GIUSEPPE DA PRATO (*)

Regularity results for some degenerate parabolic equation (**)

1 - Introduction

Let $d \in \mathbb{N}$ and set $H = \mathbb{R}^d$. We denote by $|\cdot|$ the norm, and by $\langle \cdot, \cdot \rangle$ the inner product in H. By L(H) we mean the algebra of all linear operators from H into itself, and by $L_+(H)$ the subset of L(H) of all symmetric nonnegative linear operators.

Moreover for any function $\varphi: H \to \mathbb{R}$, $D\varphi$ is its gradient and D_i , i = 1, ..., d, is its partial derivative with respect to x_i .

We are concerned with the parabolic equation

(1.1)
$$\begin{cases} D_t u(t, x) = N u(t, \cdot)(x), \ x \in H, \ t > 0, \\ u(0, x) = \varphi(x), \ x \in H, \end{cases}$$

where N is the differential operator

(1.2)
$$N\varphi(x) = \frac{1}{2} \operatorname{Tr} \left[CD^2 \varphi(x) \right] + \langle Ax + F(x), D\varphi(x) \rangle, \quad x \in H.$$

We recall that a *strict* solution of (1.1) is a function $u:[0, +\infty) \times H \rightarrow H$, $(t, x) \rightarrow u(t, x)$ that is continuously differentiable with respect to t, twice continuously differentiable with respect to x and fulfills (1.1). We shall assume,

^(*) Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy.

^(**) Received October 1, 1999. AMS classification 35 K 15, 34 K 65, 35 H 05.

Hypothesis 1.1. (i) $A \in L(H)$, $C \in L_+(H)$.

(ii) $F \in C_b^2(H; H)(^1)$.

The following result is well known, see e.g. [6], however we shall give a sketch of the proof for the reader's convenience.

Proposition 1.2. Assume that Hypothesis 1.1 holds. Then for all $\varphi \in C_b^2(H)$, problem (1.1) has a unique strict solution u. u is given by the formula

(1.3)
$$u(t, x) = \mathbb{E}[\varphi(X(t, x))], \quad t \ge 0, \quad x \in H,$$

where $X(\cdot, x)$ is the solution of the differential stochastic equation

(1.4)
$$\begin{cases} dX(t) = (AX(t) + F(X(t)) dt + C^{1/2} dW(t)) \\ X(0) = x , \end{cases}$$

W is a standard Brownian motion in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking values on \mathbb{R}^d , and \mathbb{E} means expectation.

Proof. The differential stochastic equation (1.4) can be solved by a fixed point argument. Moreover, since $F \in C_b^2(H; H)$, X(t, x) is twice differentiable in x, and the partial derivatives:

$$X_x(t, x) \cdot h = \eta^h(t, x), \qquad t \ge 0, \quad x, h \in H,$$

and

$$X_{xx}(t, x)(h, h) = \zeta^{h}(t, x), \quad t \ge 0, \quad x, h \in H,$$

(¹) If *H* and *K* are Hilbert spaces we denote by $C_b(H; K)$ (resp. $B_b(H; K)$) the Banach space of all uniformly continuous (resp. Borel) and bounded mappings from *H* into *K*, endowed with the sup norm $\|\cdot\|_0$. Moreover, for any $k \in \mathbb{N}$, $C_b^k(H; K)$ will represent the Banach space of all mappings from *H* into *K*, that are uniformly continuous and bounded together with their Fréchet derivatives of order less or equal to *k* endowed with their natural norm $\|\cdot\|_k$. Finally we set $C_b^{\infty}(H; K) = \bigcap_{k=1}^{\infty} C_b^k(H; K)$. If $K = \mathbb{R}$ we set $C_b(H; K) = C_b(H)$ (resp. $B_b(H; K) = B_b(H)$) and $C_b^k(H; K) = C_b^k(H)$, $C_b^{\infty}(H) = C_b^{\infty}(H; K)$. [3]

are the solutions to the following differential stochastic equations

(1.5)
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \eta^{h}(t, x) = (A + DF(X(t, x)) \eta^{h}(t, x)) \\ \eta^{h}(0, x) = h , \end{cases}$$

and

(1.6)
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \zeta^{h}(t,x) = (A + DF(X(t,x)) \zeta^{h}(t,x)) + D^{2}F(X(t,x))(\eta^{h}(t,x),\eta^{h}(t,x)) \\ \zeta^{h}(0,x) = 0, \end{cases}$$

