SILVANA MARCHI (*)

Existence of nontrivial solutions to a nonlinear Dirichlet problem for the *Q*-Laplacian relative to Hörmander vector fields (**)

1 - Introduction

This paper deals with the existence of solutions of the problem

(1)
$$u \in W_0^{1,Q}(\Omega, X)$$

$$-\Delta_Q u \equiv -div(|Xu|^{Q-2}Xu) = f(x, u) \text{ in } \Omega$$

where Ω is an open, bounded, connected subset of \mathbf{R}^N ; X_j , for $j=1,\ldots,m$, are vector fields satisfying Hörmander's condition [11], [12]. Xu denotes the vector function $Xu := (X_1u, \ldots, X_mu)$ whereas $\operatorname{div} \overrightarrow{w} := \sum_{j=1}^m X_jw_j$ for any vector function $\overrightarrow{w} : \mathbf{R}^N \to \mathbf{R}^m$.

For any $p \ge 1$, $W_0^{1, p}(\Omega, X)$ denotes the closure of $C_0^{\infty}(\Omega)$ under the norm $\|u\|_{1, p} = \left(\|u\|_p^p + \sum_{j=1}^m \|Xu\|_p^p\right)^{1/p}$, where $\|.\|_p$ denotes the $L^p(\Omega)$ norm. $Q \ge N$ is the homogeneous dimension associated to Ω and the vector fields [13].

We suppose that the nonlinearity f(x, u) has a subcritical growth on Ω , i.e.

(2)
$$\lim_{|u| \to \infty} \frac{|f(x, u)|}{\exp(\alpha |u|^{Q'})} = 0 \quad \text{uniformly on } x \in \Omega, \forall \alpha > 0$$

where Q' = Q/(Q - 1).

^(*) Dipartimento di Matematica, Univ. di Parma, Via D'Azeglio 85, 43100 Parma, Italy; e-mail: marchi@prmat.math.unipr.it

^(**) Received March 15, 2000. AMS classification 35 D 05, 35 J 20, 35 J 60,35 J 65, 35 J 70.

Other conditions we impose to f are

$$\begin{array}{ll} (F_1) & f: \overline{\varOmega} \times \pmb{R} \to \pmb{R} \text{ is continuous }, \ f(x,\,0) = 0 \\ (F_2) & \exists R,\, M > 0 \text{ such that } \forall |\,u\,| \in \pmb{R},\, \forall x \in \varOmega \\ & 0 < F(x,\,u) = \int\limits_0^u \!\! f(x,\,t) \,\,dt \leq M |f(x,\,t)\,| \\ (F_3) & 0 < F(x,\,u) \leq \frac{1}{Q} f(x,\,u) \,\,u, \quad \forall |\,u\,| \in \pmb{R} \backslash \{0\}, \quad \forall x \in \varOmega \\ (F_4) & \limsup_{|\,u\,| \to 0} \frac{QF(x,\,u)}{|\,u\,|^{\,Q}} < \lambda_1 \ \text{ uniformly on } \varOmega \end{array}$$

where $\lambda_1 > 0$ denotes the smallest eigenvalue of the problem $-\Delta_Q u = \lambda |u|^{Q-2} u$, $u \in W_0^{1,Q}(\Omega, X)$, which is variationally characterized as

(3)
$$\lambda_1 = \inf \left\{ \int |Xu|^Q dx \, | \, u \in W_0^{1, Q}(\Omega, X), \, ||u||_Q = 1 \right\}.$$

We will prove the following result

Theorem 1. Assume that f satisfies (2), (F_1) , ..., (F_4) . Then the problem (1) has a nontrivial solution.

The interest of Theorem 1 rests in the fact that f growth faster than any polynomial as $|u| \to +\infty$. In this case the "standard" methods for analyzing critical growth problems don't work. Recently Theorem 1 has been proved in the euclidean setting in [6] and [7] assuming f in the *critical or subcritical growth range* and using the Mountain Pass Lemma whithout the Palais-Smale condition.

In this paper we extend these new methods to the Hörmander vector field's setting for f in the subcritical growth range. On this object in Section 2 we state the existence of positive structural constants C and α_Q such that

$$\int_{\Omega} \exp\left(\alpha \left| u \right|^{Q'}\right) \le C$$

for all $u \in W_0^{1, Q}(\Omega, X)$, $||u||_{1, Q}$ for every $\alpha \leq \alpha_Q$.

This result is well known in the euclidean setting, where Q=N, as the Trudinger-Moser inequality [14], [18]. A sharp version for higher order derivatives is due to D. R. Adams [2].

