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SILVANA MARCHI (*)

Existence of nontrivial solutions to a nonlinear Dirichlet problem

for the Q-Laplacian relative to Héormander vector fields (**)

1 - Introduction
This paper deals with the existence of solutions of the problem

ue Wh9Q, X)

@ . _ .
—Aqu = —dw(|Xu|9 2 Xu) =f(x,u) in Q

where Q is an open, bounded, connected subset of RY ; X;, forj=1, ..., m, are
vector fields satisfying Hormander’s condition [11], [12]. Xu denotes the vector

function Xu := (X, u, ..., X,,u) whereas div w := E X;w; for any vector function
w: RN—>R". !
For any p=1, W' ?(R, X) denotes the closure of Cy°(2) under the norm
m 1/p
lully, , = (Hu”ﬁ + > HXqu) , where ||.||, denotes the L”(£) norm. @ = N is the
Jj=1

homogeneous dimension associated to © and the vector fields [13].
We suppose that the nonlinearity f(x, ) has a subcritical growth on £,
ie.

|, w) |

lul== exp (a|u|?)

@

=0 uniformly on xe Q, Va >0

where Q' =Q/(Q —1).
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Other conditions we impose to f are

(F,) f:Q2xR—R is continuous , f(x,0)=0
(Fy) 3R, M >0 such that V|u|eR, VxeQ

0<F(x,u)= jf(x,t) dt < M|f(x, t)|
0
1
(Fg) 0<F(x,u)< af(ac, wu, Y|u|eR\{0}, VeeQ
(Fy) lim sup ————— < 1, uniformly on Q

where 1, > 0 denotes the smallest eigenvalue of the problem —4 gu =2|u|? 2u,
ue W (R, X), which is variationally characterized as

3) /11=ian|Xu|de|ueW01’Q(Q,X), ||u||Q=1}.
We will prove the following result

Theorem 1. Assume that f satisfies (2), (F), ...,(Fy). Then the problem (1)
has a nontrivial solution.

The interest of Theorem 1 rests in the fact that f growth faster than any po-
lynomial as |#| — + . In this case the «standard» methods for analyzing criti-
cal growth problems don’t work. Recently Theorem 1 has been proved in the eu-
clidean setting in [6] and [7] assuming fin the critical or subcritical growth range
and using the Mountain Pass Lemma whithout the Palais-Smale condition.

In this paper we extend these new methods to the Hérmander vector field’s
setting for f in the subcritical growth range. On this object in Section 2 we state
the existence of positive structural constants C and a such that

) J'exp(a|u|Q')sC

Q

for all ue Wi (R, X), |lull;, o for every a<a,.

This result is well known in the euclidean setting, where Q=N, as the Trudin-
ger-Moser inequality [14], [18]. A sharp version for higher order derivatives is
due to D. R. Adams [2].

In these papers the largest positive real number a for which (4) holds, let it be
@ y, is precisely calculated. Here we are able to determine the constant a  in ter-
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ms of the other structural constants. Moreover this value is the best possible
being equal to a y in the euclidean case. We underline the interest of (4) not only
in order to prove Theorem 1 but also as it permits us to extends to a larger set-
ting many other important applications of the Trudinger-Moser inequality. In
Section 2 we prove also a compact imbedding result.

In Section 3 we give a variational formulation of the problem and in Section 4
we prove Theorem 1.

2 - Preliminary results

Let X be an open connected subset of RY. Let us suppose that the rank of the
Lie algebra generated by the vector fields X;, j=1, ..., m, equals N at each
point of a neighbourhood X, of X.

Let o(x, ), x, y € X, be the metric associated to the vector fields X; and let
B(x, r) :={yeX|o(x, y) <r}, xeX, r>0 be the corresponding balls [15]. Let
K, be an arbitrary compact subset of 2. By the results of [15] there exist positive
constants 7y, ¢y =1y, ¢y(K,) such that

(5) |B(x, 2%) | <c¢o |Blx, )|, for any 0 <r<wr,, xekK,

where |E| denotes the Lebesgue measure of a measurable set £ c R". Moreover
(see also [9]) there exist positive constants c;, ¢, = ¢q, c3(K,) such that

r\*_ |B, 1) r\’
v o(5) = oy ==l5)

for any 0 <s<r <, xekK,, for suitable a = a(x) and f =p(x) with N<sa<p
< . By the results of [13] a Sobolev-Poincaré inequality holds: there exist a posi-
tive contant c;=c5(K,) such that, for any 0 <r<nwn,, xeK, and for any f
e Gy (B(x, 1))

