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GIUSEPPE DA PR A T O (*)

Regularity results for some degenerate parabolic equation (**)

1 - Introduction

Let d�N and set H4Rd . We denote by N QN the norm, and by aQ , Qb the inner
product in H . By L(H) we mean the algebra of all linear operators from H into it-
self, and by L1 (H) the subset of L(H) of all symmetric nonnegative linear
operators.

Moreover for any function W : HKR , DW is its gradient and Di , i41, R , d ,
is its partial derivative with respect to xi .

We are concerned with the parabolic equation

.
/
´

Dt u(t , x)4Nu(t , Q)(x), x�H , tD0,

u(0 , x)4W(x), x�H ,
(1.1)

where N is the differential operator

NW(x)4
1

2
Tr [CD 2 W(x) ]1 aAx1F(x), DW(x)b , x�H .(1.2)

We recall that a strict solution of (1.1) is a function u : [0 , 1Q)3HKH ,
(t , x)Ku(t , x) that is continuously differentiable with respect to t , twice continu-
ously differentiable with respect to x and fulfills (1.1). We shall assume,
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H y p o t h e s i s 1.1. (i) A�L(H), C�L1 (H).

(ii) F�C 2
b (H ; H) (1).

The following result is well known, see e.g. [6], however we shall give a sketch
of the proof for the reader’s convenience.

P r o p o s i t i o n 1.2. Assume that Hypothesis 1.1 holds. Then for all
W�C 2

b (H), problem (1.1) has a unique strict solution u . u is given by the
formula

u(t , x)4E[W (X(t , x))], tF0, x�H ,(1.3)

where X(Q , x) is the solution of the differential stochastic equation

.
/
´

dX(t)4 (AX(t)1F (X(t) ) dt1C 1/2 dW(t) )

X(0)4x ,
(1.4)

W is a standard Brownian motion in a probability space (V , F, P) taking
values on Rd , and E means expectation.

P r o o f . The differential stochastic equation (1.4) can be solved by a fixed
point argument. Moreover, since F�C 2

b (H ; H), X(t , x) is twice differentiable in
x, and the partial derivatives:

Xx (t , x) Qh4h h (t , x) , tF0 , x , h�H ,

and

Xxx (t , x)(h , h)4z h (t , x) , tF0, x , h�H ,

(1) If H and K are Hilbert spaces we denote by Cb (H ; K) (resp. Bb (H ; K)) the Banach

space of all uniformly continuous (resp. Borel) and bounded mappings from H into K , endo-

wed with the sup norm V QV0 . Moreover, for any k�N , C k
b (H ; K) will represent the Banach

space of all mappings from H into K , that are uniformly continuous and bounded together

with their Fréchet derivatives of order less or equal to k endowed with their natural norm

V QVk. Finally we set C Q
b (H ; K)4 1

k41

Q

C k
b (H ; K). If K4R we set Cb (H ; K)4Cb (H) (resp.

Bb (H ; K)4Bb (H)) and C k
b (H ; K)4C k

b (H), C Q
b (H)4C Q

b (H ; K).
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are the solutions to the following differential stochastic equations

.
/
´

d

dt
h h (t , x)4 (A1DF (X(t , x) ) h h (t , x)

h h (0 , x)4h ,

(1.5)

and

.
/
´

d

dt
z h(t, x)4(A1DF(X(t, x)) z h(t, x))1D 2F(X(t, x))(h h(t, x), h h(t, x))

z h(0, x)40 ,

(1.6)

respectively, see e.g. [6]. From (1.5) and the Gronwall lemma, it follows

Nh h (t , x)NGe (VAV1VFV1 ) t NhN , x , h�H .(1.7)

Therefore, from (1.6) we find

Nz h (t , x)NG�
0

t

e (t2s)(VAV1VFV1 ) ND 2 F (h h (s , x), h h (s , x) )Nds

G�
0

t

e (t2s)(VAV1VFV1 )
VFV2 e s(VAV1VFV1 ) ds(1.8)

4VFV2�
0

t

e (t1s)(VAV1VFV1 ) ds .

It follows that u(t , Q)�C 2
b (H) and

aDu(t , x), hb4E[aDW (X(t , x) ), Xx (t , x) hb] , tF0, x , h�H ,(1.9)

and

aD 2 u(t , x) h , hb4E[aD 2 W (X(t , x) ) Xx (t , x) h , Xx (t , x) hb]

1E[aDW (X(t , x) ), Xxx (t , x)(h , h)b] tF0, x , h�H .
(1.10)

Now the conclusion follows from the Itô formula. r

R e m a r k 1.3. In a similar way we can show that if F�Cb
k (H ; H) for some

kD3 and W�C k
b (H) then u(t , Q)�C k

b (H) for any tF0.
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We note that Proposition 1.2 has been proved by deterministic methods in [8]
when det CD0 and in [7] when F40.

