S. ALI and R. NIVAS (*)

On submanifolds immersed in a manifold with quarter symmetric connection (**)

1 - Preliminaries

Let M^{n+1} be an (n + 1)-dimensional differentiable manifold of class C^{∞} and M^n be the hypersurface immersed in M^{n+1} by a differentiable immersion $i: M^n \to M^{n+1}$. The differential di of the immersion i will be denoted by B so that the vector-field X in the tangent space of M^n corresponds to a vector field BX in that of M^{n+1} . Suppose that the enveloping manifold M^{n+1} is a Riemannian manifold with metric tensor \tilde{g} . Then the hypersurface M^n is also a Riemannian manifold with induced metric tensor g defined by

$$g(FX,\,Y)=\tilde{g}(BFX,\,BY)\,,$$

X and Y being arbitrary vector fields in M^n and F is a tensor of type (1,1). If the Riemannian manifolds M^{n+1} and M^n are both orientable, we can choose a unique vector field N defined along M^n such that

$$\tilde{g}(BFX, N) = 0$$

and

$$\tilde{g}(N, N) \equiv 1 ,$$

^(*) Dept. of Maths and Astronomy, Lucknow University, Lucknow 226007, India.

^(**) Received October 10, 1999. AMS classification 53 B 25.

for arbitrary vector field X in M^n . We call this vector field the unit normal vector field to the hypersurface M^n .

We now suppose that the Riemannian manifold M^{n+1} admits a quarter symmetric metric connection given by [3]

(1.1)
$$\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y} = \widetilde{\widetilde{\nabla}}_{\widetilde{X}}\widetilde{Y} + \widetilde{\pi}(\widetilde{Y})\ \widetilde{F}(\widetilde{X}) - \widetilde{g}(\widetilde{F}(\widetilde{X}),\ \widetilde{Y})\ \widetilde{P},$$

for arbitrary vector fields \tilde{X} and \tilde{Y} tangents to M^{n+1} , where $\tilde{\nabla}$ denotes the Levi-Civita connection with respect to Riemannian metric \tilde{g} , $\tilde{\pi}$ is a 1-form \tilde{F} is a tensor of type (1,1) and \tilde{P} , the vector field defined by

$$\tilde{g}(\tilde{P}, \tilde{X}) = \tilde{\pi}(\tilde{X})$$

for an arbitrary vector field \tilde{X} of M^{n+1} . Also

$$\tilde{g}(\tilde{F}(\tilde{X}), \tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{F}(\tilde{Y})).$$

Let us put

(1.2)
$$\tilde{P} = BP + \lambda N ,$$

where P is a vector field and λ a function on M^n .

We have the following theorem:

Theorem 1.1. The connection induced on the hypersurface of a Riemannian manifold with a quarter symmetric metric connection with respect to the unit normal is also quarter symmetric.

Proof. Let $\dot{\nabla}$, the connection induced on the hypersurface from $\dot{\nabla}$ with respect to the unit normal N. Then we have

(1.3)
$$\dot{\nabla}_{BX}BY = B(\dot{\nabla}_X Y) + h(X, Y) N$$

for arbitrary vector fields X and Y on M^n . Also h is the second fundamental tensor of the hypersurface M^n . Similarly, let ∇ be connection induced on the hypersurface from $\tilde{\nabla}$ with respect to the unit normal N. We have

(1.4)
$$\widetilde{\nabla}_{BX}BY = B(\nabla_X Y) + m(X, Y) N$$

for arbitrary vector fields X and Y of M^n , m being a tensor field of type (0,2) on

the hypersurface M^n . From (1.1) we obtain

~

$$\widetilde{\nabla}_{BX}BY = \dot{\nabla}_{BX}BY + \widetilde{\pi}(BY) \ \widetilde{F}(BX) - \widetilde{g}(\widetilde{F}(BX), \, BY) \ \widetilde{P} \, .$$

Using (1.3) and (1.4), the above equation takes the form

(1.5) $B(\nabla_X Y) + m(X, Y) N = B(\dot{\nabla}_X Y) + h(X, Y) N + \pi(Y) BFX - \tilde{g}(BFX, BY) \tilde{P},$ where

 $\tilde{\pi}(BX) = \pi(X)$

and

$$\widetilde{F}(BX) = BFX$$
.