respectively, see e.g. [6]. From (1.5) and the Gronwall lemma, it follows

(1.7)
$$|\eta^{h}(t, x)| \leq e^{(||A|| + ||F||_{1})t} |h|, \quad x, h \in H.$$

Therefore, from (1.6) we find

(1.8)
$$\begin{aligned} |\zeta^{h}(t, x)| &\leq \int_{0}^{t} e^{(t-s)(||A|| + ||F||_{1})} |D^{2}F(\eta^{h}(s, x), \eta^{h}(s, x))| \, \mathrm{d}s \\ &\leq \int_{0}^{t} e^{(t-s)(||A|| + ||F||_{1})} ||F||_{2} e^{s(||A|| + ||F||_{1})} \, \mathrm{d}s \\ &t \end{aligned}$$

$$= \|F\|_{2} \int_{0}^{t} e^{(t+s)(\|A\| + \|F\|_{1})} ds$$

It follows that $u(t, \cdot) \in C_b^2(H)$ and

(1.9)
$$\langle Du(t, x), h \rangle = \mathbb{E}[\langle D\varphi(X(t, x)), X_x(t, x) h \rangle], \quad t \ge 0, x, h \in H,$$

and

(1.10)
$$\begin{array}{l} \langle D^2 u(t,x) h, h \rangle = \mathbb{E}[\langle D^2 \varphi(X(t,x)) X_x(t,x) h, X_x(t,x) h \rangle] \\ + \mathbb{E}[\langle D\varphi(X(t,x)), X_{xx}(t,x)(h,h) \rangle] \quad t \ge 0, \ x, h \in H. \end{array}$$

Now the conclusion follows from the Itô formula.

Remark 1.3. In a similar way we can show that if $F \in C_b^k(H; H)$ for some $k \ge 3$ and $\varphi \in C_b^k(H)$ then $u(t, \cdot) \in C_b^k(H)$ for any $t \ge 0$.

We note that Proposition 1.2 has been proved by deterministic methods in [8] when det C > 0 and in [7] when F = 0.

We define now a semigroup of linear bounded operators in $B_b(H)$ by setting

(1.11)
$$P_t \varphi(x) = \mathbb{E}[\varphi(X(t, x))], \quad \varphi \in B_b(H), \quad t \ge 0,$$

this definition is meaningful since φ is bounded and Borel and X is continuous.

It is easy to see that P_t has the *Feller* property, that is the following implication holds:

(1.12)
$$\varphi \in C_b(H), t \ge 0 \implies P_t \varphi \in C_b(H).$$

Consequently the restriction of P_t , $t \ge 0$ to $C_b(H)$ is a semigroup of linear bounded operators in $C_b(H)$ (not strongly continuous in general, see [1] and [9]).

The goal of this paper is to find sufficient conditions such that $P_t \varphi$ is differentiable in x for all t > 0 and for all $\varphi \in C_b(H)$. We are also interested in the behaviour of the derivative $DP_t \varphi$ for t close to 0, arriving to estimates such as

$$|DP_t \varphi(x)| \le ct^{-k/2} \|\varphi\|_0,$$

for some $k \in \mathbb{N}$.

We believe that it would possible to find estimates, under suitable additional assumption, also for higher derivatives of φ . These estimates could be useful to prove Schauder estimates for the elliptic equation

(1.14)
$$\lambda \varphi - N\phi = f,$$

see [7]. However we shall only prove (1.13) for k = 1. As a consequence we will find that the transition semigroup P_t enjoys the strong Feller property, that is:

(1.15)
$$\varphi \in B_b(H), t > 0 \Rightarrow P_t \varphi \in C_b(H).$$

Strong Feller property is important to study uniqueness of invariant measures, see [4].

When F = 0 there is a complete answer to the above problems that we recall in § 2. In § 3 we consider a perturbation of the linear case. Finally in § 4 we give an example.

2 - The case when F = 0

We assume here F = 0. Then P_t is given, as well known, by the following *Mehler* formula:

(2.1)
$$P_t \varphi(x) = \int_H \varphi(e^{tA} x + y) \, \mathfrak{N}(0, Q_t)(\mathrm{d}y), \qquad \varphi \in B_b(H),$$

where

(2.2)
$$Q_t = \int_0^t e^{sA} C e^{sA^*} ds ,$$

and $\mathfrak{N}(0, Q_t)$ is the gaussian measure having mean 0 and covariance operator Q_t . The following result is also well known, see e.g. [3],

Proposition 2.1. The following statements are equivalent:

(i) det $Q_t > 0$, for all t > 0.

