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On an extension of the B-scroll surface

in Lorentz 3-space R} (**)

1 - Elementary Lorentz geometry

Definition 1. Let R1 be a 3-dimensional Lorentzian space with the pseudo
metric ds® = dx® + dy* — dz*. If (X Y) 0 for all X and Y, the vectors X and ¥
are called perpendicular m the sense of Lorentz, where (.) is the induced inner
product in R

Definition 2. The norm of )?eRf’ is denoted by ||)?|| and defined as

) IX1=N1E D).
Tﬁheﬁvector X € R} is gallgd a spacelikg, iimelike (mg null (lightlike) vector if
(X, X)>0 or X=0, (X, X)<0, and (X, X) =0 for X # 0 respectively.

Definition 3. A regular curve a(s): I— R}, I € R in R} is said to be a spa-

d
celike timelike and null curve if the velocity vector a’'(s) = aa is a spacelike, ti-
. . ds
melike or null vector respectively [6].

Definition 4. A surface in a 3-dimensional Lorentz space is called a timeli-
ke surface if the induced metric on the surface ia a Lorentz metric, i.e., the normal
on the surface is a spacelike vector [1].

As revealed from the foregoing definitions, one can prove the following
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Lemma 1. In the Lorentz space Ri, the following properties are sati-
sfied

(1) Two timelike vectors are never orthogonal.

(i) Two null vectors are orthogonal if and only if they are linearly
dependent.

(iii) A timelike vector is mever ovthogonal to a null (Lightlike) vector [5].

2 - Null curve and frames in R}

Definition 5. The null frame of @ null curve a = a(s) e R} parametrized
by the natural parametrization, is a frame field {21, €, @3}, having proper-
ties

<Zlagl>:<€2az2>:0’ <33,33>:1
(1.1) (€1, €5) =€z, €3)=0, (€, €s)=—1

det(zl, 22, 23) =1.

The infinitesimal displacements of null frame are given as

a'(s) = ey, €1(s) = k(s) e,

w2 - B ) ) .
es(s) =1(s) ey, eh(s) =1(s) e, + k(s) €, = =

where 31(8) is the unit tangent null vector of curve a(s), ?2(8) is the principal
normal vector field of type null and ¢5(s) is the binormal vector field of type spa-
celike. The functions k(s) and 7(s) are curvature and torsion of the curve a(s) re-
spectively [6].

Thus, one can prove

Lemma 2. The null frame of a null curve d = a(s) in R has the following
properties

— — — — — — — — —
(1.3) e1\Ney=¢e3 e1/\Neg= e, e3/\ ea= €5.

Definition 6. A null curve, in Lorentz space R}, having zero torsion is cal-
led a generalized null cubic [6].

Theorem 1 (without proof). Let o= d(s) be a null curve of a Lorentz sur-
face Mc R. Then o is a null geodesic on M if and only if the curvature vanishes
identically on a [6].
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3 - An extension of the B-scroll surface

Let a = da(s) be a null curve in R} space with null frame (1.1) and the infinite-
simal displacements (1.2). The immersion

®:U—R}, UcR?,

(1.4) =
D(s,v) =a(s)+vey(s), V(s,v)eU

define a ruled surface generated by the principal normal (null) of the null curve
a = d(s). This ruled surface is called a B-scroll surface, which has introduced by
Graves [4]. .

Here, consider a ruled surface in R} generated by a null generator L(s) mo-
ving with Cartan’s frame (null frame) of a null curve a = a(s), i.e.,

N 3
(15) Lis) = 2 1i(s) €i(s)

where the components [;=1;(s), (1=1, 2, 3) are sca@r functions of the para-
meter of arc length of the null curve a = a(s). Thus if L moves with Cartan’s fra-
me, the constructed ruled surface is given by the following parametrization

w6 M: (s, v) = a(s) + vL(s), (s, v)eUcCR?

(L(s), L(s)) = 12 — 21, 1, = 0 .

This ruled surface is called an extension B-scroll surface, and is denoted by
EB.
From (1.5) and using (1.2), we obtain

.7 Z'(s) = + L) e+ (I3 + k) ex+ (Lk+1 +17) €.

From Lemma 1, it follows that the vector Z’ (s) is a spacelike vector or null vector
and in the second case it is linearly dependent with the generator.

The assumption L’ (s) # 0, is usually expressed by saying that the ruled surfa-
ce M is a non cylindrical.

From (1.6), one can obtain the first fundamental quantities of the extension

g = —20( + lsk) + 02| L' B,
1.8) Gz =(a'(s), L' (8)) = — 1Ly,

G = (L(s), L(5)) = 0.

