2}\right),\left(F_{3}\right)$ and (20) we can choose $\lambda<\lambda_{1}$ such that (27) $\quad F(x, u) \leqslant \frac{1}{Q} \lambda|u|^{Q}+C \exp \left(\alpha|u|^{Q^{\prime}}\right)|u|^{q}, \quad \forall(x, u) \in \Omega \times \boldsymbol{R}, \quad \forall \alpha>0$ if $q>Q$. By Hölder's inequality and (4) we obtain

$$
\begin{equation*}
\int \exp \left(\alpha|u|^{Q^{\prime}}\right)|u|^{q} \leqslant\left\{\int \exp \left[\alpha r\|u\|_{1, Q}^{Q^{\prime}}\left(\frac{|u|}{\|u\|_{1, Q}}\right)^{Q^{\prime}}\right]\right\}^{1 / r} \tag{28}
\end{equation*}
$$

$$
\cdot\left\{\int|u|^{s q}\right\}^{1 / s} \leqslant C(Q)\left\{\int|u|^{s q}\right\}^{1 / s}
$$

if $\alpha r\|u\|_{1, Q}^{Q^{\prime},}<\alpha_{Q}$, where $\frac{1}{r}+\frac{1}{s}=1$. Then, by (27), (28), (3) and (7), we have $I(u) \geqslant \frac{1}{Q}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|_{1, Q}^{Q}-C(Q)\|u\|_{1, Q}^{q}$. As $\lambda<\lambda_{1}$ and $q>Q$, we can choose $\varrho>0$ such that $I(u) \geqslant \delta$ if $\|u\|_{1, Q}=\varrho$.

Proposition 3.3. Assume $\left(F_{1}\right),\left(F_{2}\right),\left(F_{3}\right)$. Let $\left(u_{n}\right)$ be a Palais-Smale sequence, i.e.

$$
I\left(u_{n}\right) \rightarrow c \text { and } I^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{-1, Q^{\prime}}(\Omega, X) \text { as } n \rightarrow+\infty
$$

Then $\left(u_{n}\right)$ has a subsequence, still denoted by $\left(u_{n}\right)$ for sake of simplicity, and there exists $u \in W_{0}^{1, Q}(\Omega, X)$ such that
(i) $f\left(x, u_{n}\right) \rightarrow f(x, u)$ in $L^{1}(\Omega)$ as $n \rightarrow+\infty$
(ii) $\left|X u_{n}\right|^{Q-2} X u_{n} \rightarrow|X u|^{Q-2} X u$ weakly in $\left(L^{Q^{\prime}}(\Omega)\right)^{m}$ as $n \rightarrow+\infty$
(iii) $u$ solves (1).

Proof. The proof follows the outline of [7], Lemma 4. As $\left(u_{n}\right)$ is a PalaisSmale sequence, then

$$
\begin{equation*}
\frac{1}{Q} \int\left|X u_{n}\right|^{Q}-\int F\left(x, u_{n}\right) \rightarrow c \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left|\int\right| X u_{n}\right|^{Q-2} X u_{n} \cdot X v-\int f\left(x, u_{n}\right) v \mid \leqslant \varepsilon_{n}\|v\|_{1, Q}, \quad \forall v \in W_{0}^{1, Q}(\Omega, X) \tag{30}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow+\infty$. Multiplying (29) by the constant $\theta>Q$ of (24) and subtracting (30) with $v=u_{n}$, we obtain

$$
\begin{equation*}
\left(\frac{\theta}{Q}-1\right) \int\left|X u_{n}\right|^{Q}-\int\left[\theta F\left(x, u_{n}\right)-f\left(x, u_{n}\right) u_{n}\right] \leqslant C+\varepsilon_{n}\left\|u_{n}\right\|_{1, Q} . \tag{31}
\end{equation*}
$$

From (31) and $\left(F_{3}\right)$ we deduce that $\left(u_{n}\right)$ is bounded in $W_{0}^{1, Q}(\Omega, X)$. Moreover, unless we extract a subsequence, still denoted by ( $u_{n}$ ), we have as $n \rightarrow+\infty$

$$
\begin{align*}
& u_{n} \rightarrow u \text { weakly in } W_{0}^{1, Q}(\Omega, X) \\
& u_{n} \rightarrow u \text { in } L^{q}(\Omega), \quad \forall q \geqslant 1  \tag{32}\\
& u_{n}(x) \rightarrow u(x) \text { a. } e . x \in \Omega .
\end{align*}
$$