(ii) For all $\varphi \in B_b(H)$ and for any t > 0 we have $P_t \varphi \in C_b^{\infty}(H)$. Moreover, if (i) holds we have

(2.3)
$$||D^k P_t \varphi(x)|| \le ||A(t)||^k ||\varphi||_0, \quad t > 0, \ k \in \mathbb{N},$$

where

(2.4)
$$\Lambda(t) = Q_t^{-1/2} e^{tA}, \quad t > 0.$$

We recall that when C = I and $||e^{tA}|| \le e^{\omega t}$, $t \ge 0$, we have

$$\|A(t)\| \le \frac{e^{\omega t}}{t^{1/2}},$$

whereas if det C = 0, but det $Q_t > 0$, t > 0, there exists $k \in \{3, 5, ..., 2d - 1\}$, and a positive constant c_k such that

$$\| \underline{A}(t) \| \leq c_k \; \frac{e^{\omega t}}{t^{k/2}} \, .$$

We recall that assumption (i) of Proposition 2.1 is equivalent to the Hörmader condition, see [5], ensuring hypoellipticity of N, and also to the controllability of

(2.7)
$$\xi' = A\xi + C^{1/2}\eta, \quad \xi(0) = \xi_0,$$

where ξ is the state and η the control. In fact, given T > 0 and $\xi_0 \in H$, the control

$$\eta(s) = -C^{1/2} e^{(T-s)A^*} Q_T^{-1} e^{TA} \xi_0, \qquad s \in [0, T],$$

drives system (2.7) to 0 in time T.

3 - The case when $F \neq 0$

Let $\varphi \in C_b^2(H)$ and let u be the strict solution of (1.1). First we are going to prove an estimate for Du(t, x) depending on $\|\varphi\|_0$ but not on $\|D\varphi\|_0$. To do this, we shall use a generalization of a well known method due to Bernstein.

We set

(3.1)
$$z(t, x) = u^2(t, x) + \langle G(t) Du(t, x), Du(t, x) \rangle, \quad x \in H, t \ge 0,$$

where $G(t), t \ge 0$ are symmetric positive matrices, to be specified later, whose matrix elements will be denoted by $(G_{i,j}(t))$.

We will need the following identities involving the differential operator N, that can be easily checked.

(3.2)
$$N(\varphi\psi) = \varphi N\psi + \psi N\varphi + \langle CD\varphi, D\phi \rangle, \quad \varphi, \psi \in C_b^2(H),$$

and

$$(3.3) D_i N \varphi = N D_i \varphi + \langle D_i F(x), D \varphi \rangle, \varphi, \ \psi \in C_b^2(H), imes i = 1, 2, ..., d.$$

Lemma 3.1. Let $\varphi \in C_b^3(H)$, $u(t, \cdot) = P_t \varphi$, and let $G \in C^1([0, +\infty))$; L(H)) with G(t) symmetric for all $t \ge 0$. Then the following identity holds:

$$D_t z(t, x) = Nz(t, \cdot)(x) + \langle G'(t) Du(t, x), Du(t, x) \rangle$$

(3.4)
$$+2\langle (A + DF(x)) G(t) Du(t, x), Du(t, x) \rangle - \langle CDu(t, x), Du(t, x) \rangle$$

$$-\operatorname{Tr} [CD^2 u(t, x) G(t) D^2 u(t, x)].$$

Proof. We first notice that by (3.2) we have

$$(3.5) D_t(u^2) = 2uD_tu = 2uNu = N(u^2) - |C^{1/2}Du|^2.$$

Let us compute $D_t(D_i u D_j u)$. Taking into account (3.3) we have

$$\begin{split} D_t(D_i u D_j u) &= D_i N u \, D_j u + D_i u \, D_j N u \\ &= N D_i u \, D_j u + N D_j u \, D_i u + \langle D_i F, \, D u \rangle \, D_j u + \langle D_j F, \, D u \rangle \, D_i u \; . \end{split}$$

By (3.2) it follows

$$\begin{split} D_t(D_i u \, D_j u) &= N(D_i u D_j u) - \langle CDD_i u, \, DD_j u \rangle \\ &+ \langle D_i F, \, Du \rangle \, D_j u + \langle D_j F, \, Du \rangle \, D_i u \; . \end{split}$$

