S. Ali and R. Nivas (*)

On submanifolds immersed in a manifold with quarter symmetric connection (**)

1-Preliminaries

Let M^{n+1} be an ($n+1$)-dimensional differentiable manifold of class C^{∞} and M^{n} be the hypersurface immersed in M^{n+1} by a differentiable immersion $i: M^{n}$ $\rightarrow M^{n+1}$. The differential $d i$ of the immersion i will be denoted by B so that the vector-field X in the tangent space of M^{n} corresponds to a vector field $B X$ in that of M^{n+1}. Suppose that the enveloping manifold M^{n+1} is a Riemannian manifold with metric tensor \tilde{g}. Then the hypersurface M^{n} is also a Riemannian manifold with induced metric tensor g defined by

$$
g(F X, Y)=\tilde{g}(B F X, B Y)
$$

X and Y being arbitrary vector fields in M^{n} and F is a tensor of type (1,1). If the Riemannian manifolds M^{n+1} and M^{n} are both orientable, we can choose a unique vector field N defined along M^{n} such that

$$
\tilde{g}(B F X, N)=0
$$

and

$$
\tilde{g}(N, N) \equiv 1
$$

[^0]for arbitrary vector field X in M^{n}. We call this vector field the unit normal vector field to the hypersurface M^{n}.

We now suppose that the Riemannian manifold M^{n+1} admits a quarter symmetric metric connection given by [3]

$$
\begin{equation*}
\widetilde{\nabla}_{\tilde{X}} \tilde{Y}=\tilde{\dot{\nabla}}_{\tilde{X}} \tilde{Y}+\tilde{\pi}(\tilde{Y}) \widetilde{F}(\widetilde{X})-\tilde{g}(\widetilde{F}(\widetilde{X}), \tilde{Y}) \widetilde{P} \tag{1.1}
\end{equation*}
$$

for arbitrary vector fields \widetilde{X} and \widetilde{Y} tangents to M^{n+1}, where $\widetilde{\nabla}$ denotes the LeviCivita connection with respect to Riemannian metric \tilde{g}, $\tilde{\pi}$ is a 1 -form \tilde{F} is a tensor of type $(1,1)$ and \widetilde{P}, the vector field defined by

$$
\tilde{g}(\widetilde{P}, \widetilde{X})=\tilde{\pi}(\widetilde{X})
$$

for an arbitrary vector field \widetilde{X} of M^{n+1}. Also

$$
\tilde{g}(\tilde{F}(\widetilde{X}), \tilde{Y})=\tilde{g}(\widetilde{X}, \tilde{F}(\tilde{Y}))
$$

Let us put

$$
\begin{equation*}
\widetilde{P}=B P+\lambda N \tag{1.2}
\end{equation*}
$$

where P is a vector field and λ a function on M^{n}.
We have the following theorem:
Theorem 1.1. The connection induced on the hypersurface of a Riemannian manifold with a quarter symmetric metric connection with respect to the unit normal is also quarter symmetric.

Proof. Let $\dot{\nabla}$, the connection induced on the hypersurface from $\tilde{\dot{\nabla}}$ with respect to the unit normal N. Then we have

$$
\begin{equation*}
\widetilde{\dot{\nabla}}_{B X} B Y=B\left(\dot{\nabla}_{X} Y\right)+h(X, Y) N \tag{1.3}
\end{equation*}
$$

for arbitrary vector fields X and Y on M^{n}. Also h is the second fundamental tensor of the hypersurface M^{n}. Similarly, let ∇ be connection induced on the hypersurface from $\tilde{\nabla}$ with respect to the unit normal N. We have

$$
\begin{equation*}
\tilde{\nabla}_{B X} B Y=B\left(\nabla_{X} Y\right)+m(X, Y) N \tag{1.4}
\end{equation*}
$$

for arbitrary vector fields X and Y of M^{n}, m being a tensor field of type (0,2) on
the hypersurface M^{n}. From (1.1) we obtain

$$
\tilde{\nabla}_{B X} B Y=\tilde{\dot{\nabla}}_{B X} B Y+\tilde{\pi}(B Y) \tilde{F}(B X)-\tilde{g}(\tilde{F}(B X), B Y) \widetilde{P} .
$$