Substituting (1.2) into (1.5), and using $\tilde{g}(BFX, BY) = g(FX, Y)$, we get

$$B(\nabla_X Y) + m(X, Y) N = B(\nabla_X Y) + h(X, Y)N + \pi(Y) BFX$$
$$-g(FX, Y)(BP + \lambda N).$$

Comparison of tangential and normal vector fields yields

(1.6)
$$\nabla_X Y = \dot{\nabla}_X Y + \pi(Y) F(X) - g(FX, Y) P$$

and

(1.7)
$$m(X, Y) = h(X, Y) - \lambda g(FX, Y).$$

Thus,

(1.8)
$$\nabla_X Y - \nabla_Y X - [X, Y] = \pi(Y) F(X) - \pi(X) F(Y).$$

Hence the connection ∇ induced on M^n is quarter symmetric one [3].

2 - Totally geodesic and totally umbilical hypersurfaces

We define $\dot{\nabla}B$ and ∇B respectively by

$$(\dot{\nabla}B)(X, Y) = (\dot{\nabla}_X B)(Y) = \dot{\nabla}_{BX} BY - B(\dot{\nabla}_X Y)$$

and

$$(\nabla B)(X, Y) = (\nabla_X B)(Y) = \widetilde{\nabla}_{BX} BY - B(\nabla_X Y),$$

X and Y being arbitrary vector fields on M^n . Then (1.3) and (1.4) take the form

$$(\dot{\nabla}_X B) Y = h(X, Y) N$$

and

$$(\nabla_X B) Y = m(X, Y) N.$$

These are the equations of Gauss with respect to the induced connection $\dot{\nabla}$ and ∇ respectively.

Let $X_1, X_2, ..., X_n$ be *n* orthonormal vector fields in M^n . Then the function

$$\frac{1}{n}\sum_{i=1}^{n}h(X_i,X_i)$$

is the mean curvature of M^n with respect to Riemannian connection $\dot{\nabla}$ and

$$\frac{1}{n}\sum_{i=1}^{n}m(X_{i},X_{i})$$

is called the mean curvature of M^n with respect to the quarter symmetric connection ∇ .

From this we have the following definitions:

Definition 2.1. If h vanishes, we call M^n as totally geodesic hypersurface of M^{n+1} with respect to the Riemannian connection $\dot{\nabla}$.

Definition 2.2. The hypersurface M^n is called *totally umbilical with respect to connection* $\dot{\nabla}$ if h is proportional to the metric tensor g.

We call M^n is totally geodesic and totally umbilical with respect to quarter symmetric connection ∇ according as the function m vanishes and proportional to the metric tensor g respectively.

Now we have following theorems:

Theorem 2.1. In order that the mean curvature of M^n with respect to $\dot{\nabla}$ coincides with that of M^n with respect to ∇ , it is necessary and sufficient that the vector field \tilde{P} is tangent to M^{n+1} .

Proof. In view of (1.7), we have

 $m(X_i, X_i) = h(X_i, X_i) - \lambda g(FX_i, X_i).$

Summing up for i = 1, 2, ..., n and dividing by n, we obtain

$$\frac{1}{n}\sum_{i=1}^{n}m(X_{i}, X_{i}) = \frac{1}{n}\sum_{i=1}^{n}h(X_{i}, X_{i})$$

if and only if, $\lambda = 0$. Hence from (1.2), we have

 $\tilde{P} = BP$.

Thus the vector field \tilde{P} is in tangent space of M^{n+1} .