Then $\left|X u_{n}\right|^{Q-2} X u_{n}$ is bounded in $\left(L^{Q^{\prime}}(\Omega)\right)^{m}$ and, from (30), we have

$$
\begin{equation*}
\int f\left(x, u_{n}\right) u_{n} \leqslant C \tag{33}
\end{equation*}
$$

From (32), (33) and [6], Lemma 2.1, we have

$$
\begin{equation*}
f\left(x, u_{n}\right) \rightarrow f(x, u) \quad \text { in } L^{1}(\Omega) \text { as } n \rightarrow+\infty \tag{34}
\end{equation*}
$$

and the first assertion of Proposition 3.3 is so proved. It follows from $\left(F_{2}\right)$ and (34), using the generalized Lebesgue dominated convergence theorem, that

$$
\begin{equation*}
F\left(x, u_{n}\right) \rightarrow F(x, u) \quad \text { in } L^{1}(\Omega) \text { as } n \rightarrow+\infty . \tag{35}
\end{equation*}
$$

From (29), (30) we obtain

$$
\begin{gather*}
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{1}^{Q}, Q \\
Q  \tag{36}\\
\lim _{n \rightarrow+\infty} \int f\left(x, u_{n}\right) u_{n}=Q(c+F F(x, u))
\end{gather*}
$$

By $\left(F_{3}\right)$ and (36) we conclude $c \geqslant 0$. So any Palais-Smale sequence approaches a nonnegative level. To prove the second assertion we observe that, by simple calcu-
lation of vectorial algebra, we have

$$
\begin{gather*}
\left(\left|X u_{n}\right|^{Q-2} X u_{n}-|X u|^{Q-2} X u\right)\left(X u_{n}-X u\right) \\
=\frac{1}{2}\left|X u_{n}-X u\right|^{2}\left(\left|X u_{n}\right|^{Q-2}+|X u|^{Q-2}\right)  \tag{37}\\
+\frac{1}{2}\left[\left|X u_{n}\right|^{2}-|X u|^{2}\right]\left[\left|X u_{n}\right|^{Q-2}-|X u|^{Q-2}\right] \geqslant 0 .
\end{gather*}
$$

By proving that

$$
\begin{equation*}
\int_{\Omega}\left(\left|X u_{n}\right|^{Q-2} X u_{n}-|X u|^{Q-2} X u\right)\left(X u_{n}-X u\right) \psi \rightarrow 0 \tag{38}
\end{equation*}
$$

as $n \rightarrow+\infty$, for any test function $\psi \in C_{0}^{\infty}\left(B_{r}\right), B_{r} \subset \Omega, \psi=1$ on $\Omega \backslash B_{r}, 0 \leqslant \psi \leqslant 1$, we obtain $X u_{n} \rightarrow X u$ as $n \rightarrow+\infty$ a.e. in $\Omega$, and then, taking into account that $\left(\left|X u_{n}\right|^{Q-2} X u_{n}\right)$ is bounded in $\left(L^{Q^{\prime}}(\Omega)\right)^{m}$, unless we take a subsequence, we conclude the proof.

Let's observe at first that, by (2), (3) and the boundedness of $\left(u_{n}\right)$ in $W_{0}^{1, Q}(\Omega, X)$, we have, for any $q>1$

$$
\begin{equation*}
\int_{\Omega}\left|f\left(x, u_{n}\right)\right|^{q} \leqslant C, \quad \text { for every } n \tag{39}
\end{equation*}
$$

Notice that

$$
\int_{\Omega}\left|f\left(x, u_{n}\right) u_{n}-f(x, u) u\right| \leqslant \int_{\Omega}\left|f\left(x, u_{n}\right)-f(x, u)\right||u|+\int_{\Omega}\left|f\left(x, u_{n}\right)\right|\left|u_{n}-u\right| .
$$

Since $f\left(x, u_{n}\right) \rightarrow f(x, u)$ in $L^{1}(\Omega)$ as $n \rightarrow+\infty$, then $f\left(x, u_{n}\right) v \rightarrow f(x, u) v$ in $L^{1}(\Omega)$ as $n \rightarrow+\infty, \forall v \in D(\Omega)$, and then

