E. Aragno and N. Zagaglia Salvi (*)

Widened Fibonacci cubes (**)

1-Introduction

Let C_{n} be the set of binary strings of length n without two consecutive ones. If α and β denote two strings, then $\alpha \beta$ is the string obtained by concatenating α and β. More generally if S is a set of strings, then $\alpha S \beta$ denotes the set of strings $\alpha \gamma \beta$, where $\gamma \in S$.

Clearly the set C_{n+2} can be partitioned into two disjoint subsets as long as the first element is 0 or 1 . If it is 1 the second has to be 0 and we obtain $C_{n+2}=0 C_{n+1}+10 C_{n}$.

It is well know that the cardinality of C_{n} is the Fibonacci number F_{n}. Recall that the Fibonacci numbers F_{n} form a sequence of positive integers, where $F_{0}=1$, $F_{1}=2$ and every other integer satisfies the recursion $F_{n+2}=F_{n+1}+F_{n}$.

The Fibonacci cube Γ_{n} is the graph whose set of vertices is C_{n} and whose edges are the couples of vertices with unitary Hamming distance.

This graph was introduced in [6] as a new interconnection topology, alternative to the classical one, namely the hypercube Q_{n}; indeed it has been shown that the Fibonacci cube can efficiently simulate many hypercube algorithms.

We define the widened Fibonacci cube $W F C_{n+4}, n \geqslant 0$, as the graph whose

[^0]set of vertices is the set
\[

$$
\begin{equation*}
W_{n+4}=00 C_{n+2}+10 C_{n+2}+0100 C_{n}+0101 C_{n} \tag{1}
\end{equation*}
$$

\]

and whose edges are again the pairs of vertices with unitary Hamming distance.
Clearly this graph is embedded in the hypercube Q_{n+4}. Moreover it maintains all the desirable properties of the Fibonacci cube, having in addition the hamiltonicity, not satisfied by all the Fibonacci cubes.

We prove the Fibonacci cube is embedded in the widened Fibonacci cube and moreover this one is embedded in the hypercube; it can be introduced as a new type of interconnection network for multiprocessors systems.

In Section 2 we describe a particular decomposition of this graph and we prove it is Hamiltonian. In Section 3 we determine the values of its diameter, radius, center and independence number of vertices. In Section 4 we find its observability, which is the minimum number of colors assignable to the edges so that the coloring is proper and the vertices are distinguished by their color sets. Finally, in Section 5, we prove it is isomorphic to the graph underlying the Hasse diagram of a particular semilattice.

2-Hamiltonicity

In [7] it is proved that a Fibonacci cube Γ_{n} contains an Hamiltonian path; in addition, when n is even, Γ_{n} is Hamiltonian.

In this section we prove that the widened Fibonacci cube $W F C_{m}, m \geqslant 4$, is Hamiltonian for every m.

First we prove the following

Proposition 1. For $n>1, \Gamma_{n-1}$ and Γ_{n} contain Hamiltonian paths in which an end-vertex is respectively v and $0 v$, where $v \in C_{n-1}$.

Proof. The result is true for $n=2$. Indeed Γ_{1} is reduced to one edge having vertices 0 , 1 , while Γ_{2} has vertices $01,00,10$.

We now proceed by induction on n.
Let us assume it is true for $n>2$ and we prove it for $n+1$.
Denote by P and Q Hamiltonian paths of Γ_{n-1} and Γ_{n} having end-vertices v, w and $0 v, z$ respectively, where $v, w \in C_{n-1}, z \in C_{n}$.

Then Γ_{n+1}, whose set of vertices is $0 C_{n}+10 C_{n-1}$, contains the Hamiltonian path $(10 w, \ldots, 10 v, 00 v, \ldots, 0 z)$ and the result follows.