Theorem 2.2. The hypersurface M^n will be totally umbilical with respect to the Riemannian connetion $\dot{\nabla}$, if and only if it is totally umbilical with respect to quarter symmetric connection ∇ .

Proof. The proof follows easily from (1.7).

3 - Gauss, Weingarten and Codazzi equations

In this section we shall obtain Weingarten equations with respect to the quarter symmetric metric connection $\tilde{\nabla}$. For the Riemannian connection $\tilde{\nabla}$, these equations are given by

$$\dot{\nabla}_{BX}N = -BHX$$

for any vector field X in M^n , where H is a tensor field of type (1,1) of of M^n defined by

(3.2)
$$g(HX, Y) = h(X, Y).$$

In view of the equation (1.1), we have

(3.3)
$$\widetilde{\nabla}_{BX}N = \dot{\nabla}_{BX}N + \lambda BFX.$$

Since $\tilde{\pi}(N) = \tilde{g}(\tilde{P}, N) = \lambda$ and $\tilde{g}(BFX, N) = 0$.

Thus, from (3.1) and (3.3), we get

(3.4)
$$\widetilde{\nabla}_{BX}N = -B(H - \lambda F)X$$

which is the equation of Weingarten with respect to the quarter symmetric metric connection.

S. ALI and R. NIVAS

Let $M = H - \lambda F$. Then from (3.4), we get

(3.5)
$$\widetilde{\nabla}_{BX}N = -BMX,$$

for any vector field X in M^n . Let us denote the curvature tensor of M^{n+1} with respect to $\tilde{\nabla}$ by \tilde{K} and that of M^n with respect to $\dot{\nabla}$ by K. Thus

$$\widetilde{K}(\widetilde{X},\,\widetilde{Y})\,\widetilde{Z} = \tilde{\dot{\nabla}}_{\widetilde{X}}\,\dot{\nabla}_{\widetilde{Y}}\widetilde{Z} - \tilde{\dot{\nabla}}_{\widetilde{Y}}\,\tilde{\dot{\nabla}}_{\widetilde{X}}\widetilde{Z} - \tilde{\dot{\nabla}}_{[\widetilde{X},\,\widetilde{Y}]}\widetilde{Z}$$

and

$$K(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z.$$

Then the equation of Gauss is given by

$$K(X, Y, Z, U) = \widetilde{K}(BX, BY, BZ, BU) + h(X, U) h(Y, Z) - h(Y, U) h(X, Z),$$

where

$$\widetilde{K}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U}) = \widetilde{g}(\widetilde{K}(\widetilde{X}, \widetilde{Y}) \ \widetilde{Z}, \widetilde{U})$$

and the similar expression for K(X, Y, Z, U) for M^n .

The equation of Codazzi is given by

$$(\dot{\nabla}_X h)(Y, Z) - (\dot{\nabla}_Y h)(X, Z) = \widetilde{K}(BX, BY, BZ, N).$$

We shall find the equations of Gauss and Codazzi with respect to the quarter symmetric connection. The curvature tensor with respect to the quarter symmetric metric connection $\tilde{\nabla}$ of M^{n+1} is, by the definition

(3.6)
$$\widetilde{R}(\widetilde{X},\widetilde{Y})\,\widetilde{Z} = \widetilde{\nabla}_{\widetilde{X}}\widetilde{\nabla}_{\widetilde{Y}}\widetilde{Z} - \widetilde{\nabla}_{\widetilde{Y}}\widetilde{\nabla}_{\widetilde{X}}\widetilde{Z} - \widetilde{\nabla}_{[\widetilde{X},\widetilde{Y}]}\widetilde{Z}.$$

Putting $\tilde{X} = BX$, $\tilde{Y} = BY$ and $\tilde{Z} = BZ$, we have

$$\widetilde{R}(BX, BY) BZ = \widetilde{\nabla}_{BX} \widetilde{\nabla}_{BY} BZ - \widetilde{\nabla}_{BY} \widetilde{\nabla}_{BX} \widetilde{Z} - \widetilde{\nabla}_{[BX, BY]} BZ .$$