1/q
| If(y)—fBI"dy) scgr(

m P 1/p
ElXjf(y) dy)

1 1
(Y [—— —
( | B, )| |B(9c,fr)|B(x£) =

B(x,r)
1
provided 1 <¢< e , Where fp= ——— j f(y) dy. By the results of
Q_p |B('%.7T)| B(x, )

[17], [15] (see also [13], [8]) the following estimate involving the Riesz potentials
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related to the vector fields holds:

oz, y)

t) |f(2) | $C4f |Xf(y)|m Y

for any 0 <r <y, « € K, and for any fe C;° (B(«x, 7)), for a suitable positive con-
stant ¢4 = ¢, (K).
Let x, be an arbitrary point of K,,. We will suppose x, = 0 for sake of simplicity

and we will denote ay=a(0), B,=p(0) the constants appearing in (6). Let
ro(Ky)

QcB(0, r/2) for 0 <r < , Where 7,(K,) is the constant appearing in (5).

In the following C will denote a positive structural constant not necessarily the sa-
me at each occurrence.

Lemma 2.1 (2], Lemma 1). Let 1 <p< + «. Let a(s, t) be a nonnegative

measurable function on (—o0, +0)X [0, + ) such that a.e. a(s, t) <1 when
+ oo l/i)/

0 <s<t and sup f J’ als, t)P ds =b< + w. Then there is a constant
£>0 too

C(p, b) such that for any ¢@=0 satzsfymg f @(s)Pds<1, we have
+ oo
~FO gt < C sz(t)—t—( ja(s,t) @(s) ds) .

—

C=0C
o
Je

Proposition 2.2. There is a constant Cs= C5(Q, K,, ) such that, for all
feLYURYN) with support contained in Q, f=0

I xf(x) |Q
) fexp(l“‘ L )dacsC5
171l
where I;*f(x) = J’ Mdy and I'= G’ Co ﬁo<aoo—1> if B,
_ | B(x, o(x, y)) | |B,, |
B0, r)).

Let’s observe that, in the euclidean setting where ¢,=c,=1, ay==N, |B,, |

WN-1 .
=rV , it results I'=

, which is proved to be an upper bound for (9),
WN-1

[2].

Proof. Let feL?(RY) with support contained in @, f=0, [|f],,<1. For
any s>0, let A4s)=[{xeQ|f(x)>s}|, and for any t>0 let f*(t)
1

=inf{s>0|Ax(s) <t} and f**(t) =t‘1ff*(s)ds.
0
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ag
0(0, ) |B,, | Bo
Let g(x) = , xe. By (6) we have g(x)
0 | B(0, 0(0, x)) | X
ﬂ
CaBo

. Then 4,(s) <

ﬂ a[)*l

Cof
erIQ(O,x)S( 2 ) ’ It

s

< -
0(0, x)*~!

(10) 2 <

then, from (10) and (6) we obtain

|B | af ag ag

1 _— = -1
CoPolao—1) 8 ap-1 =178 ag-1.

Cl/}"lao

(11) A,(s) <

If (10) is not satisfied then, by (6),

1Br| _ |Bnl
! > Bal| 2 |2]4,05).

I' s ao—l > >
c1 €, 2%0

-1

So (11) holds in any case. It follows from (11) that ¢ < —, Where
) ag g* (@)
ay= and then
ag— 1
_L
12) gr) < () ap.

If v(x) = (I;*f)(x), then by (12) and O’Neil’'s Lemma [16], Lemma 1.5, we
have

vE () SvRH(E) S UG + Jf*(s)g*@) ds

19 f*() !
ds|=T “ap y(t).

< F ap

)d+j

ta t S(l
0 0
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Let
12|
1 for 0<s<logT
14 als, t) = s 1 Q
(1) (s, %) apt ape ao ||« for logu<s<+oo
0 for — o <s<0
L 8
(15) @(s) = 2] w0 [*(|R]e" e
+ o0 ap
(16) F(t)=t—( ja(s,t) q)(s)ds)

for (s,t)e(— o, + )X [0, + ). Then

|.Q| + o

am j f(x)oda = j FE@) 0 dt = j @(s)*0ds .
Q 0

0
Moreover F(t) =t— y(t)*), te[0, + o), and then, for any 6 >0,
12| [2] [2]

a8) e dw= [ Otdar< [ o O dr= [ oo MO gy,
Q 0 0 0

+ o0 + o
From (17) we have J @(s)*ds <1. By Lemma 2.1, J ~F gt < ¢, and then, by
(18), for 6 < T, J oo < C, where C is a positive constant independent of f. Hen-

ce (9 follows.