We define now a semigroup of linear bounded operators in Bb (H) by
setting

Pt W(x)4E[W (X(t , x))], W�Bb (H), tF0 ,(1.11)

this definition is meaningful since W is bounded and Borel and X is continuous.
It is easy to see that Pt has the Feller property, that is the following implica-

tion holds:

W�Cb (H), tF0 ¨ Pt W�Cb (H) .(1.12)

Consequently the restriction of Pt , tF0 to Cb (H) is a semigroup of linear bound-
ed operators in Cb (H) (not strongly continuous in general, see [1] and [9]).

The goal of this paper is to find sufficient conditions such that Pt W is differen-
tiable in x for all tD0 and for all W�Cb (H). We are also interested in the be-
haviour of the derivative DPt W for t close to 0 , arriving to estimates such as

NDPt W(x)NGct 2k/2
VWV0 ,(1.13)

for some k�N .
We believe that it would possible to find estimates, under suitable additional

assumption, also for higher derivatives of W. These estimates could be useful to
prove Schauder estimates for the elliptic equation

lW2Nf4 f ,(1.14)

see [7]. However we shall only prove (1.13) for k41. As a consequence we will
find that the transition semigroup Pt enjoys the strong Feller property, that is:

W�Bb (H), tD0 ¨ Pt W�Cb (H) .(1.15)

Strong Feller property is important to study uniqueness of invariant measures,
see [4].

When F40 there is a complete answer to the above problems that we recall in
§ 2. In § 3 we consider a perturbation of the linear case. Finally in § 4 we give an
example.
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2 - The case when F40

We assume here F40. Then Pt is given, as well known, by the following
Mehler formula:

Pt W(x)4�
H

W(e tA x1y) N(0 , Qt )( dy) , W�Bb (H) ,(2.1)

where

Qt4�
0

t

e sA Ce sA * ds ,(2.2)

and N(0, Qt) is the gaussian measure having mean 0 and covariance operator Qt .
The following result is also well known, see e.g. [3],

P r o p o s i t i o n 2.1. The following statements are equivalent:

(i) det QtD0, for all tD0.
(ii) For all W�Bb (H) and for any tD0 we have Pt W�C Q

b (H). Moreover, if (i)
holds we have

VD k Pt W(x)VGVL(t)Vk
VWV0 , tD0, k�N ,(2.3)

where

L(t)4Qt
21/2 e tA , tD0 .(2.4)

We recall that when C4I and Ve tA
VGe vt , tF0, we have

VL(t)VG
e vt

t 1/2
,(2.5)

whereas if det C40, but det QtD0, tD0, there exists k� ]3, 5 , R , 2d21(,
and a positive constant ck such that

VL(t)VGck
e vt

t k/2
.(2.6)

We recall that assumption (i) of Proposition 2.1 is equivalent to the Hörmader
condition, see [5], ensuring hypoellipticity of N , and also to the controllability of
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the deterministic system

j 84Aj1C 1/2 h , j(0)4j 0 ,(2.7)

where j is the state and h the control. In fact, given TD0 and j 0�H , the
control

h(s)42C 1/2 e (T2s)A * QT
21 e TA j 0 , s� [0 , T] ,

drives system (2.7) to 0 in time T .

3 - The case when Fc0

Let W�C 2
b (H) and let u be the strict solution of (1.1). First we are going to

prove an estimate for Du(t , x) depending on VWV0 but not on VDWV0 . To do this, we
shall use a generalization of a well known method due to Bernstein.

We set

z(t , x)4u 2 (t , x)1 aG(t) Du(t , x), Du(t , x)b, x�H , tF0 ,(3.1)

where G(t), tF0 are symmetric positive matrices, to be specified later, whose ma-
trix elements will be denoted by (Gi , j (t) ).

We will need the following identities involving the differential operator N , that
can be easily checked.

N(Wc)4WNc1cNW1 aCDW , Dfb, W , c�C 2
b (H) ,(3.2)

and

Di NW4NDi W1 aDi F(x), DWb, W , c�C 2
b (H), i41, 2 , R , d .(3.3)

L e m m a 3.1. Let W�C 3
b (H), u(t , Q)4Pt W , and let G�C 1 ([0 , 1Q) ); L(H) )

with G(t) symmetric for all tF0. Then the following identity holds:

Dt z(t , x)4Nz(t , Q)(x)1 aG 8 (t) Du(t , x), Du(t , x)b

12a(A1DF(x) ) G(t) Du(t , x), Du(t , x)b2 aC Du(t , x), Du(t , x)b

2Tr [CD 2 u(t , x) G(t) D 2 u(t , x) ] .