Let us compute $D_t(\langle G(t) Du, Du \rangle)$,

$$D_t(\langle G(t) Du, Du \rangle) = D_t(\langle G'(t) Du, Du \rangle) + \sum_{i,j=1}^d G_{i,j}(t) D_t(D_i u D_j u)$$

$$(3.6) = D_t(\langle G'(t) Du, Du \rangle) + \sum_{i,j=1}^d N((D_i u D_j u)) - \sum_{i,j=1}^d G_{i,j}(t) \langle CDD_i u, DD_j u \rangle$$
$$+ 2 \sum_{i,j=1}^d G_{i,j}(t) \langle D_i F, Du \rangle D_j u .$$

From (3.5) and (3.6) the conclusion follows.

We prove now the main result of the paper. In its formulation we set

(3.7)
$$G(t) = [\Lambda(t)^* \Lambda(t)]^{-1} = \int_0^t e^{-sA} C e^{-sA^*} ds, \quad t \ge 0.$$

Moreover we recall that $P_t \varphi$ is defined by (1.11).

Theorem 3.2. Assume, besides Hypothesis 1.1, that det $Q_t > 0$ for t > 0, and

(3.8)
$$\langle DF(x) G(t) \xi, \xi \rangle \leq \kappa \langle G(t) \xi, \xi \rangle, \quad t > 0, \ \xi \in H,$$

for some $\kappa \in \mathbb{R}$.

Then for any $\varphi \in C_b(H)$ and any t > 0 we have $P_t \varphi \in C_b^1(H)$. Moreover the following estimate holds

(3.9)
$$|DP_t \varphi(x)| \le e^{\kappa t/2} ||A(t)|| ||\varphi||_0, \quad t > 0, \ x \in H.$$

Finally if $\varphi \in B_b(H)$, and t > 0, then $P_t \varphi$ is Lipschitz continuous, so that P_t is strong Feller.

Proof. We first prove the assertion for $\varphi \in C_b^3(H)$. For this purpose we use Lemma 3.1 taking

$$G(t) = [\Lambda(t)^* \Lambda(t)]^{-1} = \int_0^t e^{-sA} C e^{-sA^*} ds .$$

By a straightforward computation we find

$$G'(t) + AG(t) + G(t) A^* - C = 0, \quad t \ge 0,$$

so that, taking into account that

$$\operatorname{Tr} [CD^2 u(t, x) G(t) Du^2(t, x)] > 0,$$

(3.4) yields the following

$$\begin{split} D_t z(t, x) &= N z(t, \cdot)(x) + \langle DF(x) \; G(t) \; Du(t, x), \; Du(t, x) \rangle \\ &- \mathrm{Tr} \left[C D^2 u(t, x) \; G(t) \; D^2 u(t, x) \right] \\ &\leq N z(t, \cdot)(x) + \kappa \langle G(t) \; Du(t, x), \; Du(t, x) \rangle. \end{split}$$

Therefore

$$\begin{split} &\langle G(t) \ Du(t, \, x), \ Du(t, \, x) \rangle \leq z(t, \, x) \\ &\leq P_t(\varphi^2(x)) + \kappa \int_0^t P_{t-s}(\langle G(s) \ Du(s, \, \cdot), \ Du(s, \, \cdot) \rangle)(x) \ \mathrm{d}s \end{split}$$

,

and consequently

$$\sup_{x \in H} \langle G(t) \ Du(t, x), \ Du(t, x) \rangle$$

$$\leq \|\varphi\|_{0}^{2} + \kappa \int_{0}^{t} \sup_{x \in H} \langle G(s) \ Du(s, x), \ Du(s, x) \rangle \, \mathrm{d}s \, .$$

By the Gronwall lemma it follows

$$\langle G(t) Du(t, x), Du(t, x) \rangle \leq e^{\kappa t} P_t(\varphi^2), \quad t \geq 0.$$

Finally we have

$$|Du(t, x)|^2 \leq ||A(t)||^2 \langle G(t) Du(t, x), Du(t, x) \rangle \leq e^{\kappa t} ||\varphi||_0^2,$$

and (3.9) is proved when $\varphi \in C_b^2(H)$.