Using (1.3) and (1.4), the above equation takes the form

$$
\begin{equation*}
B\left(\nabla_{X} Y\right)+m(X, Y) N=B\left(\dot{\nabla}_{X} Y\right)+h(X, Y) N+\pi(Y) B F X-\tilde{g}(B F X, B Y) \widetilde{P} \tag{1.5}
\end{equation*}
$$

where

$$
\tilde{\pi}(B X)=\pi(X)
$$

and

$$
\tilde{F}(B X)=B F X
$$

Substituting (1.2) into (1.5), and using $\tilde{g}(B F X, B Y)=g(F X, Y)$, we get

$$
\begin{gathered}
B\left(\nabla_{X} Y\right)+m(X, Y) N=B\left(\dot{\nabla}_{X} Y\right)+h(X, Y) N+\pi(Y) B F X \\
-g(F X, Y)(B P+\lambda N) .
\end{gathered}
$$

Comparison of tangential and normal vector fields yields

$$
\begin{equation*}
\nabla_{X} Y=\dot{\nabla}_{X} Y+\pi(Y) F(X)-g(F X, Y) P \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
m(X, Y)=h(X, Y)-\lambda g(F X, Y) \tag{1.7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{Y} X-[X, Y]=\pi(Y) F(X)-\pi(X) F(Y) \tag{1.8}
\end{equation*}
$$

Hence the connection ∇ induced on M^{n} is quarter symmetric one [3].

2-Totally geodesic and totally umbilical hypersurfaces

We define $\dot{\nabla} B$ and ∇B respectively by

$$
(\dot{\nabla} B)(X, Y)=\left(\dot{\nabla}_{X} B\right)(Y)=\widetilde{\dot{\nabla}}_{B X} B Y-B\left(\dot{\nabla}_{X} Y\right)
$$

and

$$
(\nabla B)(X, Y)=\left(\nabla_{X} B\right)(Y)=\tilde{\nabla}_{B X} B Y-B\left(\nabla_{X} Y\right),
$$

X and Y being arbitrary vector fields on M^{n}. Then (1.3) and (1.4) take the form

$$
\left(\dot{\nabla}_{X} B\right) Y=h(X, Y) N
$$

and

$$
\left(\nabla_{X} B\right) Y=m(X, Y) N
$$

These are the equations of Gauss with respect to the induced connection $\dot{\nabla}$ and ∇ respectively.

Let $X_{1}, X_{2}, \ldots X_{n}$ be n orthonormal vector fields in M^{n}. Then the function

$$
\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}, X_{i}\right)
$$

is the mean curvature of M^{n} with respect to Riemannian connection $\dot{\nabla}$ and

$$
\frac{1}{n} \sum_{i=1}^{n} m\left(X_{i}, X_{i}\right)
$$

is called the mean curvature of M^{n} with respect to the quarter symmetric connection ∇.

From this we have the following definitions:
Definition 2.1. If h vanishes, we call M^{n} as totally geodesic hypersurface of M^{n+1} with respect to the Riemannian connection $\dot{\nabla}$.

Definition 2.2. The hypersurface M^{n} is called totally umbilical with respect to connection $\dot{\nabla}$ if h is proportional to the metric tensor g.

We call M^{n} is totally geodesic and totally umbilical with respect to quarter symmetric connection ∇ according as the function m vanishes and proportional to the metric tensor g respectively.

Now we have following theorems:
Theorem 2.1. In order that the mean curvature of M^{n} with respect to $\dot{\nabla}$ coincides with that of M^{n} with respect to ∇, it is necessary and sufficient that the vector field \widetilde{P} is tangent to M^{n+1}.

Proof. In view of (1.7), we have

$$
m\left(X_{i}, X_{i}\right)=h\left(X_{i}, X_{i}\right)-\lambda g\left(F X_{i}, X_{i}\right)
$$

Summing up for $i=1,2, \ldots, n$ and dividing by n, we obtain

$$
\frac{1}{n} \sum_{i=1}^{n} m\left(X_{i}, X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}, X_{i}\right)
$$

if and only if, $\lambda=0$. Hence from (1.2), we have

$$
\widetilde{P}=B P
$$

Thus the vector field \widetilde{P} is in tangent space of M^{n+1}.
Theorem 2.2. The hypersurface M^{n} will be totally umbilical with respect to the Riemannian connetion $\dot{\nabla}$, if and only if it is totally umbilical with respect to quarter symmetric connection ∇.