Proposition 2.3. There exists a positive constant cg= cs(Q, Ky, 2) such
that, for all weCy" (), || Xuly <1,

' r
19 J@alu(x)\Q dx < cg, for all asag= —5 -
Q

Proof. By (8) we have |u(x) |? <c@ |I;* |Xu|(x)|?. Now just apply Pro-
position 2.2.
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Proposition 2.4. Let q<Q and let B, = B(0, r/2). Every sequence (f,)
bounded in W' U(B,, », X) is relatively compact in LI(B, ).

Proof. By a method of M. Biroli and S. Tersian [4] we will prove that (f,)
admits a subsequence convergent in L‘(B,, »). On account of [5], the ball B, » can
be covered by a finite number of balls B(x;, ), r<7/8, j=1, ..., v, such that
d(x;, ;) =r,Vi,j=1, ..., v, where v depends on 7, ry. It follows from the dou-
bling property that every point x in B, » belongs at most to M balls, where M
does not depend on 7. In fact for every such j we have B(x;, 1/2) cB(x, 27)
C B(w;, 47), and then |B(w;, 17/2)| =2 32* Y |B(x, 27) | . Therefore, taking into
account that M is also the number of points x; in B(x, ) we have

M2-8* V| B(x,2r)| <M min |Bx,r2)|<| U B(x,r2)|<|B@,2r)|.
xjeB(x,r) xjeB(x,7)
Let w,, ,, =f,—f. and (w, ,); the average of w, ,, on B(x;, ). We have

v
J |wn, m |q = ijgl f |wn, m (wn, m)) |q + V2q51;-p W J |wn,m|q

By 2 B, 7) B, )

v CZ 7"1 B -1
$2q7'qc3.2 f |X7/Un,m|q+'l/2q|:—(_):| Sup J' |wn7m|q

-1 .
7 By, [Bri | \ 7 7 B,

on account of (7), B(x;, ) 2B, 22 B(x;, r), and the doubling property. For small

1 v
e >0 we choose r=1r, = —( ¢ ) , Where f | Xw, ,,| <C for any n, m. Ta-
2 2C3C Byp ’

king into account that (f,) is weakly converggnt in LY(B, ), we can choose 7,
such that, for n, m >n,,

B, ple-1
sup J' |’M}n,m|q$ & |: | 1/2| (l):| )

q+1 r
I Bajn v2 Co 1

Then for n, m > n, we have f |w, m|?<e,ie (f,) is a Cauchy sequence in
Bry/2
LB, ;); then (f,) converges1 strongly in L%(B,, ).

Corollary 25. Let 1 <q<@Q. The imbedding of Wy (2, X) in LU (RQ) is
compact.
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qQ

Proposition 2.6. Let 1<qg<Q and 1<p<
W2, X) in LP(Q) is compact.

. The imbedding of

Proof (see [10], Theorem 7.22). If p <q the proof follows from Corollary

25. Ifg<p< QCIQ , then let 7 be such that g <p <r< qQ . From Holder’s
—q _
o e 1 4 1-4
inequality we have [lull, <|ull}||ul} * where 1€(0,1), — == + and
P q r

then, by (7), [lull, < [lull;|Xull,~*. Consequently a bounded set in Wi (2, X)
must be precompact in L?(L2) for p > 1, and Proposition 2.6 is proved.

3 - The variational formulation
By (2) and (F;) there exists a constant C'>0 such that
(20) |f(x, w)| <Cexp(alu|?), V(x,u)el, Va>0.

By (20) and (4), f(x, w(x))eL9(Q) for all ¢>1 when ue W} %R, X). In
fact

Q'
J e, w1 <€ fexp g o) |) < C fexp a1 | <
@ Q Q ||u||1Q

if agllul[¢'q<agq. The relation
@1) Iy = = [ x|~ [Fa, w
Q

defines a C' functional I: Wy 9(2, X) —R such that
@) (1", 0) = [|Xu|® 2 XuXo ~ [f@,wv, VoeW] U, X)

where < -, - > denotes the duality between W' ?(Q, X) and its dual space. It fol-
lows from (F), (Fy), (F5) that

(23) 3C >0 such that V|u| =R, Vxe 2, F(x, u) BCexp(liMl)

(24) AR, >0, 60 > Q such that V|u| =Ry, Vo e Q, 0F(x, u) < uf(x, u).
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Lemma 3.1. Assume (F), (Fy) and (F3). Then I(tu)— — o as t— + o,
for all we Wg (2, X)\{0}.