In these papers the largest positive real number α for which (4) holds, let it be α_N , is precisely calculated. Here we are able to determine the constant α_Q in ter-

ms of the other structural constants. Moreover this value is the best possible being equal to α_N in the euclidean case. We underline the interest of (4) not only in order to prove Theorem 1 but also as it permits us to extends to a larger setting many other important applications of the Trudinger-Moser inequality. In Section 2 we prove also a compact imbedding result.

In Section 3 we give a variational formulation of the problem and in Section 4 we prove Theorem 1.

2 - Preliminary results

Let Σ be an open connected subset of \mathbb{R}^N . Let us suppose that the rank of the Lie algebra generated by the vector fields X_j , $j=1,\ldots,m$, equals N at each point of a neighbourhood Σ_0 of $\overline{\Sigma}$.

Let $\varrho(x, y)$, $x, y \in \Sigma$, be the metric associated to the vector fields X_j and let $B(x, r) := \{y \in \Sigma | \varrho(x, y) < r\}$, $x \in \Sigma$, r > 0 be the corresponding balls [15]. Let K_0 be an arbitrary compact subset of Σ . By the results of [15] there exist positive constants r_0 , $c_0 = r_0$, $c_0(K_0)$ such that

(5)
$$|B(x, 2r)| \le c_0 |B(x, r)|$$
, for any $0 < r < r_0$, $x \in K_0$

where |E| denotes the Lebesgue measure of a measurable set $E \in \mathbb{R}^N$. Moreover (see also [9]) there exist positive constants c_1 , $c_2 = c_1$, $c_2(K_0)$ such that

(6)
$$c_1 \left(\frac{r}{s}\right)^{\alpha} \le \frac{|B(x, r)|}{|B(x, s)|} \le c_2 \left(\frac{r}{s}\right)^{\beta}$$

for any $0 < s < r < r_0$, $x \in K_0$, for suitable $\alpha = \alpha(x)$ and $\beta = \beta(x)$ with $N \le \alpha \le \beta \le Q$. By the results of [13] a Sobolev-Poincaré inequality holds: there exist a positive contant $c_3 = c_3(K_0)$ such that, for any $0 < r < r_0$, $x \in K_0$ and for any $f \in C_0^{\infty}(B(x, r))$

$$(7) \qquad \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_B|^q dy\right)^{1/q} \leq c_3 r \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} \left| \sum_{j=1}^m X_j f(y) \right|^p dy\right)^{1/p}$$

provided $1 \le q < \frac{pQ}{Q-p}$, where $f_B = \frac{1}{|B(x,r)|} \int\limits_{B(x,r)} f(y) \, dy$. By the results of [17], [15] (see also [13], [8]) the following estimate involving the Riesz potentials

 $\lceil 4 \rceil$

(8)
$$|f(z)| \leq c_4 \int |Xf(y)| \frac{\varrho(z,y)}{|B(z,\varrho(z,y))|} dy$$

for any $0 < r < r_0$, $x \in K_0$ and for any $f \in C_0^{\infty}(B(x, r))$, for a suitable positive constant $c_4 = c_4(K_0)$.

Let x_0 be an arbitrary point of K_0 . We will suppose $x_0=0$ for sake of simplicity and we will denote $\alpha_0=\alpha(0)$, $\beta_0=\beta(0)$ the constants appearing in (6). Let $\Omega\subset B(0,\,r_1/2)$ for $0< r_1<\frac{r_0(K_0)}{2}$, where $r_0(K_0)$ is the constant appearing in (5). In the following C will denote a positive structural constant not necessarily the same at each occurrence.

Proposition 2.2. There is a constant $C_5 = C_5(Q, K_0, \Omega)$ such that, for all $f \in L^Q(\mathbb{R}^N)$ with support contained in Ω , $f \ge 0$,

$$\int_{\Omega} \exp\left(\Gamma \left| \frac{I_1 \star f(x)}{\|f\|_Q} \right|^{Q'}\right) dx \leq C_5$$
where $I_1 \star f(x) = \int \frac{\varrho(x, y) f(y)}{|B(x, \varrho(x, y))|} dy$ and $\Gamma = \frac{c_1 r_1^{\alpha_0}}{|B_{r_1}|} c_2^{-\frac{\alpha_0^2}{\beta_0(\alpha_0 - 1)}}$ if B_{r_1}

Let's observe that, in the euclidean setting where $c_1 = c_2 = 1$, $\alpha_0 = \beta_0 = N$, $|B_{r_1}| = r_1^N \frac{\omega_{N-1}}{N}$, it results $\Gamma = \frac{N}{\omega_{N-1}}$, which is proved to be an upper bound for (9), [2].