By repeating a suitable number of times the decomposition

$$
\begin{equation*}
C_{m+2}=0 C_{m+1}+10 C_{m} \tag{2}
\end{equation*}
$$

we obtain from (1)

$$
\begin{align*}
& W_{n+4}=0010 C_{n}+0000 C_{n}+00010 C_{n-1}+1010 C_{n} \tag{3}\\
& \quad+1000 C_{n}+10010 C_{n-1}+0100 C_{n}+0101 C_{n} .
\end{align*}
$$

Denote by A, B, C, D, E, F the graphs isomorphic to Γ_{n}, having as sets of vertices $X C_{n}$ where X coincides with 1010, $0010,1000,0000,0100,0101$ respectively. Moreover G and H denote graphs isomorphic to Γ_{n-1}, having as sets of vertices $Y C_{n-1}$, where Y is 00010 and 10010 respectively. Thus $W F C_{n+4}$ can be decomposed into the graph of Fig. 1

Fig. 1.
where an edge represents all the edges which connect corresponding subgraphs.

Theorem 1. For $n \geqslant 4, W F C_{n}$ is Hamiltonian.
Proof. Consider the decomposition of Fig. 1. By Proposition 1, Γ_{n-1} and Γ_{n} contain Hamiltonian paths, denoted by P and Q, having as end-vertices v, w and $0 v, z$ respectively, where $v, w \in C_{n-1}$ and $z \in C_{n}$.

Thus the subgraph H of Fig. 1, isomorphic to Γ_{n-1}, contains the Hamiltonian path whose vertices are obtained by concatenating 10010 to all the vertices of P. We denote by $H(10010 v, 10010 w)$ the same path when we fix $10010 v$ as first vertex and the other one as last vertex of the path.

In a similar way we obtain and denote Hamiltonian paths of the subgraphs
corresponding to each vertex of Fig. 1; in the case of G and H we use the path P and, in all other cases, we use the path Q.

Now consider the sequence of paths:
$H(10010 v, 10010 w), G(00010 w, 00010 v), F(01010 v, 0101 z), E(0100 z, 01000 v)$,
$D(00000 v, 0000 z), B(0010 z, 00100 v), A(10100 v, 1010 z), C(1000 z, 10000 v)$.
We note that the last vertex of every path is adjacent to the first one of the consecutive path. In particular the last vertex of the last path is adjacent to the first vertex of the first path and the graph has an Hamiltonian cycle.

3 - Some structural properties

Let $G(V, E)$ be a connected graph.
The eccentricity of a vertex v of G is the maximum distance between v and the other vertices, i.e. the number

$$
e(v):=\max _{u \in V(G)} d(u, v)
$$

the diameter of G, denoted diam (G), is the maximal eccentricity when v runs through G; the radius of G is the minimum eccentricity of the vertices of G, i.e. the number

$$
\operatorname{rad}(G):=\min _{v \in V(G)} e(v)
$$

A vertex v is central if $e(v)=\operatorname{rad}(G)$; the center $Z(G)$ is the set of all central vertices.

First we note the diameter of $W F C_{m}$ is m; indeed the strings having 1 in all the odd or even positions, and 0 otherwise, are at distance m.

Theorem 2. For $n \geqslant 0, W F C_{n+4}$ satisfies the following property

$$
\operatorname{rad}\left(W F C_{n+4}\right)=\lceil(n+4) / 2\rceil
$$

Proof. First we prove $e(\hat{o})=\lceil(n+4) / 2\rceil$, where \widehat{o} is the string $00 \ldots 0$ of length $n+4$. Indeed a vertex at maximal distance from \widehat{o} is one having a maximal number of ones obtained by concatenating 10 the maximum number of times and ending with 1 when n is odd.

A vertex v of $W F C_{n+4}$ can be decomposed into $v=w z$, where w and z are two Fibonacci strings of length 4 and n respectively.

We prove $e(v) \geqslant\lceil(n+4) / 2\rceil$.