Thus, the induced metric g = g1, g2 — 9% = — 1 < 0 on the extension B-scrool sur-
face is a Lorentz metric. Therefore, we have:
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Lemma 3. The extension B-scrool surface is a timelike ruled surface.
Then the unit normal vector field 7 = 7(s, v) on the extension B-scroll surfa-
ce in R} is

@S ALE) + oL (5) AL(s) .
n = , or equivalently

Vgl
G () AL(s) + v L' (s) A L(s)
A ’

1.9)

—
n =

Striction curve

If there exists a common perpendicular to two consecutive rulings in the skew
surface, then the foot of the common perpendicular on the main ruling is called a
central point. The locus of the central point is called the striction curve [11].

Using (1.2) and (1.7), it follows that, the striction curve g = §(s) for the exten-
sion B-scroll surface is given by

- - ls +1sk -
(1.10) B(s) = a(s) + —=" L(s).
1L ()|

The base curve a = a(s) is the striction curve g = E(s) if and only if
(1.11) l2, + lgk = 0 .
Thus, from (1.10) and Theorem 1, it follows that Bonnet’s theorem for EB surface
given by

Theorem 2. For a null geodesic curve a = a(s) on the extension B-scroll

surface in Lorentz space, the following condions:

(i) The null curve cut the rulings at a constant angle (I, = const),
(11) The null curve is the striction curve (ls + I3k =0), are equivalent.

Now, we study the extension B-scroll surface for which the striction curve is
the base curve and we denot it by EB?, i.e.,

EB®: &(s, v) = d(s) + vZ(s)

(1.12)
l32_2l1l2:0, l2’+l3]€:0.

From (1.7), using (1.12), one can see that

Corollary 1. The vector Z’(s) 18 a spacelike vector.
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Since <Z(s), Z’(s)} =0 and (52’,2’(3)) =0, one can see that

@'(s)AL(s) = AL'(s),
where

det (@', L(s), L' (s))
1L (s)[?

(1.13) A=A(s) =

The function A = A(s) is called the distribution parameter of the extension B-scroll
surface EB°.

In more explicitly using (1.2), (1.5) and (1.7), we have

Ly

Ms) = ———.
l1k+l2, +l2T

The normal vector field on EB?® takes the form

(1.14) N =AL'(s)+ oL (s) AL(s).

Thus, from (1.8) and (1.14) we have

(1.15) 12=2% L (o).

Thus, we have

Corollary 2. The singular points on the extension B-scroll surface are the
points for which A =0.

Since || L | #0,ie., ljk+ 15 + Iyt #0. Then, the singular points are given by
lz = 0.

4 - Intrinsic geometry

Now, we give a theorem similar to Chasles theorem for the extension B-scroll
surface in R} space.

The unit normal vector to the extension B-scroll surface EB® at (s, v) is given
from (1.14) and (1.15) as

/'LZ’(S)+1)Z’/\Z

n(s, v) = —
AL
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or in the form

—

— — — L’
YUAL,  where [ = =&
A 1L (sl

ﬁ(s,v)=7+

For a regular patch on EB°(1 #0), it is easy to see that the normal along the
striction curve on EB® is given by

70(s,0)= 1.

Since 7, is a unit spacelike vector and 7 is unit spacelike vector. Thus if 6 is the
angle of rotation from the normal 7, to the normal 7 we get

sin 0 = 7o AT || = H(T(s) + % 1(s) /\Z(s)) AT

Routine calculation, one can obtain 6 =0. Thus, we have (without loos of
generality)

Theorem 3. For the extension B-scroll surface EB* in R} space, the nor-
mal vector n at a point of a ruling and the normal vector n, at the striction
point of this ruling are parallel.

Theorem 4. The Gaussian curvature K of the extension B-scroll surface in
R} is positive.

Proof. The coefficients of the second fundamental form II are given by
he g = (n, @, ). Explicitly, one can obtain

AL'(s) + oL (s) AL(s), k ey +vL"(s) -
(1.16) hyy = { 2 ) y hisl|[ L7 ()], hae =0

AL )|

The Gaussian curvature of a surface in Lorentz space is defined as

det (J;)
S —_—
det (g;)

where ¢ =1 or —1 according to the surface is timelike or spacelike respectively
[10]. Then, from (1.8), (1.16) and (1.15) one can see that the Gaussian curvature of
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the extension B-scroll EB® is
1
1.17) K(s) = F

and this completes the proof of the theorem.