Proof. Let $f \in L^Q(\mathbf{R}^N)$ with support contained in Ω , $f \ge 0$, $||f||_{a_0} \le 1$. For any s > 0, let $\lambda_f(s) = |\{x \in \Omega \mid f(x) > s\}|$, and for any t > 0 let $f^*(t) = \inf\{s > 0 \mid \lambda_f(s) \le t\}$ and $f^{**}(t) = t^{-1} \int_0^1 f^*(s) \, ds$.

$$\begin{array}{ll} \operatorname{Let} & g(x) = \frac{\varrho(0,\,x)}{r_1^{a_0}} \left(\frac{\left|B_{r_1}\right|}{\left|B(0,\,\varrho(0,\,x))\right|} \right)^{\frac{a_0}{\beta_0}}, \quad x \in \Omega. \ \, \text{By (6)} \ \, \text{we have} \ \, g(x) \\ \leqslant \frac{c_2^{\frac{a_0}{\beta_0}}}{\varrho(0,\,x)^{a_0-1}} \, . \ \, \text{Then} \, \, \lambda_g(s) \leqslant \left| \left\{ x \in \Omega \, | \, \varrho(0,\,x) \leqslant \left(\frac{c_2^{\frac{a_0}{\beta_0}}}{s} \right)^{\frac{1}{a_0-1}} \right\} \right|. \ \, \text{If} \end{array}$$

$$\left(\frac{c_2 \frac{a_0}{\beta_0}}{s}\right)^{\frac{1}{a_0 - 1}} \leqslant r_1$$

then, from (10) and (6) we obtain

(11)
$$\lambda_g(s) \leq \frac{|B_{r_1}|}{c_1 r_1^{\alpha_0}} c_2 \frac{\alpha_0^2}{\beta_0(\alpha_0 - 1)} s^{-\frac{\alpha_0}{\alpha_0 - 1}} = \Gamma^{-1} s^{-\frac{\alpha_0}{\alpha_0 - 1}}.$$

If (10) is not satisfied then, by (6),

$$\Gamma^{-1} s^{-\frac{\alpha_0}{\alpha_0-1}} \geqslant \frac{|B_{r_1}|}{c_1} \geqslant \frac{|B_{r_1}|}{c_1 2^{\alpha_0}} \geqslant |B_{r_1/2}| \geqslant |\Omega| \lambda_g(s).$$

So (11) holds in any case. It follows from (11) that $t \leq \frac{\Gamma^{-1}}{g^*(t)^{\alpha_0'}}$, where $\alpha_0' = \frac{\alpha_0}{\alpha_0 - 1}$ and then

$$(12) g^*(t) \leq (t\Gamma)^{-\frac{1}{a_0'}}.$$

If $v(x) = (I_1 \star f)(x)$, then by (12) and O'Neil's Lemma [16], Lemma 1.5, we have

(13)
$$v^{*}(t) \leq v^{**}(t) \leq tf^{**}g^{**}(t) + \int_{t}^{+\infty} f^{*}(s) g^{*}(s) ds$$

$$\leq \Gamma^{-\frac{1}{a_{0}}} \left(\frac{\alpha_{0}}{t^{\frac{1}{a_{0}}}} \int_{0}^{t} f^{*}(s) ds + \int_{t}^{r_{1}} \frac{f^{*}(s)}{s^{\frac{1}{a_{0}}}} ds \right) \equiv \Gamma^{-\frac{1}{a_{0}}} \gamma(t).$$

[6]

Let

$$a(s, t) = \begin{cases} 1 & \text{for } 0 < s < \log \frac{|\Omega|}{t} \\ \alpha_0 t^{-\frac{1}{a_0}} e^{-\frac{s}{a_0}} |\Omega|^{\frac{1}{a_0}} & \text{for } \log \frac{|\Omega|}{t} < s < +\infty \\ 0 & \text{for } -\infty < s \le 0 \end{cases}$$

(15)
$$\varphi(s) = |\Omega|^{\frac{1}{a_0}} f^*(|\Omega| e^{-s}) e^{-\frac{s}{a_0}}$$

(16)
$$F(t) = t - \left(\int_{-\infty}^{+\infty} a(s, t) \varphi(s) ds \right)^{\alpha_0'}$$

for $(s, t) \in (-\infty, +\infty) \times [0, +\infty)$. Then

(17)
$$\int_{\Omega} f(x)^{\alpha_0} dx = \int_{0}^{|\Omega|} f^*(t)^{\alpha_0} dt = \int_{0}^{+\infty} \varphi(s)^{\alpha_0} ds .$$

Moreover $F(t) = t - \gamma(t)^{\alpha'_0}$, $t \in [0, +\infty)$, and then, for any $\delta > 0$,

$$(18) \qquad \int\limits_{\Omega} e^{\delta v(x)^{\alpha_0'}} dx = \int\limits_{0}^{|\Omega|} e^{\delta v^*(t)^{\alpha_0'}} dt \leq \int\limits_{0}^{|\Omega|} e^{\delta \Gamma^{-1} \gamma(t)^{\alpha_0'}} dt = \int\limits_{0}^{|\Omega|} e^{\delta \Gamma^{-1} (t - F(t))} dt \; .$$

From (17) we have $\int\limits_0^+ \varphi(s)^{a_0} ds \le 1$. By Lemma 2.1, $\int\limits_0^+ e^{-F(t)} dt \le \overline{c}$, and then, by (18), for $\delta \le \Gamma$, $\int\limits_0^+ e^{\delta v(x)^{a_0'}} \le C$, where C is a positive constant independent of f. Hence (9) follows.