Consider the vertex $v^{\prime}=w^{\prime} z^{\prime}$ at maximal distance from v, where w^{\prime} and z^{\prime} are Fibonacci strings of length 4 and n respectively. Clearly $\operatorname{dist}\left(w, w^{\prime}\right) \geqslant 2$. Moreover we can assume z^{\prime} is at maximal distance from z, that is $\operatorname{dist}\left(z, z^{\prime}\right)$ $\geqslant\lceil n / 2\rceil$. Thus $\operatorname{dist}\left(v, v^{\prime}\right)=\operatorname{dist}\left(w, w^{\prime}\right)+\operatorname{dist}\left(z, z^{\prime}\right) \geqslant 2+\lceil n / 2\rceil=\lceil(n+4) / 2\rceil$.

Denote by T_{n} the set of strings $\omega \omega^{\prime}$, where $\omega=0000$ and ω^{\prime} is a string of odd length n having only one 1 and maximal subsequences of zeros of even length. For instance $00100 \in T_{5}$, while $01000 \notin T_{5}$.

Theorem 3. For every $n \in N$ we have

$$
Z\left(W F C_{n+4}\right)= \begin{cases}\{\hat{o}\} & \text { for } n \text { even } \\ \{\hat{o}\}+T_{n} & \text { for } n \text { odd }\end{cases}
$$

Proof. By the proof of Theorem 2, $\widehat{o} \in Z\left(W F C_{n+4}\right)$.
Let n be even. Consider a vertex $v=w z$ of the graph, where w and z are Fibonacci strings of length 4 and n respectively. Denote by $v^{\prime}=w^{\prime} z^{\prime}$ a vertex of $W F C_{n+4}$ at maximal distance from v. By the properties of the Fibonacci strings of even length, if w or z contains at least one 1 , then either $\operatorname{dist}\left(w, w^{\prime}\right)>2$ or $\operatorname{dist}\left(z, z^{\prime}\right)>\lceil n / 2\rceil$. Thus if v contains at least one 1 , then $\operatorname{dist}\left(v, v^{\prime}\right)$ $>\lceil(n+4) / 2\rceil=e(\widehat{o})$.

Now, let n be odd and $u=\omega \omega^{\prime}$ an element of T_{n}. If $u^{\prime}=w^{\prime} z^{\prime}$ is a string at maximal distance from u, then $\operatorname{dist}\left(\omega, w^{\prime}\right)=2$ and $\operatorname{dist}\left(\omega^{\prime}, z^{\prime}\right)=\lceil n / 2\rceil$. Thus $\operatorname{dist}\left(u, u^{\prime}\right)=\lceil(n+4) / 2\rceil$. In each other case for a vertex $v=w z$ of the graph and $v^{\prime}=w^{\prime} z^{\prime}$ at maximal distance, either $\operatorname{dist}\left(w, w^{\prime}\right)>2$ or $\operatorname{dist}\left(z, z^{\prime}\right)>\lceil n / 2\rceil$ and v does not belong to the center.

Proposition 2. The number of pairs of vertices of $W F C_{n+4}$ at distance equal to the diameter is 2 .

Proof. Denote by α and β the strings 0101 and 1010 respectively, while ε and δ are strings of length n having 1 in all the even or odd positions respectively. Clearly ε and δ are at distance n and they are the only possible strings at distance n. Thus the pairs $\alpha \varepsilon, \beta \delta$ and the pairs $\alpha \delta, \beta \varepsilon$ are the only pairs of vertices at distance equal to $n+4$, the diameter of $W F C_{n+4}$.

Let E_{n+4}, O_{n+4} be the sets of vertices having an even, odd number of ones respectively; we call such vertices even or odd. They form the partite sets of $W F C_{n+4}$. From the condition of the existence of an Hamiltonian cycle it follows that $\left|E_{n+4}\right|=\left|O_{n+4}\right|=F_{n+2}+F_{n}=L_{n+3}$.

Recall that the independence number $\beta(G)$ is the maximum cardinality among those of independent sets of vertices of G.

Theorem 4. For every $n \geqslant 0, \beta\left(W F C_{n+4}\right)=L_{n+3}$.