Proof. The proof follows easily from (1.7).

3-Gauss, Weingarten and Codazzi equations

In this section we shall obtain Weingarten equations with respect to the quarter symmetric metric connection $\tilde{\nabla}$. For the Riemannian connection $\tilde{\dot{\nabla}}$, these equations are given by

$$
\begin{equation*}
\tilde{\dot{\nabla}}_{B X} N=-B H X \tag{3.1}
\end{equation*}
$$

for any vector field X in M^{n}, where H is a tensor field of type $(1,1)$ of of M^{n} defined by

$$
\begin{equation*}
g(H X, Y)=h(X, Y) \tag{3.2}
\end{equation*}
$$

In view of the equation (1.1), we have

$$
\begin{equation*}
\tilde{\nabla}_{B X} N=\tilde{\dot{\nabla}}_{B X} N+\lambda B F X \tag{3.3}
\end{equation*}
$$

Since $\tilde{\pi}(N)=\tilde{g}(\widetilde{P}, N)=\lambda$ and $\tilde{g}(B F X, N)=0$.
Thus, from (3.1) and (3.3), we get

$$
\begin{equation*}
\tilde{\nabla}_{B X} N=-B(H-\lambda F) X \tag{3.4}
\end{equation*}
$$

which is the equation of Weingarten with respect to the quarter symmetric metric connection.

Let $M=H-\lambda F$. Then from (3.4), we get

$$
\begin{equation*}
\tilde{\nabla}_{B X} N=-B M X \tag{3.5}
\end{equation*}
$$

for any vector field X in M^{n}. Let us denote the curvature tensor of M^{n+1} with respect to $\widetilde{\dot{\nabla}}$ by \widetilde{K} and that of M^{n} with respect to $\dot{\nabla}$ by K. Thus

$$
\widetilde{K}(\widetilde{X}, \tilde{Y}) \tilde{Z}=\tilde{\dot{\nabla}}_{\tilde{X}} \dot{\nabla}_{\tilde{Y}} \tilde{Z}-\tilde{\dot{\nabla}}_{\tilde{Y}} \tilde{\dot{\nabla}}_{\tilde{X}} \tilde{Z}-\tilde{\dot{\nabla}}_{[\tilde{X}, \tilde{Y}]} \tilde{Z}
$$

and

$$
K(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
$$

Then the equation of Gauss is given by

$$
K(X, Y, Z, U)=\widetilde{K}(B X, B Y, B Z, B U)+h(X, U) h(Y, Z)-h(Y, U) h(X, Z)
$$

where

$$
\widetilde{K}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U})=\tilde{g}(\widetilde{K}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}, \widetilde{U})
$$

and the similar expression for $K(X, Y, Z, U)$ for M^{n}.
The equation of Codazzi is given by

$$
\left(\dot{\nabla}_{X} h\right)(Y, Z)-\left(\dot{\nabla}_{Y} h\right)(X, Z)=\widetilde{K}(B X, B Y, B Z, N)
$$

We shall find the equations of Gauss and Codazzi with respect to the quarter symmetric connection. The curvature tensor with respect to the quarter symmetric metric connection $\widetilde{\nabla}$ of M^{n+1} is, by the definition

$$
\begin{equation*}
\widetilde{R}(\widetilde{X}, \tilde{Y}) \widetilde{Z}=\tilde{\nabla}_{\tilde{X}} \tilde{\nabla}_{\tilde{Y}} \widetilde{Z}-\widetilde{\nabla}_{\tilde{Y}} \widetilde{\nabla}_{\tilde{X}} \widetilde{Z}-\widetilde{\nabla}_{[\tilde{X}, \tilde{Y}]} \tilde{Z} \tag{3.6}
\end{equation*}
$$

Putting $\widetilde{X}=B X, \widetilde{Y}=B Y$ and $\widetilde{Z}=B Z$, we have

$$
\widetilde{R}(B X, B Y) B Z=\widetilde{\nabla}_{B X} \widetilde{\nabla}_{B Y} B Z-\widetilde{\nabla}_{B Y} \widetilde{\nabla}_{B X} \widetilde{Z}-\widetilde{\nabla}_{[B X, B Y]} B Z .
$$