Proposition 2.3. There exists a positive constant $c_6 = c_6(Q, K_0, \Omega)$ such that, for all $u \in C_0^{\infty}(\Omega)$, $||Xu||_Q \leq 1$,

(19)
$$\int\limits_{\Omega}e^{\left.\alpha\right|u(x)\left|^{Q'}\right.}dx\leqslant c_{6},\quad \text{ for all }\alpha\leqslant\alpha_{Q}=\frac{\varGamma}{c_{4}^{Q'}}\,.$$

Proof. By (8) we have $|u(x)|^{Q'} \le c_4^{Q'} |I_1 \star |Xu|(x)|^{Q'}$. Now just apply Proposition 2.2.

Proposition 2.4. Let q < Q and let $B_{r_1/2} = B(0, r_1/2)$. Every sequence (f_n) bounded in $W^{1, q}(B_{r_1/2}, X)$ is relatively compact in $L^q(B_{r_1/2})$.

Proof. By a method of M. Biroli and S. Tersian [4] we will prove that (f_n) admits a subsequence convergent in $L^q(B_{r_1/2})$. On account of [5], the ball $B_{r_1/2}$ can be covered by a finite number of balls $B(x_j, r)$, $r \le r_1/8$, $j = 1, ..., \nu$, such that $d(x_i, x_j) \ge r$, $\forall i, j = 1, ..., \nu$, where ν depends on r, r_1 . It follows from the doubling property that every point x in $B_{r_1/2}$ belongs at most to M balls, where M does not depend on r. In fact for every such j we have $B(x_j, r/2) \subseteq B(x, 2r) \subseteq B(x_j, 4r)$, and then $|B(x_j, r/2)| \ge 2^{-(3Q+1)} |B(x, 2r)|$. Therefore, taking into account that M is also the number of points x_j in B(x, r) we have

$$M2^{-(3Q+1)} \big| B(x,2r) \big| \leq M \min_{x_j \in B(x,r)} \big| B(x_j,r/2) \big| \leq \big| \bigcup_{x_j \in B(x,r)} B(x_j,r/2) \big| \leq \big| B(x,2r) \big| \; .$$

Let $w_{n,m} = f_n - f_m$ and $(w_{n,m})_j$ the average of $w_{n,m}$ on $B(x_j, r)$. We have

$$\int\limits_{B_{r_{1}/2}} |w_{n, m}|^{q} \leq 2^{q} \sum_{j=1}^{\nu} \int\limits_{B(x_{j}, r)} |w_{n, m} - (w_{n, m})_{j}|^{q} + \nu 2^{q} \sup_{j} \frac{1}{|B(x_{j}, r)|^{q-1}} \int\limits_{B(x_{j}, r)} |w_{n, m}|^{q}$$

$$\leq 2^{q} r^{q} c_{3} \sum_{j=1}^{\nu} \int\limits_{B(x_{i}, r)} |Xw_{n, m}|^{q} + \nu 2^{q} \left[\frac{c_{2}}{|B_{r_{1}/2}|} \left(\frac{r_{1}}{r} \right)^{\beta} \right]^{q-1} \sup\limits_{j} \int\limits_{B(x_{i}, r)} |w_{n, m}|^{q}$$

on account of (7), $B(x_j, r_1) \supseteq B_{r_1/2} \supseteq B(x_j, r)$, and the doubling property. For small $\varepsilon > 0$ we choose $r = r_\varepsilon = \frac{1}{2} \left(\frac{\varepsilon}{2 \, c_3 \, C} \right)^{1/q}$, where $\int\limits_{B_{r_1/2}} |Xw_{n,\,m}| \leqslant C$ for any $n,\,m$. Taking into account that (f_n) is weakly convergent in $L^q(B_{r_1/2})$, we can choose n_ε such that, for $n,\,m > n_\varepsilon$,

$$\sup_{j} \int_{B(x_{i}, r)} |w_{n, m}|^{q} \leq \frac{\varepsilon}{\nu 2^{q+1}} \left[\frac{|B_{r_{1}/2}|}{c_{2}} \left(\frac{r}{r_{1}} \right)^{\beta} \right]^{q-1}.$$

Then for $n, m > n_{\varepsilon}$ we have $\int_{Br_1/2} |w_{n,m}|^q \leq \varepsilon$, i.e. (f_n) is a Cauchy sequence in $L^q(B_{r_1/2})$; then (f_n) converges strongly in $L^q(B_{r_1/2})$.