By virtue of (1.4), (3.5) and (1.8), we get

(3.7)
$$\widetilde{R}(BX, BY) BZ = B\{R(X, Y) Z + m(X, Z) MY - m(Y, Z) MX\} \\ + \{(\nabla_X m)(Y, Z) - (\nabla_Y m)(X, Z) + m(\pi(Y) FX - \pi(X) FY, Z)\} N,$$

where

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$$

is the curvature tensor of the quarter symmetric connection ∇ . Putting

$$\widetilde{R}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U}) = q(\widetilde{R}(\widetilde{X}, \widetilde{Y}) \ \widetilde{Z}, \widetilde{U})$$

and

$$R(X, Y, Z, U) = g(R(X, Y) Z, U).$$

Then from (3.7), we can easily show

(3.8)
$$\widetilde{R}(BX, BY, BZ, BU) = R(X, Y, Z, U) - m(X, U) m(Y, Z) + m(Y, U) m(X, Z)$$

and

(3.9)
$$\widetilde{R}(BX, BY, BZ, N) = (\nabla_X m)(Y, Z) - (\nabla_Y m)(X, Z) + m(\pi(Y) F(X) - \pi(X) F(Y), Z).$$

Equations (3.8) and (3.9) are the equations of Gauss and those of Codazzi with respect to the quarter symmetric connection.

4 - Submanifolds of codimensions 2

Let M^{n+1} be an (n + 1)-dimensional differentiable manifold of differentiability class C^{∞} and M^{n-1} , an (n - 1)-dimensional manifold immersed differentiability in M^{n+1} by the immersion $\tau : M^{n-1} \rightarrow M^{n+1}$. We denote the differential $d\tau$ of the immersion τ by B, so that the vector field X in the tangent space of M^{n-1} corresponds to a vector field BX in that of M^{n+1} . Suppose that M^{n+1} is a Riemannian manifold with metric tensor \tilde{g} . Then the submanifold M^{n-1} is also Riemannian with metric tensor g such that $\tilde{g}(BFX, BY) = g(FX, Y)$ for arbitrary vector fields X, Y in M^{n-1} [5].

If the Riemannian manifolds M^{n-1} and M^{n+1} are both orientable, we can choose mutually orthogonal unit normals N_1 and N_2 defined along M^{n-1} such that

$$\tilde{g}(BFX, \underset{1}{N}) = \tilde{g}(BFX, \underset{2}{N}) = \tilde{g}(\underset{1}{N}, \underset{2}{N}) = 0$$

and

18

$$\tilde{g}(N, N) = \tilde{g}(N, N) = 1$$

for arbitrary vector field X in M^{n-1} [4].

We now suppose that the enveloping manifold M^{n+1} admits a quarter symmetric metric connection given by [3]

$$\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} = \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} + \widetilde{\pi}(\widetilde{Y}) \ \widetilde{F} \widetilde{X} - \widetilde{g}(\widetilde{F} \widetilde{X}, \widetilde{Y}) \ \widetilde{P} ,$$

for arbitrary vector fields \tilde{X} , \tilde{Y} in M^{n+1} where $\hat{\nabla}$ denotes the Levi-Civita connection with respect to the Riemannian metric \tilde{g} , $\tilde{\pi}$ is a 1-form, \tilde{F} is a tensor of type (1,1) such that $\tilde{g}(\tilde{F}\tilde{X},\tilde{Y}) = \tilde{g}(\tilde{X},\tilde{F}\tilde{Y})$, and \tilde{P} the vector field defined by $\tilde{g}(\tilde{P},\tilde{X}) = \tilde{\pi}(\tilde{X})$, for arbitrary vector field \tilde{X} of M^{n+1} .

Let us now put

(4.1)
$$\widetilde{P} = BP + \lambda_1 + \mu_2 N,$$

P being a vector field in the tangent space of M^{n-1} and λ, μ functions of M^{n-1} .