By virtue of (1.4), (3.5) and (1.8), we get

$$
\begin{align*}
\tilde{R}(B X, B Y) B Z & =B\{R(X, Y) Z+m(X, Z) M Y-m(Y, Z) M X\} \tag{3.7}\\
+\left\{\left(\nabla_{X} m\right)(Y, Z)\right. & \left.-\left(\nabla_{Y} m\right)(X, Z)+m(\pi(Y) F X-\pi(X) F Y, Z)\right\} N,
\end{align*}
$$

where

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

is the curvature tensor of the quarter symmetric connection ∇.
Putting

$$
\widetilde{R}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U})=g(\widetilde{R}(\widetilde{X}, \tilde{Y}) \widetilde{Z}, \widetilde{U})
$$

and

$$
R(X, Y, Z, U)=g(R(X, Y) Z, U)
$$

Then from (3.7), we can easily show

$$
\begin{equation*}
\widetilde{R}(B X, B Y, B Z, B U)=R(X, Y, Z, U)-m(X, U) m(Y, Z)+m(Y, U) m(X, Z) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{gather*}
\widetilde{R}(B X, B Y, B Z, N)=\left(\nabla_{X} m\right)(Y, Z)-\left(\nabla_{Y} m\right)(X, Z) \tag{3.9}\\
+m(\pi(Y) F(X)-\pi(X) F(Y), Z)
\end{gather*}
$$

Equations (3.8) and (3.9) are the equations of Gauss and those of Codazzi with respect to the quarter symmetric connection.

4 - Submanifolds of codimensions 2

Let M^{n+1} be an $(n+1)$-dimensional differentiable manifold of differentiability class C^{∞} and M^{n-1}, an ($n-1$)-dimensional manifold immersed differentiability in M^{n+1} by the immersion $\tau: M^{n-1} \rightarrow M^{n+1}$. We denote the differential $d \tau$ of the immersion τ by B, so that the vector field X in the tangent space of M^{n-1} corresponds to a vector field $B X$ in that of M^{n+1}. Suppose that M^{n+1} is a Riemannian manifold with metric tensor \tilde{g}. Then the submanifold M^{n-1} is also Riemannian with metric tensor g such that $\tilde{g}(B F X, B Y)=g(F X, Y)$ for arbitrary vector fields X, Y in M^{n-1} [5].

If the Riemannian manifolds M^{n-1} and M^{n+1} are both orientable, we can choose mutually orthogonal unit normals $\underset{1}{N}$ and $\underset{2}{N}$ defined along M^{n-1} such that

$$
\tilde{g}(B F X, \underset{1}{N})=\tilde{g}(B F X, \underset{2}{N})=\tilde{g}(\underset{1}{N}, \underset{2}{N})=0
$$

and

$$
\tilde{g}(\underset{1}{N}, \underset{1}{N})=\tilde{g}(\underset{2}{N} \underset{2}{N})=1
$$

for arbitrary vector field X in M^{n-1} [4].
We now suppose that the enveloping manifold M^{n+1} admits a quarter symmetric metric connection given by [3]

$$
\tilde{\nabla}_{\tilde{X}} \tilde{Y}=\tilde{\dot{\nabla}}_{\tilde{X}} \tilde{Y}+\tilde{\pi}(\tilde{Y}) \tilde{F} \tilde{X}-\tilde{g}(\tilde{F} \tilde{X}, \tilde{Y}) \widetilde{P}
$$

for arbitrary vector fields \widetilde{X}, \tilde{Y} in M^{n+1} where $\tilde{\nabla}$ denotes the Levi-Civita connection with respect to the Riemannian metric \tilde{g}, $\tilde{\pi}$ is a 1 -form, \tilde{F} is a tensor of type $(1,1)$ such that $\tilde{g}(\tilde{F} \tilde{X}, \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{F} \tilde{Y})$, and \widetilde{P} the vector field defined by $\tilde{g}(\widetilde{P}, \tilde{X})$ $=\tilde{\pi}(\widetilde{X})$, for arbitrary vector field \widetilde{X} of M^{n+1}.