Corollary 2.5. Let $1 \leq q < Q$. The imbedding of $W_0^{1, q}(\Omega, X)$ in $L^q(\Omega)$ is compact.

Proposition 2.6. Let $1 \leq q < Q$ and $1 \leq p < \frac{qQ}{Q-q}$. The imbedding of $W_0^{1,\,q}(\Omega,\,X)$ in $L^p(\Omega)$ is compact.

Proof (see [10], Theorem 7.22). If $p \leqslant q$ the proof follows from Corollary 2.5. If q , then let <math>r be such that $q . From Hölder's inequality we have <math>\|u\|_p \leqslant \|u\|_q^{\lambda} \|u\|_r^{1-\lambda}$ where $\lambda \in (0,1)$, $\frac{1}{p} = \frac{\lambda}{q} + \frac{1-\lambda}{r}$ and then, by (7), $\|u\|_p \leqslant \|u\|_q^{\lambda} \|Xu\|_q^{1-\lambda}$. Consequently a bounded set in $W_0^{1,\,q}(\Omega,X)$ must be precompact in $L^p(\Omega)$ for p > 1, and Proposition 2.6 is proved.

3 - The variational formulation

By (2) and (F_1) there exists a constant C > 0 such that

(20)
$$|f(x, u)| \le C \exp(\alpha |u|^{Q'}), \quad \forall (x, u) \in \Omega, \quad \forall \alpha > 0.$$

By (20) and (4), $f(x, u(x)) \in L^q(\Omega)$ for all q > 1 when $u \in W_0^{1, Q}(\Omega, X)$. In fact

$$\int\limits_{\Omega} \left| f(x,\,u(x)) \right|^q \leq C \int\limits_{\Omega} \exp\left(aq \left| \, u(x) \, \right|^{\,Q'}\right) \leq C \int\limits_{\Omega} \exp\left(aq \left\| \, u \right\|_{1,\,\,Q}^{\,Q'}\right) \left(\frac{\left| \, u(x) \, \right|}{\left\| \, u \right\|_{1,\,\,Q}}\right)^{\,Q'} \leq C$$

if $\alpha q \|u\|_{1,Q}^{Q'} \leq \alpha_Q$. The relation

(21)
$$I(u) = \frac{1}{Q} \int |Xu|^{Q} - \int F(x, u)$$

defines a C^1 functional $I: W_0^{1,Q}(\Omega,X) \to \mathbf{R}$ such that

$$(22) \qquad \langle I^{\prime}(u), \, v \rangle = \int \big| Xu \big|^{Q-2} Xu \, Xv - \int f(x, \, u) \, v \,, \qquad \forall v \in W_0^{1, \, Q}(\Omega, \, X)$$

where $\langle \cdot, \cdot \rangle$ denotes the duality between $W_0^{1, Q}(\Omega, X)$ and its dual space. It follows from (F_1) , (F_2) , (F_3) that

(23)
$$\exists C > 0 \text{ such that } \forall |u| \ge R, \forall x \in \Omega, F(x, u) \ge C \exp\left(\frac{|u|}{M}\right)$$

(24)
$$\exists R_0 > 0, \ \theta > Q \text{ such that } \forall |u| \ge R_0, \ \forall x \in \Omega, \ \theta F(x, u) \le u f(x, u).$$

Lemma 3.1. Assume (F_1) , (F_2) and (F_3) . Then $I(tu) \to -\infty$ as $t \to +\infty$, for all $u \in W_0^{1, Q}(\Omega, X) \setminus \{0\}$.

Proof. Let $u \in W_0^{1, Q}(\Omega, X) \setminus \{0\}$, and let p > Q. By (20) and (23), there exists a positive constant C such that $\forall x \in \Omega$

(25)
$$F(x, u) \ge |u|^p - C$$
 and then $I(tu) \le \frac{t^Q}{Q} \int |Xu|^Q - Ct^Q \int |u|^p + C$. Since $p > Q$, we obtain $I(tu) \to -\infty$

Lemma 3.2. Assume (F_1) , (F_2) , (F_3) . Then there exist δ , $\varrho > 0$ such that