Proof. The subset E_{n+4} of W_{n+4} is an independent set having cardinality L_{n+3}. Let us assume there exists a subset H of independent vertices of cardinality greater then L_{n+3}. We can decompose H into the subsets A and B of even and odd vertices respectively. The vertices of B are adjacent only to vertices of $A^{\prime}=E_{n+4}-A$, while on the assumption on the cardinality of $H,|B|>\left|A^{\prime}\right|$. By Theorem 1, $W F C_{n+4}$ contains an Hamiltonian cycle C. If we assign an order to the vertices of C, we obtain that every vertex of B is followed by a vertex of A^{\prime}. This implies $|B| \leqslant\left|A^{\prime}\right|$, a contradiction.

4-Observability

In [3] it has been proved that obs $\left(\Gamma_{n}\right)=n$ for $n \geqslant 4$. Now we prove a similar result for the widened Fibonacci cubes using the decomposition of Fig. 2.

Let us denote by A_{1}, A_{2} the subsets of the set $1010 C_{n}, n>1$, given by the decomposition (2), that is A_{1} is the set $10100 C_{n-1}$ and A_{2} is $101010 C_{n-2}$.

Moreover, denote by $B_{i}, C_{i}, D_{i}, E_{i}, F_{i}$, where $i=1,2$, similar subsets of $0010 C_{n}, 1000 C_{n}, 0000 C_{n}, 0100 C_{n}, 0101 C_{n}$, by G_{1} the set $00010 C_{n-1}$ and by H_{1} the set $10010 C_{n-1}$.

Such a decomposition can be represented by the graph in Fig. 2, to which it has been assigned a partial edge-coloring α, using the four colors a, b, c, d.

Fig. 2.

The subgraphs induced by the sets of vertices $X_{1}, X_{2}, X_{1} \cup X_{2}$, where X $\in\{A, B, C, D, E, F\}$, are isomorphic to $\Gamma_{n-1}, \Gamma_{n-2}, \Gamma_{n}$ respectively.

The edge which connects X_{1} and X_{2} represents the set of edges ($y 10 s, y 00 s$) where $s \in C_{n-2}$ and y is a sequence of length 4 which coincides with 1010,0010 , $1000,0000,0100,0101$ for $A_{2}, B_{2}, C_{2}, D_{2}, E_{2}, F_{2}$ respectively. The edge which connects A_{1} and B_{1} represents all the edges which connect a vertex $10100 v$ of A_{1} with its corresponding one $00100 v$ of B_{1}, for $v \in C_{n-2}$. It is clear that by deleting F_{2} and all the incident edges, the subgraph induced is isomorphic to the Fibonacci cube. Indeed the vertices of F_{2} are the unique strings with two consecutive ones, while other vertices are all the Fibonacci strings of length $n+4$.

The partial edge-coloring α assigns to all the vertices of A_{1}, A_{2} the set $\{a, b\}$, to all the vertices of B_{1}, B_{2} the set $\{b, d\}$, to the vertices of $C_{1}, C_{2}, D_{1}, D_{2}, E_{1}, E_{2}$, $F_{1}, F_{2}, G_{1}, H_{1}$ the sets $\{a, b, c\},\{a, c\},\{a, b, c, d\},\{a, c, d\},\{a, c\},\{a, d\}$, $\{c, d\},\{d\},\{b, c, d\},\{b, c\}$ respectively.

Proposition 3. For $n=5,6,7$, obs $\left(W F C_{n}\right)=n$.
Proof. An obs-coloring of $W F C_{5}$ is given in Fig. 3

Fig. 3.
where the vertices $1,2, \ldots, 14$ represent the strings $01011,01001,01000,01010$, 00001, 00000, 00010, 00101, 00100, 10001, 10000, 10010, 10101, 10100 respectively.

Consider $W W_{6}$.
The subgraphs induced by the sets of vertices $X_{1} \cup X_{2}$, for $X \in\{A, B, \ldots, F\}$, are isomorphic to Γ_{2}, while the subgraphs induced by X_{1}, for $X \in\{A, B, \ldots, H\}$, are isomorphic to Γ_{1}, the subgraphs induced by X_{2}, for $X \in\{A, B, \ldots, F\}$, are isomorphic to Γ_{0}.