Let us now put

$$
\begin{equation*}
\widetilde{P}=B P+\lambda \underset{1}{N}+\mu \underset{2}{N}, \tag{4.1}
\end{equation*}
$$

P being a vector field in the tangent space of M^{n-1} and λ, μ functions of M^{n-1}.

We have the following theorem:
Theorem 4.1. The connection induced on the submanifold M^{n-1} of codimension 2 of the Riemannian manifold M^{n+1} with quarter symmetric metric connection is also quarter symmetric.

Proof. Let $\dot{\nabla}$ be the connection induced on the submanifold M^{n-1} from the connection $\dot{\nabla}$ on the enveloping manifold M^{n+1}, with respect to unit normals ${\underset{1}{N}}^{N}$ and $\underset{2}{N}$. Then we have [4]

$$
\begin{equation*}
\tilde{\dot{\nabla}}_{B X} B Y=B\left(\dot{\nabla}_{X} Y\right)+h(X, Y) \underset{1}{N}+k(X, Y) \underset{2}{N} \tag{4.2}
\end{equation*}
$$

for arbitrary vector fields X, Y of M^{n-1}, where h and k are second fundamental tensors of M^{n-1}. Similarly, if ∇ be connection induced on M^{n-1} from the quarter symmetric metric connection $\widetilde{\nabla}$ on M^{n+1}, we have

$$
\begin{equation*}
\tilde{\nabla}_{B X} B Y=B\left(\nabla_{X} Y\right)+m(X, Y) \underset{1}{N}+n(X, Y) \underset{2}{N}, \tag{4.3}
\end{equation*}
$$

m and n being tensor fields of type $(0,2)$ of the submanifold M^{n-1}. We also ha-
ve, in view of (1.1)

$$
\tilde{\nabla}_{B X} B Y=\tilde{\dot{\nabla}}_{B X} B Y+\tilde{\pi}(B Y) \tilde{F}(B X)-\tilde{g}(\widetilde{F}(B X), B Y) \widetilde{P}
$$

In view of (4.1), (4.2) and (4.3), we have

$$
\begin{gather*}
B\left(\nabla_{X} Y\right)+m(X, Y) \underset{1}{N}+n(X, Y) \underset{2}{N} \\
=B\left(\dot{\nabla}_{X} Y\right)+h(X, Y) \underset{1}{N}+k(X, Y) \underset{2}{N} \tag{4.4}\\
+ \\
\pi(Y) B F X-g(F X, Y)(B P+\lambda \underset{1}{N}+\lambda \underset{2}{N})
\end{gather*}
$$

where $\tilde{\pi}(B X)=\pi(X)$ and $\tilde{F}(B X)=B F X$.
Comparing tangential and normal vector fields to M^{n-1}, we get

$$
\begin{equation*}
\nabla_{X} Y=\dot{\nabla}_{X} Y+\pi(Y) F X-g(F X, Y) P, \tag{4.5}
\end{equation*}
$$

where λ and μ are chosen such that
(a) $m(X, Y)=h(X, Y)-\lambda g(F X, Y)$ and
(b) $n(X, Y)=k(X, Y)-\mu g(F X, Y)$.

Thus,

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{Y} X-[X, Y]=\pi(Y) F X-\pi(X) F Y \tag{4.7}
\end{equation*}
$$

Hence the connection ∇ induced on M^{n-1} is quarter symmetric [3].

5-Totally geodesic and totally umbilical submanifolds

Let $X_{1}, X_{2}, \ldots, X_{n-1}$ be ($n-1$) orthonormal vector fields on the submanifold M^{n-1}. Then the function

$$
\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left\{h\left(X_{i}, X_{i}\right)+k\left(X_{i}, X_{i}\right)\right\}
$$

is the mean curvature of M^{n-1} with respect to the Riemannian connection $\dot{\nabla}$ and

$$
\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left\{m\left(X_{i}, X_{i}\right)+n\left(X_{i}, X_{i}\right)\right\}
$$

is the mean curvature of M^{n-1} with respect to ∇ [5].
Now we have the following definitions:

Definition 5.1. If h and k vanish separately the submanifold M^{n-1} is called totally geodesic with respect to the Riemannian connection $\dot{\nabla}$.

Definition 5.2. The submanifold M^{n-1} is called totally umbilical with respect to the connection $\dot{\nabla}$ if h and k are proportional to the metric tensor g.