Let now $\varphi \in C_b(H)$, and let $\{\varphi_n\} \in C_b^3(H)$ such that $\varphi_n \to \varphi$ in $C_b(H)$. Set

$$u_n(t, x) = P_t \varphi_n(x), \qquad x \in H, \qquad t \ge 0.$$

Then by (3.9) it follows that, for any $m, n \in \mathbb{N}$,

$$|Du_n(t, x) - Du_m(t, x)| \le e^{\kappa t/2} ||A(t)|| ||\varphi_n - \varphi_m||_0.$$

This implies that $u(t, \cdot) \in C_b^1(H)$ and (3.9) holds.

Let finally t > 0 be fixed and $\varphi \in B_b(H)$. Let $\{\varphi_n\} \in C_b^1(H)$ such that $\varphi_n(x) \to \varphi(x)$ almost everywhere and $\|\varphi_n\|_0 \leq \|\varphi\|_0$. Then for any $n \in \mathbb{N}$, we have, by the first part of the proof,

$$|u_n(t, x) - u_n(t, y)| \le e^{\kappa_1 t/2} ||A(t)|| |\varphi||_0 ||x - y|,$$

for all $x, y \in H$. Consequently, by the Ascoli–Arzelà lemma, there exists a subsequence $\{u_{n_k}\}$ such that

 $\lim_{k \to \infty} u_{n_k}(t, x) \to u(t, x), \quad \text{uniformly on the compact subsets of } H,$

where $u(t, x) = P_t \varphi(x)$. Therefore $P_t \varphi$ is continuous as required.

3.1 - A generalization

We assume here that Hypothesis 1.1–(i) holds, but we replace Hypothesis 1.1–(ii) by the following

Hypothesis 3.3. F is locally Lipschitz continuous, and there exists $\eta \in \mathbb{R}$ such that

(3.10)
$$\langle F(x) - F(y), x - y \rangle \leq \eta |x - y|^2, \quad x, y \in H.$$

Under these assumptions the differential stochastic equation (1.4) can be solved by monotonicity methods, see [6] and [3], Chapter 5. Then we can still define the transition semigroup

$$u(t, x) = P_t \varphi(x) = \mathbb{E}[\varphi(X(t, x))], \quad t \ge 0, \ x \in H,$$

for all $\varphi \in B_b(H)$. However if $\varphi \in C_b^2(H)$, we cannot conclude that u is a strict solution to (1.1). In fact we do not know whether X(t, x) is twice differentiable, and so we cannot uses formulas (1.9) and (1.10). We shall say that u is a *generalized* solution of (1.1).

We prove finally the following result.

Theorem 3.4. Assume, besides Hypotheses 1.1–(i) and Hypotheses 3.3, that det $Q_t > 0$ for t > 0, and that (3.8) holds.

Then for any $\varphi \in C_b(H)$ and any t > 0 we have $P_t \varphi \in C_b^1(H)$. Moreover the following estimate holds

(3.11)
$$|DP_t \varphi(x)| \le e^{\kappa t/2} ||A(t)|| ||\varphi||_0, \quad t > 0, \ x \in H.$$

Finally if $\varphi \in B_b(H)$, and t > 0, then $P_t \varphi$ is Lipschitz continuous, so that P_t is strong Feller.

Proof. There exists a sequence $\{F_n\}$ in $C_b^2(H; H)$ such that

(i) We have

$$\lim_{n\to\infty}F_n(x)=F(x)\,,\qquad x\in H\,,\ n\in\mathbb{N}\,,$$

uniformly on the bounded subset of H.

(ii) We have

(3.12)
$$\langle F_n(x) - F_n(y), \, x - y \rangle \leq \eta \, |x - y|^2, \qquad x, \, y \in H \, .$$

It is enough to set

$$F_n(x) = \int_{H} e^{-\frac{1}{2n}} F(e^{-\frac{1}{2n}} x + y) \, \mathcal{N}(0, (1 - e^{-\frac{1}{2n}}))(\mathrm{d}y).$$

Let $X_n(t, x)$ be the solution to the differential stochastic equation

(3.13)
$$\begin{cases} dX_n(t) = (AX_n(t) + F_n(X_n(t)) dt + C^{1/2} dW(t)) \\ X_n(0) = x \end{cases}$$

and let P_t^n be the corresponding transition semigroup:

$$(3.14) P_t^n \varphi(x) = \mathbb{E}[\varphi(X(t, x))], \qquad \varphi \in B_b(H), \ t \ge 0, \ x \in H.$$

It is not difficult to see that $P_t^n \varphi(x) \to P_t \varphi(x)$ when $n \to \infty$ uniformly on the

bounded subsets of H, see e.g. [2], Chapter 2. Now by Theorem 3.4 we have the estimate

(3.15)
$$|DP_t^N \varphi(x)| \le e^{\kappa t/2} ||A(t)||||\varphi||_0, \quad t > 0, \ x \in H, \ N \in \mathbb{N},$$

for any $\varphi \in B_b(H)$. Now the conclusion follows from standard arguments.