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|f\left(x, u_{n}\right)-f(x, u)\right||u|=0 . \tag{40}
\end{equation*}
$$

On the other hand, by Hölder's inequality and (39) we have

$$
\begin{equation*}
\int_{\Omega}\left|f\left(x, u_{n}\right)\right|\left|u_{n}-u\right| \leqslant C\left(\int_{\Omega}\left|u_{n}-u\right|^{q^{\prime}}\right)^{1 / q^{\prime}} \rightarrow 0 \quad \text { as } n \rightarrow+\infty \tag{41}
\end{equation*}
$$

Hence by (40) and (41)

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|f\left(x, u_{n}\right) u_{n}-f(x, u) u\right|=0 \tag{42}
\end{equation*}
$$

To prove (38) we observe that, if we take $v=\psi u_{n}$ or $v=\psi u$ in (30), then we obtain respectively

$$
\begin{equation*}
\int_{\Omega}\left|X u_{n}\right|^{Q} \psi+u_{n}\left|X u_{n}\right|^{Q-2} X u_{n} X \psi-\psi f\left(x, u_{n}\right) u_{n} \leqslant \varepsilon_{n}\left\|\psi u_{n}\right\|_{1, Q} \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Omega}-\left|X u_{n}\right|^{Q-2} \psi X u_{n} X u-\left|X u_{n}\right|^{Q-2} u X u_{n} X \psi+\psi f\left(x, u_{n}\right) u \leqslant \varepsilon_{n}\|\psi u\|_{1, Q} . \tag{44}
\end{equation*}
$$

Then

$$
\begin{gather*}
0 \leqslant\left(\left|X u_{n}\right|^{Q-2} X u_{n}-|X u|^{Q-2} X u\right)\left(X u_{n}-X u\right) \psi \\
=\int_{\Omega}\left|X u_{n}\right|^{Q} \psi-\left|X u_{n}\right|^{Q-2} \psi X u_{n} X u-|X u|^{Q-2} \psi X u X u_{n}+|X u|^{Q} \psi \\
\leqslant-\int_{\Omega} u_{n}\left|X u_{n}\right|^{Q-2} X u_{n} X \psi+\int_{\Omega} \psi f\left(x, u_{n}\right) u_{n}+\varepsilon_{n}\left\|\psi u_{n}\right\|_{1, Q}  \tag{45}\\
+\int_{\Omega} u\left|X u_{n}\right|^{Q-2} X u_{n} X \psi-\int_{\Omega} \psi f\left(x, u_{n}\right) u+\varepsilon_{n}\|\psi u\|_{1, Q} \\
=\int_{\Omega}\left|X u_{n}\right|^{Q-2} X u_{n} X \psi\left(u-u_{n}\right)+\int_{\Omega} \psi f\left(x, u_{n}\right)\left(u_{n}-u\right)+\varepsilon_{n}\left(\left\|\psi u_{n}\right\|_{1, Q}+\|\psi u\|_{1, Q}\right) .
\end{gather*}
$$

Now it suffices to prove that each term in the last member of (45) tends to 0 as $n \rightarrow+\infty$. Using the interpolation inequality $a b \leqslant \delta a^{Q /(Q-1)}+C_{\delta} b^{Q}$ with $C_{\delta}=\delta^{1-Q}$, we have

$$
\begin{gathered}
\int_{\Omega}\left|X u_{n}\right|^{Q-2} X u_{n} X \psi\left(u-u_{n}\right) \leqslant \delta \int_{\Omega}\left|X u_{n}\right|^{Q}+C_{\delta} \int_{\Omega}|X \psi|^{Q}\left|u-u_{n}\right|^{Q} \\
\leqslant \delta C+C_{\delta}\left(\int_{\Omega}|X \psi|^{r Q}\right)^{1 / r}\left(\int_{\Omega}\left|u-u_{n}\right|^{s Q}\right)^{1 / s}
\end{gathered}
$$

where $\frac{1}{r}+\frac{1}{s}=1$. Thus, since $u_{n} \rightarrow u$ in $L^{s Q}(\Omega)$ as $n \rightarrow+\infty$ and $\delta$ is arbitrarily small we obtain that

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{\Omega}\left|X u_{n}\right|^{Q-2} X u_{n} X \psi\left(u-u_{n}\right) \leqslant 0 \tag{46}
\end{equation*}
$$

On the other hand, since $u_{n} \rightarrow u$ in $L^{q^{\prime}}(\Omega)$ as $n \rightarrow+\infty$ and by (39), we have

$$
\begin{equation*}
\int_{\Omega} \psi f\left(x, u_{n}\right)\left(u_{n}-u\right) \leqslant\left(\int_{\Omega} f\left(x, u_{n}\right)^{q}\right)^{1 / q}\left(\int_{\Omega}\left|u_{n}-u\right|^{q^{\prime}}\right)^{1 / q^{\prime}} \rightarrow 0 \tag{47}
\end{equation*}
$$

So (ii) is proved. (iii) follows from (ii) and (30).