We have the following theorem:

Theorem 4.1. The connection induced on the submanifold M^{n-1} of codimension 2 of the Riemannian manifold M^{n+1} with quarter symmetric metric connection is also quarter symmetric.

Proof. Let $\dot{\nabla}$ be the connection induced on the submanifold M^{n-1} from the connection $\tilde{\nabla}$ on the enveloping manifold M^{n+1} , with respect to unit normals N_1 and N_2 . Then we have [4]

(4.2)
$$\dot{\nabla}_{BX}BY = B(\dot{\nabla}_X Y) + h(X, Y) \sum_{1}^{N} + k(X, Y) \sum_{2}^{N} h(X, Y) \sum_$$

for arbitrary vector fields X, Y of M^{n-1} , where h and k are second fundamental tensors of M^{n-1} . Similarly, if ∇ be connection induced on M^{n-1} from the quarter symmetric metric connection $\tilde{\nabla}$ on M^{n+1} , we have

(4.3)
$$\widetilde{\nabla}_{BX}BY = B(\nabla_X Y) + m(X, Y) \underset{1}{N} + n(X, Y) \underset{2}{N},$$

m and n being tensor fields of type (0, 2) of the submanifold M^{n-1} . We also ha-

ve, in view of (1.1)

$$\widetilde{\nabla}_{BX}BY = \dot{\nabla}_{BX}BY + \widetilde{\pi}(BY)\;\widetilde{F}(BX) - \widetilde{g}(\widetilde{F}(BX),\,BY)\;\widetilde{P}\,.$$

In view of (4.1), (4.2) and (4.3), we have

$$B(\nabla_X Y) + m(X, Y) \underset{1}{N} + n(X, Y) \underset{2}{N}$$

(4.4)

[9]

$$+\pi(Y) BFX - g(FX, Y)(BP + \lambda N + \lambda N)$$

 $= B(\dot{\nabla}_X Y) + h(X, Y) \sum_{1}^{N} + k(X, Y) \sum_{2}^{N}$

where $\tilde{\pi}(BX) = \pi(X)$ and $\tilde{F}(BX) = BFX$.

Comparing tangential and normal vector fields to M^{n-1} , we get

(4.5)
$$\nabla_X Y = \dot{\nabla}_X Y + \pi(Y) F X - g(F X, Y) P,$$

where λ and μ are chosen such that

(4.6) (a)
$$m(X, Y) = h(X, Y) - \lambda g(FX, Y)$$
 and
(b) $n(X, Y) = k(X, Y) - \mu g(FX, Y)$.

Thus,

(4.7)
$$\nabla_X Y - \nabla_Y X - [X, Y] = \pi(Y) F X - \pi(X) F Y.$$

Hence the connection ∇ induced on M^{n-1} is quarter symmetric [3].

5 - Totally geodesic and totally umbilical submanifolds

Let $X_1, X_2, \ldots, X_{n-1}$ be (n-1) orthonormal vector fields on the submanifold M^{n-1} . Then the function

$$\frac{1}{2(n-1)}\sum_{i=1}^{n-1} \{h(X_i, X_i) + k(X_i, X_i)\}$$

is the mean curvature of M^{n-1} with respect to the Riemannian connection $\dot{\nabla}$ and

$$\frac{1}{2(n-1)}\sum_{i=1}^{n-1} \{m(X_i, X_i) + n(X_i, X_i)\}$$

is the mean curvature of M^{n-1} with respect to ∇ [5].

Now we have the following definitions:

[10]

Definition 5.1. If h and k vanish separately the submanifold M^{n-1} is called totally geodesic with respect to the Riemannian connection $\dot{\nabla}$.

Definition 5.2. The submanifold M^{n-1} is called *totally umbilical with respect to the connection* $\dot{\nabla}$ if h and k are proportional to the metric tensor g.