We call M^{n-1} is totally geodesic and totally umbilical with respect to the quarter symmetric connection ∇ according as the functions m and n vanish separately and are proportional as metric tensor g respectively.

We now prove the following theorem:

Theorem 5.1. In order that the mean curvature of M^{n-1} with respect to connection $\dot{\nabla}$ may coincide with that of M^{n-1} with respect to the connection ∇, it is necessary and sufficient that \widetilde{P} is in the tangent space of M^{n+1}.

Proof. In view of (4.6), we have

$$
m\left(X_{i}, X_{i}\right)+n\left(X_{i}, X_{i}\right)=h\left(X_{i}, X_{i}\right)+k\left(X_{i}, X_{i}\right)-(\lambda+\mu) g\left(F X_{i}, X_{i}\right)
$$

Summing up for $i=1,2, \ldots,(n-1)$ and dividing by $2(n-1)$, we get

$$
\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left\{m\left(X_{i}, X_{i}\right)+n\left(X_{i}, X_{i}\right\}=\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left\{h\left(X_{i}, X_{i}\right)+k\left(X_{i}, X_{i}\right\}\right.\right.
$$

if and only if,

$$
\lambda=\mu=0 .
$$

Hence from (4.1), it follows that $\widetilde{P}=B P$. Thus the vector field \widetilde{P} is in the tangent space of M^{n+1}.

Theorem 5.2. The submanifold M^{n-1} is totally umbilical with respect to the Riemannian connection $\dot{\nabla}$ if and only if it is totally umbilical with respect to the quarter symmetric connection ∇.

Proof. The proof follows easily from equations (4.6(a) and (b)).

6 - Curvature tensor and Weingarten equations

For the Riemannian connection $\dot{\nabla}$, the Weingarten equations are given by [4]

$$
\begin{align*}
& \text { (a) } \widetilde{\dot{\nabla}}_{B X}{ }_{1}^{N}=-B H X+1(X) \underset{2}{N} \text { and } \tag{6.1}\\
& \text { (b) } \widetilde{\dot{\nabla}}_{B X} N=-B K X+1(X) \underset{2}{N}
\end{align*}
$$

where H and K are tensor fields of type $(1,1)$ such that
(a) $g(H X, Y)=h(X, Y) \quad$ and
(b) $g(K X, Y)=k(X, Y)$.

Also, making use of (1.1) and (6.2) (a), we get

$$
\tilde{\nabla}_{B X} N=-B H X+1(X) \underset{2}{N}+\underset{1}{\tilde{\pi}(N)} B F X-\tilde{g}(B F X, \underset{1}{N}) \widetilde{P} .
$$

Since

$$
\underset{\sim}{\tilde{\pi}(N)}=\tilde{g}(\widetilde{P}, \underset{1}{N})=\lambda
$$

and

$$
\tilde{g}(B F X, \underset{1}{N})=0 .
$$

We have

$$
\begin{equation*}
\tilde{\nabla}_{B X}{ }_{1}^{N}=-B(H-\lambda F) X+1(X) \underset{2}{N} . \tag{6.3}
\end{equation*}
$$

Similary, from (1.1) and (6.2) (b), we get

$$
\begin{equation*}
\tilde{\nabla}_{B X}{ }_{2}^{N}=-B(K-\mu F) X-1(X) \underset{1}{N} . \tag{6.4}
\end{equation*}
$$

Putting

$$
H-\lambda F=M_{1}
$$

and

$$
K-\mu F=M_{2} .
$$

We get
(a) $\quad \tilde{\nabla}_{B X}{ }_{1}^{N}=-B M_{1} X+1(X) \underset{2}{N} \quad$ and
(b) $\quad \tilde{\nabla}_{B X}{ }_{2}=-B M_{2} X-1(X) \underset{1}{N}$
(6.5) (a), (b) are equations of Weingarten with respect to the quarter symmetric metric connection $\widetilde{\nabla}$.

The Riemannian curvature tensor for quarter symmetric metric connection can be obtained as follows.

Let $\widetilde{R}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}$ be the Riemannian curvature tensor of the enveloping manifold M^{n+1} with respect to quarter symmetric metric connection $\tilde{\nabla}$.