(26)
$$I(u) \ge \delta, \quad \text{if } ||u||_{1,\Omega} = \varrho$$

Proof. Using (F_1) , (F_2) , (F_3) and (20) we can choose $\lambda < \lambda_1$ such that

$$(27) \quad F(x, u) \leq \frac{1}{Q} \lambda |u|^{Q} + C \exp(\alpha |u|^{Q'}) |u|^{q}, \quad \forall (x, u) \in \Omega \times \mathbf{R}, \quad \forall \alpha > 0$$

if q > Q. By Hölder's inequality and (4) we obtain

(28)
$$\int \exp(\alpha |u|^{Q'}) |u|^{q} \leq \left\{ \int \exp\left[\alpha r ||u||_{1,Q}^{Q'} \left(\frac{|u|}{||u||_{1,Q}}\right)^{Q'}\right] \right\}^{1/r}$$

$$\cdot \left\{ \int |u|^{sq} \right\}^{1/s} \leq C(Q) \left\{ \int |u|^{sq} \right\}^{1/s}$$

$$\begin{split} &\text{if } \alpha r \|u\|_{1,\,Q}^{Q'} < \alpha_{\,Q}, \text{ where } \frac{1}{r} + \frac{1}{s} = 1. \text{ Then, by (27), (28), (3) and (7), we have } \\ &I(u) \geqslant \frac{1}{Q} \left(1 - \frac{\lambda}{\lambda_{\,1}}\right) \|u\|_{1,\,Q}^{Q} - C(Q) \|u\|_{1,\,Q}^{q}. \text{ As } \lambda < \lambda_{\,1} \text{ and } q > Q, \text{ we can choose } \\ &\varrho > 0 \text{ such that } I(u) \geqslant \delta \text{ if } \|u\|_{1,\,Q} = \varrho\,. \end{split}$$

Proposition 3.3. Assume (F_1) , (F_2) , (F_3) . Let (u_n) be a Palais-Smale sequence, i.e.

$$I(u_n) \rightarrow c \text{ and } I'(u_n) \rightarrow 0 \text{ in } W^{-1, Q'}(\Omega, X) \text{ as } n \rightarrow +\infty$$
.

Then (u_n) has a subsequence, still denoted by (u_n) for sake of simplicity, and there exists $u \in W_0^{1, Q}(\Omega, X)$ such that

- (i) $f(x, u_n) \rightarrow f(x, u)$ in $L^1(\Omega)$ as $n \rightarrow +\infty$
- (ii) $|Xu_n|^{Q-2}Xu_n \rightarrow |Xu|^{Q-2}Xu$ weakly in $(L^{Q'}(\Omega))^m$ as $n \rightarrow +\infty$
- (iii) u solves (1).

Proof. The proof follows the outline of [7], Lemma 4. As (u_n) is a Palais-Smale sequence, then

(29)
$$\frac{1}{Q} \int |Xu_n|^Q - \int F(x, u_n) \to c$$

$$(30) \quad \left| \int |Xu_n|^{Q-2} Xu_n \cdot Xv - \int f(x, u_n) v \right| \leq \varepsilon_n \|v\|_{1, Q}, \quad \forall v \in W_0^{1, Q}(\Omega, X)$$

where $\varepsilon_n \to 0$ as $n \to +\infty$. Multiplying (29) by the constant $\theta > Q$ of (24) and subtracting (30) with $v = u_n$, we obtain

(31)
$$\left(\frac{\theta}{Q} - 1\right) \int |Xu_n|^Q - \int [\theta F(x, u_n) - f(x, u_n) u_n] \le C + \varepsilon_n ||u_n||_{1, Q}.$$

From (31) and (F_3) we deduce that (u_n) is bounded in $W_0^{1,Q}(\Omega, X)$. Moreover, unless we extract a subsequence, still denoted by (u_n) , we have as $n \to +\infty$

(32)
$$u_n \to u \text{ weakly in } W_0^{1, Q}(\Omega, X)$$
$$u_n \to u \text{ in } L^q(\Omega), \quad \forall q \ge 1$$
$$u_n(x) \to u(x) \text{ a. e. } x \in \Omega.$$

Then $|Xu_n|^{Q-2}Xu_n$ is bounded in $(L^{Q'}(\Omega))^m$ and, from (30), we have

From (32), (33) and [6], Lemma 2.1, we have

(34)
$$f(x, u_n) \rightarrow f(x, u)$$
 in $L^1(\Omega)$ as $n \rightarrow +\infty$

and the first assertion of Proposition 3.3 is so proved. It follows from (F_2) and (34), using the generalized Lebesgue dominated convergence theorem, that

(35)
$$F(x, u_n) \rightarrow F(x, u)$$
 in $L^1(\Omega)$ as $n \rightarrow +\infty$.