Proof. Let ue Wi %L, X)\{0}, and let p>@Q. By (20) and (23), there
exists a positive constant C such that Vaxe Q

(25) Fle,uw) =z |ulP-C

tQ
and then I(tu)< —J’|Xu|Q—Cth|u|p+C. Since p>@Q, we obtain I(tu)—> —
as t— + oo, Q

Lemma 3.2. Assume (F,), (Fy), (F3). Then there exist 0, o0 >0 such
that

(26) Iw)y=6, if lul,q=0
Proof. Using (F,), (Fy), (F5) and (20) we can choose A <A, such that
1 ,
@7 F(w,u) < §l|u|Q+CeXp(a|u|Q Yul?, V@, u)eQxR, VYa>0

if ¢ > Q. By Holder’s inequality and (4) we obtain

Jexp(alulQ') u]? < [fexp [MHMH?’/Q( ||%|LT|L1!Q )Q’”W
{[rer) < c@{[ 1)

, 1 1
ift anlulf'q<ag, where — + — =1. Then, by (27), (28), (3) and (7), we have

1 2 r s
I(w) = 5(1— /1—) [l o — C@Iulf g. As A<, and ¢>@Q, we can choose
1

0 >0 such that I(u) =9 if |jul, o=o.

(28)

Proposition 3.3. Assume (F), (Fy), (F3). Let (u,) be a Palais-Smale se-
quence, i.e.

I(w,)—c and I'(u,)—0 in W 19(R,X) as n— + o .

Then (u,) has a subsequence, still denoted by (u,,) for sake of simplicity, and the-
re exists uwe Wi %R, X) such that

) flx, u,) —f(x,un) in LY (Q) as n— + ©
(i) |Xu, |9 2 Xu,— | Xu|? 2 Xu weakly in (L2 (2))" as n— + o
(iil) u solves (1).
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Proof. The proof follows the outline of [7], Lemma 4. As (u,) is a Palais-
Smale sequence, then

(29) %J|Xun |9 - JF(ac, U,) —>c

@0 | [ 1|2 X, X0 = [ o, 0,) 0

<e, ol g, YoeWHUQ, X)

where ¢, — 0 as n— + oo . Multiplying (29) by the constant 8 > @ of (24) and sub-
tracting (30) with v =wu,, we obtain

0
(31) (6 - 1) J' |Xun|Q - j[eF(xv un) _f(ma un) un] sC+ g'n”un”l,Q'

From (31) and (F;) we deduce that (u,) is bounded in W 9(R, X). Moreover,
unless we extract a subsequence, still denoted by (u,), we have as n— + o

u,—u weakly in Wi 4(Q, X)
(32) u,—>u in L9(Q), Vg=1

u, () = ulx) a.e. xe2.

Then |Xu, |? 2Xu, is bounded in (L? (2))" and, from (30), we have
(33) j fe, ) u, <C .

From (32), (33) and [6], Lemma 2.1, we have
34) fle, w,) —fe,u) in LY(Q) as n— +

and the first assertion of Proposition 3.3 is so proved. It follows from (#,) and
(34), using the generalized Lebesgue dominated convergence theorem, that

(35) Fle,uw,) —>F(x,u) in LY(R) as n— + .

From (29), (30) we obtain

nli)rf_loo ”un”?, Q= Q (C + JF(.’)C, u))
(36)

lim | f(x, w,) u, = Qc+ F(x, u)).
By (F3) and (36) we conclude ¢ = 0. So any Palais-Smale sequence approaches a
nonnegative level. To prove the second assertion we observe that, by simple calcu-
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lation of vectorial algebra, we have

(| Xu, |92 Xu, — | Xu |92 Xu)(Xu, — Xu)

1
= = | Xu, — Xu|*(|Xu, |¢ 2+ | Xu|9 2
37 5 | Xt = Xul(1Xu, | | Xu]*7%)

1
42 X, 2= | Xl 21X, |72 = | Xu]2 72 2 0.
By proving that

(38) [\ X, 1972 X0, — | X022 Xu)(Xor, = Xu) p—0
Q

as n— + o, for any test function v € Cy*(B,), B,c 2,y =10on Q\B,, 0 <y <1,
we obtain Xu, —Xu as n— + © a.e. in £, and then, taking into account that
(| Xu, | %~ 2Xu,) is bounded in (L 9'(£2))", unless we take a subsequence, we con-
clude the proof.