Theorem 5. The mean curvature of the extension B-scroll surface is defi-
ned by

H=2.
A

Proof. The mean curvature of a surface in a Lorentz space is defined by [10]

&
H= g,
g9

where g are the controvariant metric quantities. Therefore, from (1.8) and (1.16)

it follows that the mean curvature of the extension B-scroll surface EB? is

k+13
LAY

1
1.18 H(s)=—
(1.18) (s) 1 L

Theorem 6. The Gaussian and mean curvatures of the extension B-scroll
surface are functions in the parameter of arc length of the base curve and not de-
pend on the distance along the generator.

For (1.17) and (1.18), we have

Lemma 4. For the extension B-scroll surface K= H?Z.

Thus, from (1.15), (1.16) and (1.18), we have

Theorem 7. The extension B-scroll EB°® is totally wmbilical.

The Laplacian operator for the mean curvature vector of the extension B-scoll
surface EB°® is
?H oH

AH=> g ——— - > 7, —
aﬁg o out 7Y sur
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where

1 zgyﬂ aga/,t + agﬁy _ agaﬂ
u

, u*) =(s,v).
ou’ ou ou* w®) = (s, 9)

Then from (1.18), we have

BrolLE L, L P
N 2= - 7
Ly Ly

Since <Z’(s), Z(s)}zO,(Z(s), Z(s)) =0 and using (1.13) and (1.5), on can see
that

1.19) Il = , and [, =T%=I%=0.

L' AL(s) = | L' (3] L(s).

Then, the mean curvature vector for the extension B-scroll surface EB°® is

LGN
7 IE (s)
Therefore, one can see that
— —2 — 41' —
AH= —H+ (s)
? AL

Thus we have the following theorem:

Theorem 8. The mean curvature vector H of the extension B-scroll surface
satisfies the differential equation

(1.20) AH=AH+C
where
—2 41 -
A=—, ad C=—"—"L(s).
A AL )]

Lemma 5. For the extension B-scroll surface for which the distribution
parameter is constant, we have AH = AH, where A s constant.
5 - Maximal extension of the B-scroll surface

Since the extension of the B-scoll surface is a timelike ruled surface, then, the
necessary condition for it’s maximality (H =0) that it’s ruling coincides with
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t_})le principal normal of the null base curve [12]. This means that [,=13=0, i.e.,
L(s) = ¢, and from (1.18), one can see that H = 7. Then, we have the following
theorem:

Theorem 9. The extension B-scroll surface EB® is maximal if it is a B-
scroll surface EB with generalized null cubic base curve (t=0).

Extension B-scroll surface with constant distribution parameter

If A = ¢, where c is a non zero constant and from (1.17) and (1.18), we have the
following theorem:

Theorem 10. For the extension B-scroll surface EB* in R{, the following
conditions

(1) The parameter of distribution is non zero constant.

(il) The Gaussian curvature K of M is constant.

(iii) The mean cwrvature H of M 1is constant.

(iv) The B-scroll surface EB® is isoparametric [8] are equivalent.

1
As a continuation to Dillen [2], we introduce the function ¢ = F

Thus, we have

Theorem 11. Every maximal extension B-scroll surface is a flat in the
sense of Dillen (0 =0).

6 - Surfaces with finite type Gauss map

Definition 7. The Gauss map of the extension B-scroll surface EB?® (time-
like) in R} is defined as

n: M—SicR}

where S? is the pseudosphere. The Gauss map is called finite of one type, if there
exist a constant ¢ and a constant vector g_j such that A% =c¢(n — ﬁ) [5].
For the extension B-scroll surface EB® and from theorem (8) we have

AH =AH +CL(s).
After routine calculations, one can obtain

Theorem 12. The extension B-scroll surface is a 1-type Gauss map if and
only if, it has a constant parameter of distribution.
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The results in the study are confirmed by the following example.

Example. The ruled surface
Y(s, v) = (coss +vsins, sins +vcoss, s+ v)

is an exteniion B-scroll surface EB where a(s) = (coss, sins, s), is a null base
curve and L(s) = (sirl) s, coss, 1) is a null generator. The striction curve is ,E(s)
= u(s) — 2 sinscossL(s). The distribution parameter is A =2 sin?s. This ruled
surface is translated to the figure

The extension B-scroll surface EB
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Summary

In this paper, an extension B-scroll surface is defined and studied as a continuation

to Graves [4]. Theorems due to Bonnet and Chasles are obtained. A theorem, for the maaxi-
mal timelike ruled surface is proved. Finally the finite type Gauss map of the surface un-
der investigation is defined and interesting result is given.