(3.4)

P r o o f . We first notice that by (3.2) we have

Dt (u 2 )42u Dt u42uNu4N(u 2 )2NC 1/2 DuN2 .(3.5)
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Let us compute Dt (Di uDj u). Taking into account (3.3) we have

Dt (Di uDj u)4Di Nu Dj u1Di u Dj Nu

4NDi u Dj u1NDj u Di u1 aDi F , Dub Dj u1 aDj F , Dub Di u .

By (3.2) it follows

Dt (Di u Dj u) 4N(Di uDj u)2 aCDDi u , DDj ub

1aDi F , Dub Dj u1 aDj F , Dub Di u .

Let us compute Dt (aG(t) Du , Dub ),

Dt (aG(t) Du , Dub )4Dt (aG 8 (t) Du , Dub )1 !
i , j41

d

Gi , j (t) Dt (Di u Dj u)

4Dt (aG 8 (t) Du , Dub )1 !
i , j41

d

N( (Di u Dj u) )2 !
i , j41

d

Gi , j (t)aCDDi u , DDj ub(3.6)

12 !
i , j41

d

Gi , j (t)aDi F , Dub Dj u .

From (3.5) and (3.6) the conclusion follows. r

We prove now the main result of the paper. In its formulation we set

G(t)4 [L(t)* L(t) ]214�
0

t

e 2sA Ce 2sA * ds , tF0 .(3.7)

Moreover we recall that Pt W is defined by (1.11).

T h e o r e m 3.2. Assume, besides Hypothesis 1.1, that det QtD0 for tD0,
and

aDF(x) G(t) j , jbGkaG(t) j , jb, tD0, j�H ,(3.8)

for some k�R .
Then for any W�Cb (H) and any tD0 we have Pt W�C 1

b (H). Moreover the fol-
lowing estimate holds

NDPt W(x)NGe kt/2
VL(t)V VWV0 , tD0, x�H .(3.9)
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Finally if W�Bb (H), and tD0, then Pt W is Lipschitz continuous, so that Pt is
strong Feller.

P r o o f . We first prove the assertion for W�C 3
b (H). For this purpose we use

Lemma 3.1 taking

G(t)4 [L(t)* L(t) ]214�
0

t

e 2sA Ce 2sA * ds .

By a straightforward computation we find

G 8 (t)1AG(t)1G(t) A *2C40 , tF0 ,

so that, taking into account that

Tr [CD 2 u(t , x) G(t) Du 2 (t , x) ]D0 ,

(3.4) yields the following

Dt z(t , x)4Nz(t , Q)(x)1 aDF(x) G(t) Du(t , x), Du(t , x)b

2Tr [CD 2 u(t , x) G(t) D 2 u(t , x) ]

GNz(t , Q)(x)1kaG(t) Du(t , x), Du(t , x)b .

Therefore

aG(t) Du(t , x), Du(t , x)bGz(t , x)

GPt (W 2 (x) )1k�
0

t

Pt2s (aG(s) Du(s , Q), Du(s , Q)b )(x) ds ,

and consequently

sup
x�H

aG(t) Du(t , x), Du(t , x)b

GVWV0
21k�

0

t

sup
x�H

aG(s) Du(s , x), Du(s , x)b ds .

By the Gronwall lemma it follows

aG(t) Du(t , x), Du(t , x)bGe kt Pt (W 2 ) , tF0 .
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Finally we have

NDu(t , x)N2GVL(t)V2 aG(t) Du(t , x), Du(t , x)bGe kt
VWV2

0 ,

and (3.9) is proved when W�C 2
b (H).

Let now W�Cb (H), and let ]W n(%C 3
b (H) such that W nKW in Cb (H).

Set

un (t , x)4Pt W n (x) , x�H , tF0 .

Then by (3.9) it follows that, for any m , n�N ,

NDun (t , x)2Dum (t , x)NGe kt/2
VL(t)V VW n2W m V0 .

This implies that u(t , Q)�C 1
b (H) and (3.9) holds.