Let’'s observe at first that, by (2), (3) and the boundedness of (u,) in
W @R, X), we have, for any ¢ >1

(39 J |fe, w,)|?<C, for every n.
Q

Notice that

Jlf(xvun)u’n_f(mau)u| sj'f(x’un) —f(ac,u)||u| +I|f(x)u1z)||un_u|'
Q Q Q

Since f(x, u,) —>f(x, u) in L'(Q) as n— + , then f(x, u,)v—>f(x, w)v in
LY(Q) as n— + o, Yoe D(R), and then

(40) Jim flf(-%', w,) = flae, w) | |u| =0.
Q

On the other hand, by Hélder’s inequality and (39) we have

e’
(41) J|f(x,un)||un—u|SC(J|un—u|") —0 asn—>+x.
Q Q
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Hence by (40) and (41)

n—> + ©

(42) im [ [fe, w,) w, — e, wul =0,
Q

To prove (38) we observe that, if we take v = yu, or v=yu in (30), then we
obtain respectively

43) [ |Xu |9 | X |02 Xu, X = pfGe, w) w, < e bl o
Q

(44) J - |Xun |Q_2I/)X’LL,,LX'LL - |Xun |Q_2’I/LXM7ZX1/) + wf(f)ﬁ, un) S 5n||¢u||1, Q-

Q
Then
0 < (|Xu, |? *Xu, — | Xu|? 2 Xu)(Xu, — Xu) p
- j | Xu,, |2y — | Xu, |9 29 Xu, Xu — | Xu| Q2 pXu Xu, + | Xu|
Q
< - Jun | Xu, |92 Xu, Xy + jwf(x, w,) u, + €, |y, |l o
(45) Q Q

+ [l Xu, 272X, Xy — [pfte, ) ute, vl q
Q Q
= J’ |Xun |Q72Xuan(u - un) + jwf(x7 un)(un _u) + gn(”wun”l,Q + ||1/)u||1,Q)
Q Q

Now it suffices to prove that each term in the last member of (45) tends to 0 as
n—> + o . Using the interpolation inequality ab<da 9@~V +Csb? with C;=061",
we have

[ 1%, 192 X, Xpow = ,) < 6 [ X, |2+ C [ | Xp|© o =0, |
Q Q Q

scsc+cé( [ |sz|“"Q)”’”( [ 1w, |SQ)1/S

Q Q

1 1

where — + = = 1. Thus, since u, —u in L*?(Q) as n— + «© and 0 is arbitrarily
P S

small we obtain that

(46) lim sup j | Xu, |92 Xu, Xyp(u —u,) <O.
Q

n—> + oo
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On the other hand, since u,—u in L% (2) as n— + o and by (39), we
have

0 jwf(x’ Un oy = ) < ( jf(x’ un)”)l/q( J |u, — ulq’)weo .
Q o ¥
So (ii) is proved. (iii) follows from (ii) and (30).

4 - Proof of Theorem 1

It follows from Lemma 3.1, Lemma 3.2 and the Mountain-Pass Lemma [1]
that there exists a positive level ¢ and a Palais-Smale sequence (u,) in
W UR, X) ie I(u,) —c, I'(u,) —01in W19 (Q, X) as n— + . In view of
Proposition 3.3 there are a subsequence of (u,), still denoted by (u,), and u
e W (2, X) such that (29), (30) hold and u solves (1). The proof is concluded if
we prove that 4 =0. If v =0 we have from (36),

n— + o

/
lim [ X, %= lm [f@,u)u,< ln (j|f(x,un)|<1)lquun||q,=o.
o n— + o P n— + o P

But, from (F3), lim |F(x,u,) =0, and, by (36), lim J | Xu,, |Q =Qc. A
n— + oo n— + o
contradiction. Q Q
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Abstract

paper we study the existence of solutions for the problem —Aqu=f(x, u), u
X), where 4 g is the Q-Laplacian in the Hormander vector field setting, @ is

the homogeneous dimension associated to Q and the nonlinearity f has a subcritical gro-

wth on Q.