From (29), (30) we obtain

(36)
$$\lim_{n \to +\infty} ||u_n||_{1, Q}^Q = Q\left(c + \int F(x, u)\right) \\ \lim_{n \to +\infty} \int f(x, u_n) \ u_n = Q(c + F(x, u)).$$

By (F_3) and (36) we conclude $c \ge 0$. So any Palais-Smale sequence approaches a nonnegative level. To prove the second assertion we observe that, by simple calcu-

lation of vectorial algebra, we have

$$(|Xu_n|^{Q-2}Xu_n - |Xu|^{Q-2}Xu)(Xu_n - Xu)$$

$$= \frac{1}{2} |Xu_n - Xu|^2 (|Xu_n|^{Q-2} + |Xu|^{Q-2})$$

$$+ \frac{1}{2} [|Xu_n|^2 - |Xu|^2][|Xu_n|^{Q-2} - |Xu|^{Q-2}] \ge 0.$$

By proving that

(38)
$$\int_{\Omega} (|Xu_n|^{Q-2}Xu_n - |Xu|^{Q-2}Xu)(Xu_n - Xu) \psi \to 0$$

as $n \to +\infty$, for any test function $\psi \in C_0^\infty(B_r)$, $B_r \subset \Omega$, $\psi=1$ on $\Omega \backslash B_r$, $0 \le \psi \le 1$, we obtain $Xu_n \to Xu$ as $n \to +\infty$ a.e. in Ω , and then, taking into account that $(|Xu_n|^{Q-2}Xu_n)$ is bounded in $(L^{Q'}(\Omega))^m$, unless we take a subsequence, we conclude the proof.

Let's observe at first that, by (2), (3) and the boundedness of (u_n) in $W_0^{1,Q}(\Omega,X)$, we have, for any q>1

(39)
$$\int_{\Omega} |f(x, u_n)|^q \leq C, \quad \text{for every } n.$$

Notice that

$$\int_{O} |f(x, u_n) u_n - f(x, u) u| \le \int_{O} |f(x, u_n) - f(x, u)| |u| + \int_{O} |f(x, u_n)| |u_n - u|.$$

Since $f(x, u_n) \to f(x, u)$ in $L^1(\Omega)$ as $n \to +\infty$, then $f(x, u_n)v \to f(x, u)v$ in $L^1(\Omega)$ as $n \to +\infty$, $\forall v \in D(\Omega)$, and then

(40)
$$\lim_{n \to +\infty} \int_{\Omega} |f(x, u_n) - f(x, u)| |u| = 0.$$

On the other hand, by Hölder's inequality and (39) we have

(41)
$$\int_{\Omega} |f(x, u_n)| |u_n - u| \leq C \left(\int_{\Omega} |u_n - u|^{q'} \right)^{1/q'} \to 0 \quad \text{as } n \to +\infty.$$

Hence by (40) and (41)

(42)
$$\lim_{n \to +\infty} \int_{\Omega} |f(x, u_n) u_n - f(x, u) u| = 0.$$

To prove (38) we observe that, if we take $v = \psi u_n$ or $v = \psi u$ in (30), then we obtain respectively

(43)
$$\int_{\Omega} |Xu_n|^Q \psi + u_n |Xu_n|^{Q-2} Xu_n X\psi - \psi f(x, u_n) u_n \le \varepsilon_n ||\psi u_n||_{1, Q}$$

(44)
$$\int_{\Omega} -|Xu_n|^{Q-2} \psi X u_n X u - |Xu_n|^{Q-2} u X u_n X \psi + \psi f(x, u_n) u \leq \varepsilon_n \|\psi u\|_{1, Q}.$$

Then

$$0 \leq (|Xu_{n}|^{Q-2}Xu_{n} - |Xu|^{Q-2}Xu)(Xu_{n} - Xu) \psi$$

$$= \int_{\Omega} |Xu_{n}|^{Q} \psi - |Xu_{n}|^{Q-2} \psi Xu_{n}Xu - |Xu|^{Q-2} \psi Xu Xu_{n} + |Xu|^{Q} \psi$$

$$\leq -\int_{\Omega} u_{n} |Xu_{n}|^{Q-2}Xu_{n}X\psi + \int_{\Omega} \psi f(x, u_{n}) u_{n} + \varepsilon_{n} ||\psi u_{n}||_{1, Q}$$

$$+ \int_{\Omega} u |Xu_{n}|^{Q-2}Xu_{n}X\psi - \int_{\Omega} \psi f(x, u_{n}) u + \varepsilon_{n} ||\psi u||_{1, Q}$$

$$= \int_{\Omega} |Xu_{n}|^{Q-2}Xu_{n}X\psi(u - u_{n}) + \int_{\Omega} \psi f(x, u_{n})(u_{n} - u) + \varepsilon_{n} (||\psi u_{n}||_{1, Q} + ||\psi u||_{1, Q}).$$