Let finally tD0 be fixed and W�Bb (H). Let ]W n(%C 1
b (H) such that

W n (x)KW(x) almost everywhere and VW nV0GVWV0 . Then for any n�N , we have,
by the first part of the proof,

Nun (t , x)2un (t , y)N Ge k 1 t/2
VL(t)VNWV0 Nx2yN ,

for all x , y�H . Consequently, by the Ascoli–Arzelà lemma, there exists a subse-
quence ]unk

( such that

lim
kKQ

unk
(t , x)Ku(t , x) , uniformly on the compact subsets of H ,

where u(t , x)4Pt W(x). Therefore Pt W is continuous as required. r

3.1 - A generalization

We assume here that Hypothesis 1.1–(i) holds, but we replace Hypothesis
1.1–(ii) by the following

H y p o t h e s i s 3.3. F is locally Lipschitz continuous, and there exists h�R
such that

aF(x)2F(y), x2ybGhNx2yN2 , x , y�H .(3.10)

Under these assumptions the differential stochastic equation (1.4) can be solved
by monotonicity methods, see [6] and [3], Chapter 5. Then we can still define the
transition semigroup

u(t , x)4Pt W(x)4E[W(X(t , x))] , tF0, x�H ,
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for all W�Bb (H). However if W�C 2
b (H), we cannot conclude that u is a strict sol-

ution to (1.1). In fact we do not know whether X(t , x) is twice differentiable, and
so we cannot uses formulas (1.9) and (1.10). We shall say that u is a generalized
solution of (1.1).

We prove finally the following result.

T h e o r e m 3.4. Assume, besides Hypotheses 1.1–(i) and Hypotheses 3.3, that
det QtD0 for tD0, and that (3.8) holds.

Then for any W�Cb (H) and any tD0 we have Pt W�C 1
b (H). Moreover the fol-

lowing estimate holds

NDPt W(x)NGe kt/2
VL(t)V VWV0 , tD0, x�H .(3.11)

Finally if W�Bb (H), and tD0, then Pt W is Lipschitz continuous, so that Pt is
strong Feller.

P r o o f . There exists a sequence ]Fn( in C 2
b (H ; H) such that

(i) We have

lim
nKQ

Fn (x)4F(x) , x�H , n�N ,

uniformly on the bounded subset of H .

(ii) We have

aFn (x)2Fn (y), x2ybGhNx2yN2 , x , y�H .(3.12)

It is enough to set

Fn (x)4�
H

e
2

1

2n F(e
2

1

2n x1y) N (0 , (12e
2

1

2n ) )( dy) .

Let Xn (t , x) be the solution to the differential stochastic equation

.
/
´

dXn (t)4 (AXn (t)1Fn (Xn (t) ) dt1C 1/2 dW(t) )

Xn (0)4x ,
(3.13)

and let P n
t be the corresponding transition semigroup:

P n
t W(x)4E[W (X(t , x))] , W�Bb (H), tF0, x�H .(3.14)

It is not difficult to see that P n
t W(x)KPt W(x) when nKQ uniformly on the
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bounded subsets of H , see e.g. [2], Chapter 2. Now by Theorem 3.4 we have the
estimate

NDP N
t W(x)NGe kt/2

VL(t)VVWV0 , tD0, x�H , N�N ,(3.15)

for any W�Bb (H). Now the conclusion follows from standard argu-
ments. r

4 - An example

We consider here the evolution equation in R2 ,

.
/
´

Dt u(t , x)

u(0 , x)

4
1

2
D 2

1 u(t , x)1x1 D2 u(t , x)1F1 (x) D1 u(t , x)

1F2 (x) D2 u(t , x) ,

W(x), x�H .

(4.1)

It is a perturbation of a well known Kolmogorov equation.
In this case we have

A4 g0
1

0

0
h , C4 g1

0

0

0
h ,

and

G(t)4
t

6
g 6

23 t

223 t

2 t 2 h .

It is easy to see that det QtD0 and

VL(t)VGct 23/2 , tF0 .(4.2)

L e m m a 4.1. Let M4 g2a

c

b

2d
h . Then MG(t)G0 for any tF0 if and

only if

b4c40, aF0, dF0 ,

and

d

3
GaG3d .
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C o r o l l a r y 4.2. Let M4 g2a

0

0

2d
h, with aF0, dF0. Then we have

MG(t)Gk 1 G(t) , tF0 ,

where

k 14 sup m d23a

2
,

a23d

2
n .

Now by Theorem 3.2 it follows the result

P r o p o s i t i o n 4.3. Assume that F1 (x)4 f1 (x1 ), F2 (x)4 f2 (x2 ), with f1 , f2

�C 2
b (R), f1G0, f2G0, and that there exists c1D0 such that

ND1 f1 (x1 )N1ND2 f1 (x2 )NGc1 .

Then for any W�Cb (H) and any tD0 we have Pt W�C 1
b (H). Moreover the fol-

lowing estimate holds

NDPt W(x)NGce c1 t/2 t 23/2
VWV0 , tD0, x�H .(4.3)
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A b s t r a c t

We consider a degenerate parabolic equation fulfilling controllability conditions and
prove differentiability of the solution.

* * *