We call M^{n-1} is totally geodesic and totally umbilical with respect to the quarter symmetric connection ∇ according as the functions m and n vanish separately and are proportional as metric tensor g respectively.

We now prove the following theorem:

Theorem 5.1. In order that the mean curvature of M^{n-1} with respect to connection $\dot{\nabla}$ may coincide with that of M^{n-1} with respect to the connection ∇ , it is necessary and sufficient that \tilde{P} is in the tangent space of M^{n+1} .

Proof. In view of (4.6), we have

$$m(X_i, X_i) + n(X_i, X_i) = h(X_i, X_i) + k(X_i, X_i) - (\lambda + \mu) g(FX_i, X_i)$$

Summing up for i = 1, 2, ..., (n-1) and dividing by 2(n-1), we get

$$\frac{1}{2(n-1)}\sum_{i=1}^{n-1} \{m(X_i, X_i) + n(X_i, X_i)\} = \frac{1}{2(n-1)}\sum_{i=1}^{n-1} \{h(X_i, X_i) + h(X_i, X_i)\}$$

if and only if,

$$\lambda = \mu = 0$$

Hence from (4.1), it follows that $\tilde{P} = BP$. Thus the vector field \tilde{P} is in the tangent space of M^{n+1} .

Theorem 5.2. The submanifold M^{n-1} is totally umbilical with respect to the Riemannian connection $\dot{\nabla}$ if and only if it is totally umbilical with respect to the quarter symmetric connection ∇ .

Proof. The proof follows easily from equations (4.6(a) and (b)).

6 - Curvature tensor and Weingarten equations

For the Riemannian connection $\dot{\nabla}$, the Weingarten equations are given by [4]

and

(b)
$$\tilde{\dot{\nabla}}_{BX} N_{2} = -BKX + 1(X) N_{1}$$

(a) $\tilde{\nabla}_{BX} N_1 = -BHX + 1(X) N_2$

where H and K are tensor fields of type (1,1) such that

(6.2) (a)
$$g(HX, Y) = h(X, Y)$$
 and
(b) $g(KX, Y) = k(X, Y)$.

Also, making use of (1.1) and (6.2) (a), we get

$$\widetilde{\nabla}_{BX} \underset{1}{N} = -BHX + 1(X) \underset{2}{N} + \widetilde{\pi}(\underset{1}{N}) BFX - \widetilde{g}(BFX,\underset{1}{N}) \widetilde{P}.$$

Since

$$\widetilde{\pi}(N) = \widetilde{g}(\widetilde{P}, N) = \lambda$$

and

$$\tilde{g}(BFX, N) = 0$$

We have

(6.3)
$$\widetilde{\nabla}_{BX} N_{1} = -B(H - \lambda F) X + 1(X) N_{2}.$$

Similary, from (1.1) and (6.2) (b), we get

(6.4)
$$\widetilde{\nabla}_{BX} \sum_{2}^{N} = -B(K - \mu F) X - 1(X) \sum_{1}^{N} .$$

Putting

 $H - \lambda F = M_1$

and

$$K - \mu F = M_2.$$

We get

(6.5)
(a)
$$\tilde{\nabla}_{BX} \underset{1}{N} = -BM_1 X + 1(X) \underset{2}{N}$$
 and
(b) $\tilde{\nabla}_{BX} \underset{2}{N} = -BM_2 X - 1(X) \underset{1}{N}$

(6.5) (a), (b) are equations of Weingarten with respect to the quarter symmetric metric connection $\tilde{\nabla}.$

The Riemannian curvature tensor for quarter symmetric metric connection can be obtained as follows.

Let $\widetilde{R}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}$ be the Riemannian curvature tensor of the enveloping manifold M^{n+1} with respect to quarter symmetric metric connection $\widetilde{\nabla}$.