4 - An example

We consider here the evolution equation in \mathbb{R}^2 ,

(4.1)
$$\begin{cases} D_t u(t, x) = \frac{1}{2} D_1^2 u(t, x) + x_1 D_2 u(t, x) + F_1(x) D_1 u(t, x) \\ + F_2(x) D_2 u(t, x), \\ u(0, x) \quad \varphi(x), \quad x \in H. \end{cases}$$

It is a perturbation of a well known Kolmogorov equation.

In this case we have

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

and

$$G(t) = \frac{t}{6} \begin{pmatrix} 6 & 2-3t \\ -3t & 2t^2 \end{pmatrix}.$$

It is easy to see that det $Q_t > 0$ and

(4.2)
$$||A(t)|| \le ct^{-3/2}, \quad t \ge 0.$$

Lemma 4.1. Let $M = \begin{pmatrix} -a & b \\ c & -d \end{pmatrix}$. Then $MG(t) \le 0$ for any $t \ge 0$ if and only if

$$b = c = 0, \qquad a \ge 0, \qquad d \ge 0 ,$$

and

$$\frac{d}{3} \leqslant a \leqslant 3d \; .$$

GIUSEPPE DA PRATO

Corollary 4.2. Let
$$M = \begin{pmatrix} -a & 0 \\ 0 & -d \end{pmatrix}$$
, with $a \ge 0$, $d \ge 0$. Then we have $MG(t) \le \kappa_1 G(t)$, $t \ge 0$,

where

$$\kappa_1 = \sup\left\{\frac{d-3a}{2}, \frac{a-3d}{2}
ight\}.$$

Now by Theorem 3.2 it follows the result

Proposition 4.3. Assume that $F_1(x) = f_1(x_1)$, $F_2(x) = f_2(x_2)$, with $f_1, f_2 \in C_b^2(\mathbb{R})$, $f_1 \leq 0$, $f_2 \leq 0$, and that there exists $c_1 > 0$ such that

$$|D_1 f_1(x_1)| + |D_2 f_1(x_2)| \le c_1.$$

Then for any $\varphi \in C_b(H)$ and any t > 0 we have $P_t \varphi \in C_b^1(H)$. Moreover the following estimate holds

(4.3)
$$|DP_t \varphi(x)| \leq c e^{c_1 t/2} t^{-3/2} ||\varphi||_0, \quad t > 0, \ x \in H.$$

Aknowledgements. We thank the referee for a careful reading of the paper and for useful suggestions.

References

- [1] S. CERRAI, Elliptic and parabolic equations in \mathbb{R}^n with coefficients having polynomial growth, Comm. Partial Differential Equations 21 (1996), 281-317.
- G. DA PRATO, Stochastic evolution equations by semigroups methodos, Centre de Recerca Matemàtica, Quaderns nùm 11/gener 1998.
- [3] G. DA PRATO and J. ZABCZYK, Stochastic equations in infinite dimensions, Cambridge University Press, 1992.
- [4] G. DA PRATO and J. ZABCZYK, Ergodicity for infinite dimensional systems, London Mathematical Society Lecture Notes, 229, Cambridge University Press, 1996.
- [5] L. HORMANDER, Hypoelliptic differential equations of second order, Acta Math. 119 (1967), 147-171.
- [6] N. V. KRYLOV, Introduction to the theory of diffusion processes, American Mathematical Society, 142 (1991).

- [7] A. LUNARDI, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rⁿ, Ann. Scuola Norm. Sup. Pisa (4) 24 (1997), 133-164.
- [8] A. LUNARDI, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in \mathbb{R}^n , Studia Math. 128 (1998), 171-198.
- [9] E. PRIOLA, π -semigroups and applications. Studia Math., to appear.

Abstract

We consider a degenerate parabolic equation fulfilling controllability conditions and prove differentiability of the solution.

* * *