Then

$$
\tilde{R}(\widetilde{X}, \tilde{Y}) \tilde{Z}=\tilde{\nabla}_{\tilde{X}} \tilde{\nabla}_{\tilde{Y}} \tilde{Z}-\tilde{\nabla}_{\tilde{Y}} \tilde{\nabla}_{\tilde{X}} \tilde{Z}-\tilde{\nabla}_{[\tilde{X}, \tilde{Y}]} \tilde{Z}
$$

Replacing \widetilde{X} by $B X, \widetilde{Y}$ by $B Y$ and \widetilde{Z} by $B Z$, wet get

$$
\widetilde{R}(B X, B Y) B Z=\tilde{\nabla}_{B X} \tilde{\nabla}_{B Y} B Z-\tilde{\nabla}_{B Y} \tilde{\nabla}_{B X} B Z-\widetilde{\nabla}_{[B X B Y]} B Z .
$$

Using (4.3), we have

$$
\begin{gathered}
\widetilde{R}(B X, B Y) B Z=\widetilde{\nabla}_{B X}\left\{B\left(\nabla_{Y} Z\right)+m(Y, Z) \underset{1}{N}+n(Y, Z) \underset{2}{N}\right\} \\
\quad-\widetilde{\nabla}_{B Y}\left\{B\left(\nabla_{X} Z\right)+m(X, Z) \underset{1}{N}+n(X, Z) \underset{2}{N}\right\} \\
-\left\{B\left(\nabla_{[X, Y]} Z\right)+m([X, Y], Z) \underset{1}{N}+n([X, Y], Z) \underset{2}{N}\right\} .
\end{gathered}
$$

Again by virtue of (4.3), (6.5) (a) and (b) and the condition (4.7), we get

$$
\begin{aligned}
\widetilde{R}(B X, B Y) B Z & =B R(X, Y) Z+m(\pi(Y) F(X)-\pi(X) F(Y), Z) \underset{1}{N} \\
& +n(\pi(Y) F(X)-\pi(X) F(Y), Z) \underset{2}{N} \\
+ & \left\{\left(\nabla_{X} m\right)(Y, Z)-\left(\nabla_{Y} m\right)(X, Z)\right\} \underset{1}{N} \\
& +\left\{\left(\nabla_{X} n\right)(Y, Z)-\left(\nabla_{Y} n\right)(X, Z)\right\} \underset{2}{N} \\
+ & B\left\{m(X, Z) M_{1} Y-m(Y, Z) M_{1} X+n(X, Z) M_{2} Y\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.-n(Y, Z) M_{2} X\right\}+1(X)\{m(Y, Z) \underset{2}{N}-n(Y, Z) \underset{1}{\underset{1}{N}\}} \\
-1(Y)\{m(X, Z) \underset{2}{N}-n(X, Z) \underset{1}{N}\},
\end{gathered}
$$

where $R(X, Y) Z$ being the Riemannian curvature tensor of the submanifold with respect to the quarter symmetric connection ∇.

References

[1] S. Golab, On semi-symmetric and quarter symmetric linear connections, Tensor 29 (1975), 249-254.
[2] T. Imai, Notes on semi-symmetric metric connection, Tensor 24 (1972), 293296.
[3] R. S. Mishra and S. N. Pandey, On quarter symmetric metric F-connections, Tensor 34 (1980), 1-7.
[4] R. S. Mishra, Almost complex and almost contact submanifolds, Tensor 25 (1972), 419-433.
[5] R. Nivas, On a submanifold of a Riemannian manifold with semi-symmetric metric connection, Nepali Math. Sci. Rep. 9 (1984), 85-90.

Summary

Semi symmetric metric connections have been studied by Imai [2]. Submanifolds of a Riemaniann manifold with semi-symmetric metric connection have been studied by Ram Nivas [5] and others. Professors Mishra and Pandey [3] defined the notion of quarter symmetric connection in a differentiable manifold. The aim of the present paper is to study hypersurfaces and submanifolds of a manifold admitting quarter symmetric connections. Some interesting results have been established on such manifolds.

[^0]: (*) Dept. of Maths and Astronomy, Lucknow University, Lucknow 226007, India.
 (**) Received October 10, 1999. AMS classification 53 B 25.