Then

$$\widetilde{R}(\widetilde{X},\,\widetilde{Y})\,\,\widetilde{Z}=\widetilde{\nabla}_{\widetilde{X}}\,\widetilde{\nabla}_{\widetilde{Y}}\widetilde{Z}-\widetilde{\nabla}_{\widetilde{Y}}\,\widetilde{\nabla}_{\widetilde{X}}\widetilde{Z}-\widetilde{\nabla}_{[\widetilde{X},\,\widetilde{Y}]}\widetilde{Z}\,.$$

Replacing \tilde{X} by BX, \tilde{Y} by BY and \tilde{Z} by BZ, wet get

$$\widetilde{R}(BX, BY) BZ = \widetilde{\nabla}_{BX} \widetilde{\nabla}_{BY} BZ - \widetilde{\nabla}_{BY} \widetilde{\nabla}_{BX} BZ - \widetilde{\nabla}_{[BXBY]} BZ$$

Using (4.3), we have

$$\begin{split} \widetilde{R}(BX, BY) \, BZ &= \widetilde{\nabla}_{BX} \{ B(\nabla_Y Z) + m(Y, Z) \, \underset{1}{N} + n(Y, Z) \, \underset{2}{N} \} \\ &- \widetilde{\nabla}_{BY} \{ B(\nabla_X Z) + m(X, Z) \, \underset{1}{N} + n(X, Z) \, \underset{2}{N} \} \\ &- \{ B(\nabla_{[X, Y]} Z) + m([X, Y], Z) \, \underset{1}{N} + n([X, Y], Z) \, \underset{2}{N} \} \,. \end{split}$$

Again by virtue of (4.3), (6.5) (a) and (b) and the condition (4.7), we get

$$\begin{split} \widetilde{R}(BX, BY) & BZ = BR(X, Y) Z + m(\pi(Y) F(X) - \pi(X) F(Y), Z) \underset{1}{N} \\ & + n(\pi(Y) F(X) - \pi(X) F(Y), Z) \underset{2}{N} \\ & + \{ (\nabla_X m)(Y, Z) - (\nabla_Y m)(X, Z) \} \underset{1}{N} \\ & + \{ (\nabla_X n)(Y, Z) - (\nabla_Y n)(X, Z) \} \underset{2}{N} \end{split}$$

 $+B\{m(X, Z) M_1Y - m(Y, Z) M_1X + n(X, Z) M_2Y\}$

22

[13]

ON SUBMANIFOLDS IMMERSED IN A MANIFOLD...

$$\begin{split} &-n(Y,\,Z)\,\,M_2X\}+1(X)\big\{m(Y,\,Z)\,\,\underset{2}{N}-n(Y,\,Z)\,\,\underset{1}{N}\big\}\\ &-1(Y)\big\{m(X,\,Z)\,\,\underset{2}{N}-n(X,\,Z)\,\,\underset{1}{N}\big\}\,, \end{split}$$

where R(X, Y) Z being the Riemannian curvature tensor of the submanifold with respect to the quarter symmetric connection ∇ .

References

- [1] S. GOLAB, On semi-symmetric and quarter symmetric linear connections, Tensor 29 (1975), 249-254.
- [2] T. IMAI, Notes on semi-symmetric metric connection, Tensor 24 (1972), 293-296.
- [3] R. S. MISHRA and S. N. PANDEY, On quarter symmetric metric F-connections, Tensor 34 (1980), 1-7.
- [4] R. S. MISHRA, Almost complex and almost contact submanifolds, Tensor 25 (1972), 419-433.
- [5] R. NIVAS, On a submanifold of a Riemannian manifold with semi-symmetric metric connection, Nepali Math. Sci. Rep. 9 (1984), 85-90.

Summary

Semi symmetric metric connections have been studied by Imai [2]. Submanifolds of a Riemaniann manifold with semi-symmetric metric connection have been studied by Ram Nivas [5] and others. Professors Mishra and Pandey [3] defined the notion of quarter symmetric connection in a differentiable manifold. The aim of the present paper is to study hypersurfaces and submanifolds of a manifold admitting quarter symmetric connections. Some interesting results have been established on such manifolds.

* * *