## 4-Proof of Theorem 1

It follows from Lemma 3.1, Lemma 3.2 and the Mountain-Pass Lemma [1] that there exists a positive level $c$ and a Palais-Smale sequence $\left(u_{n}\right)$ in $W_{0}^{1, Q}(\Omega, X)$ i.e. $I\left(u_{n}\right) \rightarrow c, I^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W^{-1, Q^{\prime}}(\Omega, X)$ as $n \rightarrow+\infty$. In view of Proposition 3.3 there are a subsequence of $\left(u_{n}\right)$, still denoted by $\left(u_{n}\right)$, and $u$ $\in W_{0}^{1, Q}(\Omega, X)$ such that (29), (30) hold and $u$ solves (1). The proof is concluded if we prove that $u \neq 0$. If $u=0$ we have from (36),

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|X u_{n}\right|^{Q}=\lim _{n \rightarrow+\infty} \int_{\Omega} f\left(x, u_{n}\right) u_{n} \leqslant \lim _{n \rightarrow+\infty}\left(\int_{\Omega}\left|f\left(x, u_{n}\right)\right|^{q}\right)^{1 / q}\left\|u_{n}\right\|_{q^{\prime}}=0 .
$$

But, from $\left(F_{3}\right), \lim _{n \rightarrow+\infty} \int_{\Omega} F\left(x, u_{n}\right)=0$, and, by (36), $\lim _{n \rightarrow+\infty} \int_{\Omega}\left|X u_{n}\right|^{Q}=Q c . \mathrm{A}$
contradiction.

## References

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381.
[2] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), 385-398.
[3] M. Biroli and N. Tchou, Asymptotic behaviour of relaxed Dirichlet problems involving a Dirichlet-Poincaré form, Z. Anal. Anwendungen 16 (1997), 281309.
[4] M. Biroli and S. Tersian, On the existence of nontrivial solutions to a semilinear equation relative to a Dirichlet form, preprint.
[5] R. R. Coifman and G. Weis, Analyse armonique non-commutative sur certaines espaces homogénes, Lecture Notes in Math. 242, 1971.
[6] D. G. De Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\boldsymbol{R}^{2}$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), 139-153.
[7] J.M.B. Do O', Semilinear Dirichlet problems for the N-Laplacian in $\boldsymbol{R}^{N}$ with nonlinearities in the critical growt range, Differential and Integral Equations 9 (1996), 967-979.
[8] B. Franchi, S. Gallot and R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571.
[9] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and wheighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier 45 (1995), 577-604.
[10] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York 1983.
[11] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
[12] L. Hörmander, Subelliptic operators, Ann. of Math. Stud. 91, Princeton Univ. Press, 1979, 127-208.
[13] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439.
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
[15] A. Nagel - E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147.
[16] R. O'Neil, Convolution operators and $L(p, q)$ spaces, Ann. Inst. Fourier 14 (1966), 103-106.
[17] A. SÁNCHEz-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160.
[18] N. S. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.


#### Abstract

In this paper we study the existence of solutions for the problem $-\Delta_{Q} u=f(x, u), u$ $\in W_{0}^{1, Q}(\Omega, X)$, where $\Delta_{Q}$ is the $Q$-Laplacian in the Hörmander vector field setting, $Q$ is the homogeneous dimension associated to $\Omega$ and the nonlinearity $f$ has a subcritical growth on $\Omega$.


[^0]:    (*) Dipartimento di Matematica, Univ. di Parma, Via D’Azeglio 85, 43100 Parma, Italy; e-mail: marchi@prmat.math.unipr.it
    (**) Received March 15, 2000. AMS classification 35 D 05, 35 J 20 , $35 \mathrm{~J} 60,35 \mathrm{~J} 65$, 35 J 70.