In Fig. 4 we represent a graph isomorphic to Γ_{2}

Fig. 4.
to which it has been assigned the coloring β using the colors $1,2$.
The vertices u, v, z represent the strings $01,00,10$ respectively. Then the vertices of X_{1} for $X \in\{A, B, \ldots, H\}$ are u, v, while the vertex of X_{2} for X $\in\{A, B, \ldots, F\}$ is z.

Let γ be the coloring which assigns the color 1 to the unique edge $u^{\prime} v^{\prime}$ of the subgraphs induced by G_{1} and H_{1}.

If we consider the partial edge-coloring α represented in Fig. 2 and the new colorings β and γ, we obtain that all the vertices of $W F C_{6}$ are distinguished, except the vertices of G_{1} and H_{1}. If we change into 2 the color c assigned to the edges $u^{\prime}\left(G_{1}\right), u^{\prime}\left(H_{1}\right)$, we have an appropriate edge-coloring, given in Fig. 5

Fig. 5.

Finally consider $W_{F} C_{7}$.
In this case X_{1}, X_{2} are isomorphic to Γ_{2} and Γ_{1} respectively.
Assign to the edges of the subgraphs induced by $X_{1} \cup X_{2}$, isomorphic to Γ_{3}, the following 3-edge-coloring δ

Fig. 6.
which distinguishes the vertices of Γ_{3} but w and w^{\prime}.
Let us assign the partial coloring α, given in Fig. 2, to the edges of $W F C_{7}, \delta$ to the edges of $X_{1} \cup X_{2}$ and β of Fig. 4 to the edges of G_{1}, H_{1}. Then change into 3 the color b assigned to the edge which connects w^{\prime} of A_{2} with the corresponding vertex w^{\prime} of B_{2} and the color a assigned to the edge which connects the vertices w of D_{1} and E_{1}.

We obtain that the color sets of the vertices of $A_{1} \cup A_{2}$ are: $\{1,2,3, a\}$, $\{1,3, a, b\},\{1,2, a, b\},\{1,2,3, a, b\},\{2, a, b\}$, the color sets of the vertices of $B_{1} \cup B_{2}:\{1,2,3, d\},\{1,3, b, d\},\{1,2, b, d\},\{1,2,3, b, d\},\{2, b, d\}$, the color sets of the vertices of $C_{1} \cup C_{2}:\{1,2, a, c\},\{1,3, a, c\},\{1,2, a, b, c\}$, $\{1,2,3, a, b, c\}, \quad\{2, a, b, c\}$, the color sets of the vertices of D_{1} $\cup D_{2}:\{1,2, a, c, d\}, \quad\{1,3, a, c, d\}, \quad\{1,2,3, b, c, d\}, \quad\{1,2,3, a, b, c, d\}$, $\{2, a, b, c, d\}$, the color sets of the vertices of $E_{1} \cup E_{2}:\{1,2, a, d\}$, $\{1,3, a, d\},\{1,2,3, c\},,\{1,2,3, a, c\},\{2, a, c\}$, the color sets of the
vertices of $F_{1} \cup F_{2}:\{1,2, d\},\{1,3, d\},\{1,2, c, d\},\{1,2,3, c, d\},\{2, c, d\}$, the color sets of the vertices of $G_{1}:\{1, b, c, d\},\{1,2, b, c, d\},\{2, b, c, d\}$, the color sets of the vertices of $H_{1}:\{1, b, c\},\{1,2, b, c\},\{2, b, c\}$.

Thus obs $\left(W F C_{7}\right)=7$.

Theorem 5. For $n \geqslant 1$, obs $\left(W F C_{n+4}\right)=n+4$.

Proof. By Proposition 3 the result is satisfied for positive $n \leqslant 3$.
Consider the decomposition of $W F C_{n+4}$ of Fig. 2.
In [3] it was proved that obs $\left(\Gamma_{n}\right)=n$ for $n \geqslant 4$. Thus let β and γ be obs-colorings of Γ_{n} and Γ_{n-1} using n colors and α the partial coloring of Fig. 2 using 4 news colors.