Now it suffices to prove that each term in the last member of (45) tends to 0 as $n \to +\infty$. Using the interpolation inequality $ab \le \delta a^{Q/(Q-1)} + C_\delta b^Q$ with $C_\delta = \delta^{1-Q}$, we have

$$\int_{\Omega} |Xu_n|^{Q-2} Xu_n X\psi(u-u_n) \leq \delta \int_{\Omega} |Xu_n|^Q + C_{\delta} \int_{\Omega} |X\psi|^Q |u-u_n|^Q$$

$$\leq \delta C + C_{\delta} \left(\int_{\Omega} |X\psi|^{rQ} \right)^{1/r} \left(\int_{\Omega} |u-u_n|^{sQ} \right)^{1/s}$$

where $\frac{1}{r} + \frac{1}{s} = 1$. Thus, since $u_n \to u$ in $L^{sQ}(\Omega)$ as $n \to +\infty$ and δ is arbitrarily small we obtain that

(46)
$$\lim_{n \to +\infty} \int_{Q} |Xu_n|^{Q-2} Xu_n X\psi(u-u_n) \leq 0.$$

On the other hand, since $u_n \to u$ in $L^{q'}(\Omega)$ as $n \to +\infty$ and by (39), we have

$$(47) \qquad \int\limits_{\Omega} \psi f(x, u_n)(u_n - u) \leq \left(\int\limits_{\Omega} f(x, u_n)^q\right)^{1/q} \left(\int\limits_{\Omega} |u_n - u|^{q'}\right)^{1/q'} \rightarrow 0.$$

So (ii) is proved. (iii) follows from (ii) and (30).

4 - Proof of Theorem 1

It follows from Lemma 3.1, Lemma 3.2 and the Mountain-Pass Lemma [1] that there exists a positive level c and a Palais-Smale sequence (u_n) in $W_0^{1,\,Q}(\Omega,X)$ i.e. $I(u_n) \to c$, $I'(u_n) \to 0$ in $W^{-1,\,Q'}(\Omega,X)$ as $n \to +\infty$. In view of Proposition 3.3 there are a subsequence of (u_n) , still denoted by (u_n) , and $u \in W_0^{1,\,Q}(\Omega,X)$ such that (29), (30) hold and u solves (1). The proof is concluded if we prove that $u \neq 0$. If u = 0 we have from (36),

$$\lim_{n \to +\infty} \int_{\Omega} |Xu_n|^{Q} = \lim_{n \to +\infty} \int_{\Omega} f(x, u_n) u_n \leq \lim_{n \to +\infty} \left(\int_{\Omega} |f(x, u_n)|^{q} \right)^{1/q} ||u_n||_{q'} = 0.$$

But, from (F_3) , $\lim_{n\to +\infty}\int\limits_{\Omega}F(x,\,u_n)=0$, and, by (36), $\lim_{n\to +\infty}\int\limits_{\Omega}|Xu_n|^Q=Qc$. A contradiction.

References

- [1] A. Ambrosetti and P. H. Rabinowitz, *Dual variational methods in critical point theory and applications*, J. Functional Analysis 14 (1973), 349-381.
- [2] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), 385-398.
- [3] M. BIROLI and N. TCHOU, Asymptotic behaviour of relaxed Dirichlet problems involving a Dirichlet-Poincaré form, Z. Anal. Anwendungen 16 (1997), 281-309.
- [4] M. BIROLI and S. TERSIAN, On the existence of nontrivial solutions to a semilinear equation relative to a Dirichlet form, preprint.
- [5] R. R. Coifman and G. Weis, Analyse armonique non-commutative sur certaines espaces homogénes, Lecture Notes in Math. 242, 1971.
- [6] D. G. DE FIGUEIREDO, O. H. MIYAGAKI and B. RUF, *Elliptic equations in* \mathbb{R}^2 *with nonlinearities in the critical growth range*, Calc. Var. Partial Differential Equations 3 (1995), 139-153.

- [7] J.M.B. Do O', Semilinear Dirichlet problems for the N-Laplacian in \mathbb{R}^N with nonlinearities in the critical growt range, Differential and Integral Equations 9 (1996), 967-979.
- [8] B. Franchi, S. Gallot and R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571.
- [9] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and wheighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier 45 (1995), 577-604.
- [10] D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York 1983.
- [11] L. HÖRMANDER, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
- [12] L. HÖRMANDER, Subelliptic operators, Ann. of Math. Stud. 91, Princeton Univ. Press, 1979, 127-208.
- [13] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439.
- [14] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
- [15] A. NAGEL E. M. STEIN and S. WAINGER, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147.
- [16] R. O'Neil, Convolution operators and L(p,q) spaces, Ann. Inst. Fourier 14 (1966), 103-106.
- [17] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160.
- [18] N. S. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.

Abstract

In this paper we study the existence of solutions for the problem $-\Delta_Q u = f(x, u)$, $u \in W_0^{1, Q}(\Omega, X)$, where Δ_Q is the Q-Laplacian in the Hörmander vector field setting, Q is the homogeneous dimension associated to Ω and the nonlinearity f has a subcritical growth on Ω .

* * *