The vertices of A_{1} and A_{2} have the same color set $\{a, b\}$ by α, but they are distinguished by β. A similar situation holds for B_{1} and B_{2}. Moreover the vertices of C_{2} and E_{1} have assigned the same color set $\{a, c\}$ by α, but they are also distinguished because they correspond to disjoint induced subgraphs of Γ_{n} and they are distinguished by β. This completes the proof of the theorem.

5 - Semilattices

Consider the set W_{n+4} and two vertices $\alpha=a_{1} a_{2} \ldots a_{n+4}, \beta=b_{1} b_{2} \ldots b_{n+4}$ of such a set. On W_{n+4} we define an order relation by setting

$$
\alpha \leqslant \beta \quad \text { if and only if } \quad a_{i} \leqslant b_{i} \quad \text { for } i=1,2, \ldots, n+4
$$

Then $\alpha \wedge \beta=\left[\min \left(a_{1}, b_{1}\right) \min \left(a_{2}, b_{2}\right) \ldots \min \left(a_{n+4}, b_{n+4}\right)\right]$ and this sequence is a vertex of W_{n+4}. Note that $a \vee \beta=\left[\max \left(a_{1}, b_{1}\right) \quad \max \left(a_{2}, b_{2}\right)\right.$ $\left.\ldots \max \left(a_{n+4}, b_{n+4}\right)\right]$ could not belong to W_{n+4}. Then the order set $\left(W_{n+4}, \leqslant\right)$ is closed under inf and it has the minimal element $\widehat{o}=[0 \quad 0 \ldots 0]$. Thus it is a meet-semilattice.

Let Atom (S) be the set of atoms of the semilattice $S . S$ is atomic if for each $x \in S$ there exist a subset $A \subseteq \operatorname{Atom}(S)$ such that $x=\vee A$.

In W_{n+4} for a string β having k ones there are exactly k atoms $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such that $\beta=\alpha_{1} \vee \alpha_{2} \vee \ldots \vee \alpha_{k}$. Thus the order set (W_{n+4}, \leqslant) is an atomic semilattice.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks, Monterey, California 1986.
[2] J. Cerný, M. Hornák and R. Soták, Observability of a graph, Math. Slovaca 46 (1966), 21-31.
[3] E. Dedò, D. Torri and N. Zagaglia Salvi, The observability of the Fibonacci and the Lucas cubes, submitted.
[4] S. Fontanesi, E. Munarini and N. Zagaglia Salvi, On the Fibonacci semilattices, Algebras and Combinatorics, K. P. Shum Ed., Hong Kong 1997, 237-245.
[5] F. Harary, Graph theory, Addison Wesley, Reading 1969.
[6] W. J. Hsu, Fibonacci cubes - A new interconnection topology, IEEE Trans. On Parallel and Distributed Systems 4 (1993), 3-12.
[7] J. Liu, W. J. Hsu and M. J. Chung, Generalized Fibonacci cubes are mostly Hamiltonian, J. Graph Theory 18 (1994), 817-829.
[8] E. Munarini and N. Zagaglia Salvi, Structural and enumerative properties of the Fibonacci cubes, Intellectual systems (Russian) 2 (1997), 265-274.
[9] H. Qian and J. Wu, Enhanced Fibonacci cubes, The Computer Journal 39 (1996), 331-345.

Abstract

We introduce the widened Fibonacci cube, a graph, embedded in the hypercube, which contains the Fibonacci cube as induced subgraph and provides many of the properties of the Fibonacci cube with in addition the hamiltonicity for every number of vertices. The values of the diameter, radius, center and independence number are determined, together with its observability, which is the minimum number of colors assignable to the edges so that the coloring is proper and the vertices are distinguished by their color sets. Finally we prove that it is isomorphic to the Hasse diagram of a particular semilattice.

[^0]: (*) Dipartimento di Matematica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italy.
 (**) Received February 1, 2000. AMS classification 05 C 15, 05 C 45 . Work partially supported by M.U.R.S.T. (Ministero dell’Università e della Ricerca Scientifica e Tecnologica).

